
I.J.Modern Education and Computer Science, 2011, 4, 47-54
Published Online July 2011 in MECS (http://www.mecs-press.org/)

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 4, 47-54

A framework for ensuring consistency of Web
Services Transactions based on WS-BPEL*

Pan Shan-liang,Li Ya-Li, Li Wen-juan
Department of Institute of Computer Science & Technology

Ningbo University
Ningbo, China, 315211

panshanliang@nbu.edu.cn,muwenzijuan520@163.com,

* This work is supported by: Natural Science Foundation of China （60773072）.

Abstract-Transaction processing, as the key technology
of web service composition (WSC), has obtained wildly
concern. WS-BPEL[1] as a primary web service composition
description language, which couldn’t coordinate these web
service transactions that distribute in a distributed
computing environment reach consistent agreement on the
outcome. This paper proposed two kinds of transaction
types and coordination mechanisms by analyzing the
features of WSC transaction, and a transaction processing
coordination model based on BPEL was lastly proposed, by
which extending the structure of BPEL firstly and then
introduced the coordination mechanism into it. The model
was validated by an instance at last.

Index Terms-Transaction, service composition, BPEL,
coordination mechanism.

I INTRODUCTION
Major IT organizations such as Amazon, Google,

and e-Bay have been migrating their interfaces for
business partners to service-oriented architectures using
the Web Services (WS) technology. WS allows
organizations to easily integrate services across different
organizations as well as within organizations. Such WS-
based integrated applications should guarantee consistent
data manipulation and outcome of business processes
running across multiple loosely-coupled organizations.
Thus, WS technologies should be extended to equip with
transaction-processing functionalities.

There are three proposals for protocols to extend the
WS with transaction-processing capabilities, i.e. Web
Services Transactions specifications[8], Business
Transaction Protocol (BTP) [7], and WS-CAF[9-11]. These
specifications provide transaction support in loose
coupling environment by relaxing ACID properties of
traditional transaction. BTP adopt the two-phase commit
protocol to ensure the consistency of the transaction, but
it’s not very ideal in practice because its centralization
management and it doesn’t support traditional ACID
transaction. The WS-Transaction describes an extensible
framework for divorcing the coordination framework and
coordination type. But two kind coordination types that
are proposed lack of implementation of concrete
coordinate process. WS-CAF has certain advantage
compare with the former two specifications. It is similar
to WS-Transaction, but more completed, however, the
WS-CAF has not adopted by any system recently.

WS-BPEL is a mainstream web service
composition description language and has become a
standard description language. WS-BPEL relied on
WSDL is defined as an process-oriented service
composition language based on XML ,and is formulated
into a norm for web service composition. It can not only
implement combination, interaction and presentation
process between web services but also WS-BPEL
process itself is exposed as a WSDL-defined services and
can be called by other web services.

The core concept of WS-BPEL is active, that is a
statement or a step in the implementation during the WS-
BPEL process.The activity of BPEL is divided into
atomic activity and structured activity. The atomic
activity such as invoke, reply，receive，assign and so
on ,which is used for calling a partner web service and
the structured activities such as scope, sequence, flow
and so on ,which provide a container for nested activities.
The user can combine some web service using these
activities. The scope is a special structured activity,
which provides context for fault handling and
compensation handling, and which provide some support
for transaction processing. However, the BPEL couldn’t
coordinate these web service transactions that distribute
in a distributed computing environment reach consistent
agreement on the outcome, namely, the BPEL lack of
support of transaction coordination mechanism.

This paper proposed a transaction processing model
based on BPEL through extending BPEL, which based
on analysis of transaction processing mechanism in
BPEL and combine with the characteristics of transaction
in web service composition environment (WSCE). Firstly,
we discuss the transaction in WSCE and divide it into
two types, and then raise the coordination mechanism
and fault handling methods according to two types of
transaction. Secondly, we analyze the shortage of BPEL
in transaction processing, extend it and introduce the
concept and behavior of transaction into BPEL. Thirdly,
the paper proposes the transaction processing
coordination model based extending BEPL through
introducing the two different kinds of coordination
mechanism. Lastly, the model was validated by an
employee travel example.

