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Abstract—Actuator failures are inevitable in practice 
especially in complex systems. The unknown failure may 
cause instability and catastrophic accidents during 
operation of control systems. A state feedback control 
scheme is proposed by using backstepping techniques. 
Compared with exist results, The uncertainties caused by 
total failure are seen as the bounded term and an estimator 
is designed to estimate its upper bound. The stability of 
closed loop system and output tracking performance can be 
guaranteed by our control law and corresponding update 
laws of uncertain parameters. 
 
Index Terms—- actuator failure, backstepping, nonlinear 
system, adaptive control, uncertain system 

I.  INTRODUCTION 

Actuator failures seem inevitable in practice especially 
in complex systems. The unknown failure may cause 
instability and catastrophic accidents during operation of 
control systems.  As we all know such failures are often 
uncertain in time, value and pattern, namely it is not 
known when, how much and how many actuator fail. So 
it is difficult to address the problem of actuator failure 
compensation. To address such problem, serval different 
design methods have been proposed such as multiple-
model designs and switching and tuning techniques, fault 
detection and diagnosis-based designs, robust control 
designs, neural network techniques, sliding model 
method. It is well known that adaptive control systems 
can obtain desired performance by adjusting controller 
parameters with system response errors during the 
operation of control system. So compared with other 
methods, It avoid false alarms and delays caused by 
failure detection.  

In the context of adaptive control, several schemes 
based on adaptive control approaches have been proposed, 
see for examples in [1]-[7] and [10]-[12]. In [1] [2], 
adaptive controller were proposed to linear systems with 
parameter uncertainties. It was extended to nonlinear 
systems in [3] with backstepping techniques to guarantee 

stability and tracking performance of closed-loop system. 
The results had been extended to MIMO systems with 
unknown actuator failures In [5]. An output feedback 
control law was designed for strict-feedback nonlinear 
systems with backstepping techniques to compensate 
unknown actuator failures in [4]. In [6] an adaptive 
output feedback control law was proposed to linear 
systems. It was expended to the nonlinear systems with in 
[7]. A state feed-back control law was proposed to 
compensate unknown failures and guarantee transient 
performance in [11]. In [10] the problem of compensation 
of hysteric actuator failures had been discussed.  

The work of this paper aim at compensating unknown 
actuator failures for a class of nonlinear systems with 
unknown constant parameters and bounded external 
disturbance. Several different actuator failure patterns are 
considered including partial loss of effectiveness, total 
loss of effectiveness as shown in [6]. Note that total loss 
of effectiveness denotes the output of actuator is fixed on 
an unknown constant no matter how much is the input. So 
the uncertainties caused by the failure of total loss can be 
seen as the bounded disturbance. A state feedback control 
scheme is proposed by using backstepping techniques. 
Compared with exist results about compensation of 
unknown actuator failures, we design an estimator to 
estimate the upper bound of uncertain term caused by the 
failure of total loss. The stability of closed-loop system 
and output tracking performance can be ensured by our 
control law and corresponding update laws of uncertain 
parameters. 

The remaining part of this paper is organized as 
follows. In section 2, the control plants are given and the 
mathematical model of actuator failures are discussed. In 
section 3, control scheme is proposed. Then we give the 
stability analysis. Simulations results given in section 4 
on a practical systems and it confirm the control scheme 
are effective. 

II.  PROBLEM STATEMENT 
We consider a class of nonlinear systems with 

uncertain parameters and m  inputs. The system model is 
given as 
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where 1 2( , , , )nx x x x= L  is system state, 1y x R= ∈  is 
output of system and ( 1, 2, , )p

i R i nϕ ∈ = L are known 
continuous function. ( 1, 2, , )jb j m R= ∈L and PRθ ∈  
are unknown constant parameters. ( 1, 2, , )iu i m= L  are 

inputs of the system. ( )d t  is unknown external 
disturbance.  

We now consider the adaptive compensation control of 
system (1) for the following actuator failure problem. As 
shown in [7], the mathematical model of the failure of 
i th actuator at time instant ift  can be modeled as 
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where 0 1iσ≤ ≤ , iu  and ift  are unknown constants. It is 
clear that the actuator works normally namely 

i iu v= denotes the constant 1iσ = . Other cases are 
discussed as follows 

1， 0 1iσ< <  
It indicates i i iu vσ= . The i th actuator is called partial 

loss of effectiveness. 
2， 0iσ =  
It indicates i iu u= . The i th actuator is called total 

loss of effectiveness. 
With above mathematical model of actuator failures, 

system (1) can be rewritten as follows 
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The following assumptions are necessary to design 
adaptive controller 

Assumption 1: System (1) is such that for any up 
number 1m − of total failure actuators, the remaining 
actuators can still achieve the desire control objectives. 
Any actuator changes only from normal case to one of the 
failure case. 