The remainder of this paper is organized as follows.
Section Ⅱ discusses the current status and problems of
transaction processing. Section Ⅲ put forward the

48 A framework for ensuring consistency of Web Services Transactions based on WS-BPEL

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 4, 47-54

coordination mechanism and algorithm about transaction
in WSCE. Section Ⅳ describes the transaction
processing mechanism in BPEL and analysis it’s the
shortage. Section Ⅴ proposes a transaction processing
coordination model based on BPEL. An application
example is illustrated in sectionⅥ and lastly section Ⅶ
concludes the paper.

II Related work
The research of WSC transaction processing can

summarized from following aspects.
On the one hand, there are many works study the

transactional of WSC based on workflow such as [12].
These works incorporate transaction semantics such as
atomicity and isolation to ensure a reliable workflow
execution. For example, FLeymann[12] introduced the
concept of compensation concept in the IBM FlowMark
workflow system to allow the compensation of activities.

On the other hand, there some works about
optimization research on transactional of WSC. For
example, [13] proposed a new resource coordination
algorithm with transaction-aware based on THP
transaction model, which improve the success rate of
service commit. The [14] define transactional property
(such as pivot, compensatable and retriable) for each
service, so the service has transaction semantics.

Besides, some scholar study the transaction based
on WS-BPEL such as [15, 16]. In [15], Tai et al. used
WS- Policy [17] and WS-Policy Attachment[18] to specify
the transactional requirements of scopes and partner links.
The purpose of the process container and the transaction
web service is also to support transactions in BPEL
processes. In [16], Wang et al. extended the BPEL4WS
to let BPEL4WS specification support transaction
through analyzing the requirements of transaction
processing in WSC.

In summary, the current transaction processing still
exist issues need to be solved as follows. First, the
current WSC model and description language does not
offer the support of transaction coordination process, and
the two-phase commit protocol that adopted by
traditional short transaction is not suitable for the long-
running transaction. Second, how to deal with the
exception when execute the composite service and
recover its execution, and how to choose the combination
of web services to improve the execution reliability of
composite service in the web service composition process.

III Web service composition transaction
coordination mechanisms and algorithms

The types of web service composition transaction
WSC is a complicated service which is completed

by a series of web service according to certain business
logic by cooperation. These web services deploy on the
whole internet, with the characters of autonomy, cross-
organization, loosely coupled and long running. Due to
these natures of web service, the web service transaction
couldn’t strictly follow the ACID properties. Therefore,

this article will divide the web service transaction into
atomic transaction and cohesion transaction to meet the
requirements of transaction processing in WSCE.

Definition 1: Atomic Transaction (AT) is similar to
traditional ACID transaction. It is used to coordinate the
short-life operation. The atomic transaction asks the all
participants either to commit or to abort having an "all or
nothing" property. The AT will lock the resource before it
commits. That is to say, the state of transactions cannot
be accessed by other concurrent transactions. If Failure,
atomic transactions adopt the way of rollback which
recover the state of Atomic transaction from execution so
as to ensure the consistency of transactional.

Definition 2: Cohesion Transaction (CT) is used to
coordinate the long-running distributed transaction. It is
unlike AT locking the resource before commit. The
participants of CT can commit the transaction by itself,
that is to say, the other transaction can access its
intermediate state. If fault appear, Cohesion Transaction
adopt the way of rollback before submission and the way
of compensation after submission to ensure the
consistency of transactional. As compensation is
semantically cancel the impact of submitted transaction.

Both of AT and CT relaxed the atomicity and
isolation of traditional transaction, so web services
coordination mechanism would be change when web
services interact. We will detail the coordination
mechanism and algorithm of AT and CT in the next.

AT coordination mechanism
Atomic transaction is used for short-life operation

and it employs 2PC protocol to guarantee the consistency
of transaction. Figure 1 is the process of AT coordination.