Assumption 2: 0ib ≠ , the sign of ib  is known. 
Without loss of generality, we suppose ( ) 1isign b = . 

Assumption 3: Reference signal ( )ry t  and its i -order 
( 1, 2, , 1)i n= −L  derivatives are known and bounded. 

Our purpose is to design control scheme to guarantee 
globally stability of closed loop system. 

Ⅲ. DESIGN OF ADAPTIVE CONTROLLERS 
Before propose the adaptive control scheme, to using 

backstepping technology as in [8] [9], the following 
coordinates transformations are introduced. 
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where 1z  is the tracking error and 1( 2,3, , )ia i n− = L  is 
the virtual control in step i . 

Step 1: With (3) and (4) we can get 
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where 1α  is the virtual control. The following Lyapunov 
function is considered 

2 1
1 1

1 1
2 2

TV z θ θ−= + Γ% %                                      (6) 

where ˆθ θ θ= −% , θ̂  is the estimation of θ  and Γ  is a 
positive define matrix. 

Virtual control 1α  can be chosen as 

1 1 1 1 1
ˆ ( )Tc z xα θ ϕ= − −                                     (7) 

where 1c  is positive constant. With (5) (6) and (7), the 
derivative of 1V  is 
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Turning function can be chosen as 
1 1 1zτ ϕ= Γ                                      (9) 

Step 2: With coordinates transformations (4) and 
system model, we can get the derivative of 2z  as follows 
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where 2α  is the virtual control in this step. The following 
Lyapunov function is considered 

2
2 1 2

1
2

V V z= +                                      (11) 

Virtual control 2α  can be chosen as 
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where 2c  is positive constant. With (5) (6) and (7), the 
derivative of 2V  is 
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Turning function can be chosen as 
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Step ( 3, , 1)i i n= −L : The same as analysis above, the 
derivative of iz  is 
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Considering the following Lyapunov function 

2
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The virtual control in this step can be designed as 
follows 
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where ic  is positive constant. We can get the derivative 
of  iV  is as follows 
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Turning function is 
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Step n : From (3) and (4), we can get the derivative of 
nz  is as follows 
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Because iu  represents the actuator’s output when 

actuator is total loss of effectiveness . According to the 
mathematical model of ith actuator, we can get iu  and ib  

are unknown constants. It is clear 
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constant and bounded. Let 
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If knowing the system parameters and failures, the 
control input iv  can be chosen as 
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where α  is the virtual control in the last step and will be 

given later. According to Assumption 1, 
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unknown constant owing to the unknown actuator failures 
and unknown system parameters. So we must replace the 
unknown ρ  with its estimate ρ̂  in the control law (22)  
and the controller is designed as 

Control law: 
      ˆiv ρα=                                        (23) 

The virtual control α  is designed as 
1

1
1

1

1 1
( )1 1 1

1 1
1 1

1 1
1 1

2 1

ˆˆ( ) ( )

ˆ

( )ˆ

n
T n

n n n n n k
k k

n n
k nn n n

k r n rk
k kk r

n n
k n

n l k
k l l

z c z sign z D
x

x y y
x y

z
x

α
α θ ϕ ϕ

α α α
τ

θ
α α

ϕ ϕ
θ

−
−

−
=

− −
− − −

+ −
= =

− −
− −

= =

∂
= − − − − −

∂

∂ ∂ ∂
+ + + +

∂ ∂ ∂
∂ ∂

+ Γ −
∂∂

∑

∑ ∑

∑ ∑

   (24) 

where â , D̂  are estimation of unknown constant a  and 
D . D  is the upper bound of ( )d t . nτ  is the turning 
function in this step and can be chosen as follows 
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where Γ  is a positive define matrix and η  and γ  are 
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With (22) and (23), the derivative can be rewritten as 

follows 
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(29) 
With the virtual control α  given in (24), the derivative of 
Lyapunov function can be re-written as  
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Further simplification, we can get 
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 With turning function given in (25), we can get 
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With the update laws in (26), the derivative of V is 

  2

1

n

i i
i

V c z
=

≤ −∑&                                  (30) 

Theorem 1: Consider the nonlinear uncertain system (1) 
with unknown parameters, external disturbance and  
unknown failures which modeled by (3) of m actuators 
and satisfying Assumption 1-3, under the control law in 
(23) (24) (25)and the update laws in (26),  all signals in 
closed loop system are bounded and the asymptotic 
tracking is achieved, i.e. lim( ) 0rt

y y
→∞

− = . 