Figure 1 AT coordination sequence chart

 A framework for ensuring consistency of Web Services Transactions based on WS-BPEL 49

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 4, 47-54

(1) Create transaction: The initiator sends the request
to coordinator to create CoordinationContext(CC) and
ask the participant to join in the transaction. The
participant must send a Response message to response it.
The coordinator makes a response to express whether it
is willing to join the transaction.

(2) Preparation phase: After received the Prepare
from coordinator, each participant assign the necessary
resource for the execution of its subtask. If success, it
send a Prepared to coordinator. If not, send a Not
prepared.

(3) Transaction commit: If received N Prepared, the
coordinator send Commit to all participants. Otherwise, it
will send Abort to each participant to abort the resource
allocation. If receive the Commit, the participant will
record the commit message in log and execute the
corresponding subtask.

(4)Commit failure handling: If any participant send
a Failed or the returned messages are less than N, the
coordinator will report a failure to user and send
Rollback to all participants to recover the committing
previous state. If receive N Committed, the transaction
complete correctly. Figure 2 is The abstract state diagram
of 2PC[21].

(5)Nested transaction: During the execution of the
transaction, if some participant itself contains a sub-
transaction, it will recursively apply the above
mechanism to form the nested transaction tree. At same
time participants is not only a participant, but also a
coordinate for sub-transaction.

The coordination algorithm of Atomic Transaction

include two parts: coordination algorithm of the
coordinator and the participant coordination algorithm.
The coordinator and the participant respectively control
their own information’s transmitting and the
communication process to accomplish the whole
transaction . The coordinator algorithm and participants
algorithm will be provided by the following. The
parameter t refers to the waiting time, n1 and n2 express
the number of message that the coordinator received, N
refer to the number of participant.

The coordination algorithm of coordinator as
follows:
ActionOfParent{
Step1: initiate a AT

create atomic coordinator instance and CC;
send the CC to all participants Pi;

wait for the response from Pi;
if timeout exit;

Step2: Prepare for the transaction commit
send Prepare to all participants;
while(t ≤ T1)and(n1 ＜ N) wait for and record

income messages;
Step3: Commit the transaction

if(n1=N)and(all n1 messages are prepared){
 record commit in log;
 send Commit to all participants;

while(t≤T2)and(n2＜N) wait for and record
income message;

if(n2＜N)and(not N messages are Committed){
send Rollback message to all participants;
exit after receiving all Rollbacked;
exit after receiving Committed;}

}else {
send Abort to all participant;
exit after receiving all Aborted;}
}

Participant algorithm as follows:
ActionOfChild{
Step1: join in the transaction;

 creates participant after receiving CC;
sends Response to Coordinator;
apply to the coordinator for registration;

Step2: allocate resources
wait for Prepare from Coordinator;
if timeout exit;
success:=allocate resources;
if(success)send Prepared to coordinator;
else exit;

Step3: commit sub-transaction
while(t≤T3)&(message isn’t Commit or Abort)
wait for income messages;
if(message is Commit){
record commit in log;
Commit the sub-transaction;//for nested sub-

transaction, call AT coordinator algorithm;
send Committed to coordinator;}
else {cancel allocation;

exit;}

CT coordination mechanism
For CT coordination mechanism, this article refers

to the interactive processing between coordinator and
participant within WS-BA specification. WS-BA is
focused on the interaction between coordinator and
participant. Compare with the AT coordination process,
WS-BA don’t define the interface between initiator and
coordinator. WS-BA expected workflow engine to
provide a proprietary interface to manage WS-BA tasks
for the workflow. According to General principles of
software architecture，there should be an agreement to
determine the interaction between them for different roles.
While the tight coupling between the coordinator and the
initiator violate this principle.So we need to define an
interactive protocol between coordinator and initiator.
The WS-BA-I [22] is such a protocol that defines the

 Figure2 The abstract state diagram of 2PC

50 A framework for ensuring consistency of Web Services Transactions based on WS-BPEL

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 4, 47-54

interface between initiator and coordinator clearly[23].
During the definition of CT coordination process, It

uses WS-BA-I protocol to coordinate the interaction
between the initiator and coordinator ,and BAwPC and
BAwCC protocol provided by WS-BA to communicate
between the coordinator and participants. The BAwCC
transition diagram is showed in figure 3.It reacts the
changes in the state of transaction when the messages
sended by the coordinator and participants receive the
appropriate information . The main difference about
BawPC and BawCC is that participants can actively
commit the transaction if registered BawPC.

It is similar to the process of AT for CT. On the CT

coordination mechanism this paper provides with as
following: the transaction initiator invokes the activation
service which is provided by middleware service to
create a CA coordinator and CC. And register for WS-
BA-I protocol using registration service according the
CC. After registration success, the initiator using the WS-
BA-I protocol services to communicate with the
transaction’s CC. We use the WS-BA protocol to deal
with the interaction between coordination and participant.
Unlike AT, the participant of CT can commit its own sub-
transaction. The specific coordination process is showed
in figure 4:

CT coordination algorithm as follows: The
parameter t refer to the waiting time for participants and
coordinator.T1 refor to their waiting time threshold. The
register protocol of participant is BAwCC. The
coordinator support mixed outcome coordination type.
ActionOfSuperior{
Step1: initiate a CT

create a CT transaction
Create CT coordinator instance and CC;
while(transaction doesn’t complete){

The coordinator sends CC to participant;
wait for participant to register ;}

Step2:register/cancel participants
Stpe3:complete/cancel participant

While(t≤T1){
wait and record income message;
if(the initiator select complete some participants){
send Complete to participants;
wait for response from participants;}

else {send Cancel to participant;
wait the response from participant;}}

Step3:close/compensate participant
if(participant complete successfully){

while(t≤T1){wait for incoming message;
if(the initiator select close some participants){

send Close to participants;
wait the response from participants;}

if(participant need to be compensated){
send Compensate to participant ;
wait for response from participant;}}

}
Participants algorithm as follows:

ActionOfInferior{
Step1: register to coordinator

join in the transaction
create BAwCC participants instance;
participants apply to the coordinator for registration;

Step2: allocation resource for the participants
while(t≤T1){wait the response from registration;

if(register successfully) assign
resource,executive sub-transaction; }

If(t＞T1)exit and get rid of transaction;
Step3:completeclose/compensate sub-transaction

if(sub-transaction complete successfully){
while（t≤T1）{
wait for instruction from coordinator;
if (message is complete)

complete sub-transaction,generate
compensation processing program;

elseif(message is cancel){
cancel sub-transaction,release allocation;}
Step4:close / compensate sub-transaction
 if (sub-transaction complete successfully){
while(t≤T){
wait for the instructions from coordinator;
if(message is close)

exit and send Closed to coordinator;
elseif(message is Compensate)

Figure3 The abstract state diagram of BAwCC protocol

 Figure4 CT coordination sequence chart

 A framework for ensuring consistency of Web Services Transactions based on WS-BPEL 51

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 4, 47-54

{execute the compensate transaction;
if(compensate successfully)
 send Compensated to coordinator and exit;
elseif(fault happen) { send Faulted to

coordinator ;
cancel allocation ;
exit;} }}

IV THE TRANSACTION PROCESSING MECHANISM
AND SHORTAGE IN BPEL

WS-BPEL is a business process description
language based on XML, which provides an approach
that normally descript the business process and business
interaction protocols. WS-BPEL provides scope, fault
handling and compensation handling to support
transaction processing. But these supports can not satisfy
the WSCE. This section will discuss the transaction
processing mechanism in WS-BPEL and analysis the
BPEL’s weakness in WSCE.