Proof: Based on the above analysis, signal , , ,iz Dθ ρ% % %  are 
bounded. Then the virtual control iα  and the control 
input iv  are also bounded. By applying the LaSalle-
Yoshizawa theorem in (30), we can get 
lim 0, (1, 2, , )it

z n
→∞

= L . So the asymptotic tracking is 

achieved, i.e. lim( ) 0rt
y y

→∞
− = . 

Ⅳ. SIMULATION STUDIES 
In this section, we use the same valve control 

mechanism of a liquid tank dynamics model shown in 
Figs.1 as in [9]. The transfer function can be expressed as. 
It can be described as follows 

1 1 2 2( ) ( )( ( ) ( ) ( ))h s G s b u s b u s d s= + +             (31) 
where h  is state and denotes the height of water surface, 
transfer function ( )G s k s= . 1,k b and 2b  are unknown 

constants. ( )d s  is unknown disturbance with unknown 
constant upper bound. 1 2( ), ( )u s u s are input signals of 
system. 

With Laplace transformation, system model (31) can 
be rewritten as 

1 1 2 2( ) ( ) ( )h kb u t kb u t kd t= + +&                   (32) 

Let 1 1b kb=  and 2 2b kb=  , ( ) ( )d t kd t=  can be seen as 
unknown disturbance. The model (32) can be rewritten as 
follows 

1 1 2 2( ) ( ) ( )h b u t b u t d t= + +&                     (33) 
 

 

 
 

Figure.1 Valve control mechanism of a liquid tank 
 
In simulation, the actual parameters value are 

1k b= = 2 1b = . The uncertain disturbance ( )d s  
is 0.1sin( )t . 

We choose  η = 0.5γ =  and feedback gain 20c = . 
The initial value are chosen as follows: ( )z 0 0.5= , 

ˆ (0) 0ρ = , ˆ (0) 0D = .  
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Let the reference signal is ( ) ln( )ry t t= . Figs.2 is 
tracking error, Figs.3 and Figs.4 are input 1( )u t  and 

2 ( )u t  supposing at 10t =  second actuator 1( )u t  is stuck 
at an unknown value 1.5. When all actuators work 
normally, Figs.5 is tracking error, Figs.6 and Figs.7 are 
input 1( )u t  and 2 ( )u t . 

Let the reference signal is ( ) sin( )ry t t= . Figs.8 is 
tracking error, Figs.9 and Figs.10 are input 1( )u t  and 

2 ( )u t  supposing at 10t =  second actuator 1( )u t  is stuck 
at an unknown value 1.5. When all actuators work 
normally, Figs.11 is tracking error, Figs.12 and Figs.13 
are input 1( )u t  and 2 ( )u t . 

 

 
Figure.2 Tracking error ( ( ) ln( )ry t t=  and failure) 

 

 

Figure.3 Input 1( )u t  ( ( ) ln( )ry t t= and failure ) 

 

Figure.4  Input 2( )u t  ( ( ) ln( )ry t t= and failure ) 
 

 

Figure.5 Tracking error ( ( ) ln( )ry t t= ) 

 

Figure.6 Input 1( )u t  ( ( ) ln( )ry t t= ) 

 

Figure.7 Input 2( )u t  ( ( ) ln( )ry t t= ) 

 

Figure.8 Tracking error ( ( ) sin( )ry t t=  and failure)
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Figure.9 Input 1( )u t  ( ( ) sin( )ry t t= and failure ) 

 

Figure.10 Input 2( )u t  ( ( ) sin( )ry t t= and failure ) 

 

Figure.11 Tracking error ( ( ) sin( )ry t t= ) 

 

Figure.12 Input 1( )u t  ( ( ) sin( )ry t t= ) 

 

Figure.13 Input 2( )u t  ( ( ) sin( )ry t t= ) 

Ⅴ. CONCLUSION 
An adaptive state feedback control law is proposed for 

a class of uncertain nonlinear systems with unknown 
parameters and unknown external disturbance to 
compensate unknown actuator failures. The uncertainties 
caused by unknown actuator failures are seen as the 
bound disturbance and handled by designing an adaptive 
estimator to estimate its unknown upper bound. Our 
control law and update laws can guarantee the stability of 
closed loop system and tracking performance. 
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