The WS-BEPL’s transaction processing mechanism
The WS-BPEL as a primary web service

composition description language, whose support of
transaction processing is the key to the widely use of
WSC. The transaction within WS-BPEL mainly
concentrates upon scope which encloses a series of
activities to complete a certain function. And the scope
allows nested. There is a certain similarity with the
transaction at this point. Through the fault handler
defined by itselves and compensation handler, Scope
handle the exception or error occurred in the process of
Composite service operation.Figure 5 shows the
structure of the scope. A scope can define a
compensation handling and multiple fault handling.

The compensation handler is the core of long-
running transaction within WS-BPEL [49]. When
composite services operate,if something going wrong，
it would be necessary to cancel part of the completed
operation so as to recover from the implementation of
operation .At this time , the provided Compensation
handler that semantically cancel the impact of
completed operation should be invoking. In a running
process, there would be only one time to invoke the
compensation handler for a completed scope, or the
composite services operation will go wrong.

When the scope is failed during operation, the Catch

activities in fault handler will catch the error to

respectively invoke the corresponding fault handler by
Classifying captured error.

The BEPL’s shortage in transaction processing
Through the WS-BPEL business processes,

Combination services establish two ways to support the
transaction: First, the combined services calls for a single
web service as a participant in the process; Second, the
process will be packaged into a web services which can
be called by other combinations as a transaction
participants. When a combination web service running,
that is, a transaction is started, It needs to trigger the web
service or composite service to register as participants by
themselves[25] . During the process, It involves the
creation of the transaction, transmission and reception of
coordination context , so WS-BPEL is required to have
these behaviors. But there are no concepts of transaction
in WS-BPEL which lack the mechanism that coordinate
multiply participant reach an agreement outcome in
WSCE. That is to say, the WS-BPEL lacks the support of
transaction coordination mechanism. So we extend the
WS-BPEL language for introducing the transaction
coordination mechanism

V THE EXTENDING MODEL OF BPEL
TRANSACTION

WS-BPEL can enclose a series of sub activities in a
structure activity to complete some function, so we can
view the structure activity as the transaction boundary.
That is to say, we should define transactional behavior
for the structure active. But, for the short-life AT and
long-running CT based on compensation mechanism,
since their coordination mechanisms are different, we
should specify different transactional behavior for each.
For example, define a transactional scope activity with
ACID properties, so the nested activities within scope
(such as invoke) will use the 2PC protocol of WS-AT to
commit.

The following will give a detailed description on WS-
BPEL extending. It’s include the introducing of the
transaction property, the extending of AT and CT.

A The transactional extending of BPEL
1) The main construct for handling a Business

Transaction/Business Activity within WS-BPEL is a CC.
This is a value that represents a business transaction and
is held in a variable, appropriately typed in the variables
element:

<variables>
…
<variable name=”employeeStatusContext”
type=”wscoor:CoordinationContext”/>
</variables>
2) Constructs are needed to specify how CC are

transmitted and received with the application messages
sent and received in BPEL. There are three constructs
that interact with external partner, namely invoke, receive
and reply.

receive: This construct is mainly used to start the

 Figure 5 the structure of scope

52 A framework for ensuring consistency of Web Services Transactions based on WS-BPEL

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 4, 47-54

business process by receiving external invocation. The
receive activity will gain CC when receive external
invocation. So we add a property of
businessTransactionContext for receive activity.

<receive partnerLink=”AmericanAirlines”
portType=” tns:FlightAvailabilityPT”
operation=” FlightAvailability”
variable=” FlightDetails”
businessTransactionContext=”

AmericanAirlineContext”>
 …
</receive>
invoke: This construct is mainly used to call a web

service provided by a partner to complete business
operation. We extend two properties of
inputBusinessTransactionContext that expresses the
external CC and outputBusinessTransactionContext that
expresses the current CC for invoke activity.

<invoke partnerLink=”employeeTravelStatus”
portType=”emp:EmployeeTravelStatusPT”
operation=” EmployeeTravelStatus”
inputVariable=” EmployeeTravelStatusRequest”
inputBusinessTransactionContext=”travelTransactio

nContext”
outputVariable=”EmployeeTravelStatusResponse”
outputBusinessTransactionContext=”employeeStatu

sContext”>
…
</invoke>
reply: This construct is mainly used to respond the

external invocation in the synchronization interactive
process. It needs to return the CC to its partner, so we
add an outputBusinessTransactionContext property that
use to return the CC to its partner service.

<reply partnerLink=”employeeTravelStatus”
portType=”tns:EmployeeTravelStatusPT”
operation=”EmployeeTravelStatus”
variable=”EmployeeTravelStatusResponse”
outputBusinessTransactionContext=”

employeeStatusContext”>
…
</reply>
3) Constructs are needed to specify how a business

transaction is initiated. This will cause the creation of a
new, propagatable CoordinationContext in BPEL. So we
extend a new data structure businessTransaction in BPEL,
which has the properties of name, action, and context.
The name express the name of transaction, the action
express the behavior of transaction (such as begin,
prepare, complete, compensate and so on) and context
express the CC of transaction.

<businessTransaction action=”new”
context=” travelTransactionContext” />
<businessTransaction action=”confirm”
context=”travelTransactionContext”/>
<businessTransaction action=”prepare”
context=” employeeStatusContext”>
<businessTransaction action=”cancel”
context=” employeeStatusContext”>

The atomic activity transactional processing
The WS-BPEL doesn’t provide the support for AT.

According to AT coordination mechanism, the transaction
must rollback if the transaction executes fail. That is to
say, the BPEL process can send a rollback to coordinator
of transaction immediately. Figure 6 shows a process
with an atomic scope activity that contains a sequence
with two invoke activities, interacting with two different
partners.

1) When the scope is started, the process tells the
middleware to create an atomic CC using the activation
service.

2) The activation service returns an atomic CC,
which will be sent with the application messages of the
nested invoke activities.

3) The AT CC tells the partners (that must support
WS-AT) to register at the registration for the 2PC
protocol.

4) After the scope activity completes, the BPEL
process registers for the completion protocol at the
registration service.

5) The BPEL initiates the completion protocol and
tells the coordinator to commit.

6) The latter runs the 2PC protocol with the
partners A and B and send the result to the BPEL process
using the completion protocol.

In the process of atomic activities, the process tells

the coordinator whether the transaction should be
committed or rolled back. This means that the BPEL
process or the BPEL engine must be able to perform the
following actions: creating a CC, registering for
completion protocol, adding a CC to application
messages, and supporting the completion protocol. The
processes of CT are similar to AT, which are not
discussed here.

 The fault handling of transaction
If the transaction activity fails, the transaction

coordinator should be told to rollback/compensate
because the activity will not complete. To support

Figure 6 the interactive process of an atomic scope activity

 A framework for ensuring consistency of Web Services Transactions based on WS-BPEL 53

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 4, 47-54

rollback, we must add a fault handler to the BPEL
process that calls the appropriate rollback/compensate
operation of the transaction middleware.

Usually, the transaction’ state use variable to save.
In order to restore the transaction’ state, we need to add a
new variable to save the variable values before the
execution of a transaction. So, if the transaction needs to
roll back, we only used this new variable to restore the
variable that saves the state of transaction.

For AT and uncompleted CT, we used rollback to
keep their consistency. For completed CT, we adopt
compensation to keep the consistency. The compensation
is that undo the effects of committed transaction.

VI APPLICATION EXAMPLE
Let us illustrate the process by an example of

Employee travel arrangements. There are the definitions
of simplified business processes of employee travel
arrangements: Customers call this process, specify the
employee name, destination, departure date and return
date. The long-running transaction involves two
participants: one service is to arrange an employee; the
other service is to schedule flights. It is considered as a
successful implementation of the transaction once both of
them succeed. If there is a failure between the two, you
need to apply the successful service to make a
compensation to ensure the consistency of the state of the
transaction. Let’s detail the two services:

It implements two operations during the process of
arranging employees Services, one is to query the status
of employee information (whether the employees could
be arranged), and return flight standards of employees
(may be economy class, business class or first class); the
other is to set the status of employee (if employee status
could be arranged, then automatically set the operation).

It also implements two operations in the service of
booking airline tickets. One is the inquiry services (to
query whether there are flights to meet the conditions on
the basis of the information provided by customer and
the employees flight standards returned by employee
services); the other is the scheduled services (the user
begin to book after selecting the appropriate flight).

In the combine services, invoking a web service will
trigger the web service to automatically register as a
participant, so web services can provide a specific
operation as a participant (such as submission,
completed, etc.). In addition, in this paper, we firstly
define describing documents WSDL of web service, by
WSDL2JAVA tools, to create participants’ service
operation interface. But the specific interface does not
provide any operation, so participants need to implement
the specific operation of participant service in this
interface. Only in this way can we complete a
participants’ service process. These consist of arranging
employee services and scheduling flight service.

When participants service successfully released, we
can use WS-BPEL language to logic combine published
services together according to business Process . As
shown in Figure 7.

Specific operational procedures are as follows:
1) The user enters the employee's name and travel

dates, click Start, then the composite service start to run,
the transaction started.

2) Arranged under the names of the employees call
the state of employee services available employee
operation, if the state is busy, then exit the transaction. If
the idle state, then return the employees flight standards
and invoke the operation to set the state of employees,
and set the state of employees busy in the database.

3) According to the user input travel dates and
returned standards of flight, it will call querying flight
information of scheduled aircraft flight services. If it
meets the conditions for flight information, it will return
the relevant information and subtract the number of
remain flights within the database. If there are not flight
information to meet the conditions ,then returned
nothing.

4) According to the returned flight information, the
user choose the right flights and call the operations to
complete flight scheduling , add the unselected the
number of remain flights within the database ,at the same
time ,return success reservation message, the transaction
ends.

5) If the scheduled operation fails, then it will call
compensation operations, the number of tickets plus 1,
and forward operation will be called to reset the state of
employee, and return transaction failure information.

Fig.7 WS- BPEL process

54 A framework for ensuring consistency of Web Services Transactions based on WS-BPEL

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 4, 47-54

VII CONCLUSION
With the rapid development of web application and

related technology, the WSC has attained wildly attention.
But the transaction processing is the key to the
development of WSC, which determine whether the
WSC can be wildly used. The research of web service
transaction becomes a key and urgent issue within WSC.
Although the WS-BPEL is a primary web service
composition description language, it doesn’t provide
enough the support for transaction processing.

This paper design and propose a transaction
coordination model base extending WS-BPEL. The mode
can coordinate multiply service reach consistent
agreement on the outcome. Comply with the original
WS-BEPL transaction processing, our model can
guarantee the consistent of composition service’s
execution.

However, this model isn’t validated in mathematics,
so we will adopt the mathematical tools of Petri net to
validate the deadlock-free and accessibility of this model
in our next experiment. In addition, this model is only a
preliminary model, in order to make the success rate of
execution of WSC higher, we will introduce THP
protocol into this model to make it more perfect.

REFERENCE
[1] OASIS. Business Process Execution Language for Web

Service(WS-BPEL)[EB/OL]. Version 2.0, 2007-05
[2] J.E.B. Moss.Nested Transactions: An Approach to Reliable

Distributed Computing [M]. Massachusetts Institute of
Technology.1981.

[3] C.Mohan. Tutorial: Advanced Transaction Models - Survey and
Critique[C]. In Proceedings of the 1994 ACM SIGMOD
international conference on Management of data, 521-521, 1994.

[4] G.Weikum, H.J.Schek. Concepts and Applications of Multilevel
Transactions and Open Nested Transactions [M]. Database
Transaction Models for Advanced Applications, ed. A.K.
Elmagarmid, Morgan Kaufmann, 1992.

[5] H. Garcia. Molina, K.Salem. SAGAS [M]. ACM SIGMOD
Record, 1987, 16(3):249-259.

[6] Benchaphon Limthanmaphon, Yanchun Zhang. Web Service
Composition Transaction Management[C]. In Proceedingf of the
15th Australasian Database Conference, 171-179, 2004.

[7] OASIS. Business Transaction Protocol (BTP) Version 1.0
4[EB/OL].June 2002. http://www.oasis-open.org/committees
/download.php/1184/2002-06-03.BTP_cttee_spec_1.0.pdf

[8] Cabrera, F., Copeland, G., Cox, B., Freund, T., Klein, J., Storey,
T., and Thatte, S. (2002) ‘Web Services Transaction (WS-
Transaction)’ http://www-
106.ibm.com/developerworks/library/ws-transpec/

[9] Aljuna, Fujitsu, IONA, et al.Web Services Composite
Application Framework(WS-CAF).Version 1.0 2003-07

[10] Aljuna, Fujitsu, IONA, et al.Web Services Context(WS-
Context).Version1.0，2003-07

[11] Aljuna, Fujitsu, IONA, et al. Web Service Coordination
Framework(WS-CF).Version 1.0,2003-07

[12] F.Leymann. Supporting business transactions via partial
backward recovery in workflow management systems. In Proc.of
BTW, 1995.

[13] Xu Wei ， Chen Wen-qing ， Li Bing. taTHP: an Improved
Transaction Model Based on THP [J]. Journal of Chinese
Computer Systems, 2007, Vol.28 No.1

[14] Sami Bhiri, Claude Godart,Olivier Perrin. Reliable Web Services

Composition using a Transactional Approach. IEEE International
Conference on e-Technology, e-Commerce and e-Service, 2005

[15] Wang Yong ， Zhang Yu ， Yin Rui. Research of Business
Transaction Process in Web Service Compostion[J]. Journal of
Chinese Computer System, 2006, 27(1):121~125

[16] Jeffry. Schlimmer (Eds.). Web Services Policy Framework (WS-
Policy). ftp://www6.software.ibm.com/software/developer/
library/ws-policy.pdf , September 2004.

[17] Chris Sharp (Eds.). Web Services Policy Attachment (WS-
PolicyAttachment). ftp://www6.software.ibm.com/software/
developer/library/ws-polat.pdf, September 2004.

[18] S.Tai, R.Khalaf, T.Mikalsen .Composition of Coordinated Web
Services .In Proc.of the 5th International Middleware
Conference(Middleware) , volume3231 of LNCS, pages 294–
310.Springer, October 2004.

[19] Jiang-Hua Li,Hui-Qiong Zeng,Song-Jiao Chen. Combination of
QoS-constrained service transaction recovery algorithm[J],
Computer Engineering, 2008,34(14):41-46.

[20] Yi Ren,Quan-Yuan Wu,Wei-Hong Han,Jiang-Bo Guan,
Transaction Processing Technology Review[J], Computer
Research and Development, 2005,42(10):1779-1784.

[21] Mark Little, Andrew Wilkinson.Web Services Atomic
Transaction (WS-AtomicTransaction), Version 1.1[EB/OL].
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-errata-
os/wstx-wsat-1.1-spec-errata-os.html, 2007.

[22] Hannes Erven, Georg Hicker, Christian Huemer, Marco Zaptletal.
The Web Service-BusinessActivity- Initiator(WS-BA-I)
Protocol:an Extension to the Web Service-BusinessActivity
Specification [C].IEEE International Conference on Web Services,
Washington DC:IEEE Computer Society,2007:216~224

[23] Chun-Hua Yuan,Bo Chen,Ming-Tian Zhou, WS-T protocol suite
and its application[J], Computer Applications, 2008, 25(9): 2798-
2800.

[24] Bo-Liu Jia-Ju Wu, Web Service Composition Model for
Distributed Coordination[J], Microelectronics and Computer,
2006, 23(10): 207-210

[25] Mietzner R. Extraction of WS-BA from BPEL 1.1[D].
Stuttgart:University of Stuttgart, 2006.

