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Abstract—The determination of membership function is 
fairly critical to fuzzy decision tree induction. 
Unfortunately, generally used heuristics, such as SLIQ, 
show the pathological behavior of the attribute tests at split 
nodes inclining to select a crisp partition. Hence, for 
induction of binary fuzzy tree, this paper proposes a 
method depending on the sensitivity degree of attributes to 
all classes of training examples to determine the transition 
region of membership function. The method, properly using 
the pathological characteristic of common heuristics, 
overcomes drawbacks of G-FDT algorithm proposed by B. 
Chandra, and it well remedies defects brought on by the 
pathological behavior. Moreover, the sensitivity degree 
based algorithm outperforms G-FDT algorithm in respect 
to classification accuracy.  
 
Index Terms—decision trees, SLIQ, gini index, fuzzy set 
theory, sensitivity degree, membership function, G-FDT 
 

I.  INTRODUCTION 

Decision tree has been widely used in Data Mining 
from feature-based records for classification and decision 
making. Various algorithms have been developed to 
construct decision trees from data, such as ID3 [22], 
C4.5 [23], SLIQ [9] and so on. A notable characteristic 
of these traditional decision tree inductions is that node 
split is crisp. ID3 proposed by Quinlan works well on 
sets of examples only with nominal or discrete attributes 
value, while C4.5 and SLIQ are better for quantitative 
data. These traditional algorithms have excellent 
performance in extracting knowledge. However, they 
usually suffer from some defects. For the induction of 
classic crisp decision trees, training data is recursively 
split into a collection of mutually exclusive sets till all 
the examples at a node belong to the same class. 
Obviously, the split of test node has sharp boundary. 
Consequently, small changes in the attribute values of 
unseen data may lead to sudden and inappropriate class 
changes according to rules extracted from tree which is 
generated by these traditional algorithms. Apparently, 
this doesn’t conform to the way of human thinking. 

With the seminal work of Zadeh, fuzzy set theory [15] 
has a valuable extension to traditional crisp decision 
trees and the fuzzy counterparts of traditional heuristics 

of induction of crisp trees have been proposed [12] [24]. 
Fuzzy decision trees induced by the fuzzified heuristics 
well process the data that cognitive uncertainties, such as 
vagueness and ambiguity, are incorporated into. The 
fuzzy trees greatly make improvement in their 
generalizing capability. For fuzzy decision trees, one of 
most important differences from crisp ones is that all 
training examples belong to one node with membership 
degree ranged on the interval [0, 1], but one example 
completely belongs to a node or not for crisp trees. Each 
example at current test node goes into every child node 
of the node with membership degree (∈[0, 1]) in respect 
to attribute selected at the node. In other words, there 
exist gradual transition regions on domain of values of 
selected attribute. Another notable difference between 
crisp decision trees and fuzzy ones is that all rules 
extracted from fuzzy tree are used for the final 
classification of each unseen example, however, only one 
rule for crisp decision trees. 

In the process of constructing fuzzy decision tree from 
training examples, the determination of membership 
function installed at each test node is critical, that is, how 
the induction algorithm ascertains the membership 
degree of each example to child nodes is central to any 
induction algorithm within fuzzy environment. The 
construction of membership function has generally been 
determined with opinions of experts, this more conforms 
to real-life condition. However, the way is low efficiency, 
and experts usually can not propose appropriate 
membership functions to given some complex data sets 
[27]. The fact mentioned above brings great difficulty to 
the construction of fuzzy decision tree. In view of this, 
more attention is paid on the research of automatic 
construction of fuzzy membership functions and fuzzy 
trees. In this paper, we will also give much concern to 
automatic construction of membership functions 
characterized with some parameters. For existing 
algorithms of fuzzy trees induction, final split of node 
depends on fuzzification of candidate attribute. When 
candidate attribute is numerical, it needs to be fuzzified 
into linguistic terms. Each child node of current node 
corresponds one of linguistic terms of selected attribute. 
This paper restricts the scope of our discussion to 
datasets that only consists of numerical attributes. 
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(a) Piecewise linear                                                              (b) Sigmoid 

Figure 1. Examples of discriminator function. 

Moreover, the number of linguistic terms of each 
attribute is limited to 2. Therefore, this paper focuses on 
fuzzy binary trees. According to topology of binary trees, 
we usually call membership function installed at test 
node discriminator [2] or dichotomy [3], its value is 
ranged from 0 to 1. The task of automatically 
determining discriminator is specifying two parameters: 
α, the location of split point that is the split threshold at a 
test node of a decision tree, and β, the width which 
measures the transition region on the attribute selected at 
that node, as shown in Fig. 1. Existing approaches of 
automatically determining discriminator in fuzzy 
decision tree is mainly divided into three categories: 

◆ Optimization technologies, such as local 
optimization and global optimization, are 
utilized to construct membership function. The 
way usually needs a lot of calculations. Further 
more, the results of these optimization 
technologies are sensitive to sets of examples. 
More details are found in [2], [3], [5]. 

◆ Some methods based on characteristics of data 
is popular. The characteristics generally include 
probability distribution [13] and statistical 
characteristics [1] of data. Obviously, these 
methods are superior to the methods based on 
optimization technologies in computation. Their 
implementation are also simpler. In this paper, 
sensitivity based discriminator function, which 
this paper proposes, just depends on statistical 
characteristics of data. 

◆ Constructing fuzzy discriminator function with 
intelligent method. For example, Kohonen’s 
feature-maps algorithm is used to determine 
membership function [4][14]. 

The paper is organized as follows: Section 2 describes 
motivation to the proposed methods. Section 3 
introduces proposed method to construct dichotomy 
functions. Section 4 applies proposed technique to 
several datasets from UCI machine learning repository 
and presents a comparison between the two algorithms 
respectively proposed by us and B. Chandra [1] and 

mentions related work. Section 5 provides some 
discussion on the proposed method. 

II.  MOTIVATION 

Above all, let us review some basic concepts and 
related representations. Let U denote the universe of all 
examples in a real-life dataset. For a fuzzy subset Ã (∈ 
U), we use 

Aμ %  to refer to its membership function, and 

denote by ( )A eμ %  membership degree of a example e in 

fuzzy set Ã. Note that ( ) 1U eμ ≡ by definition. The 
cardinality of a fuzzy set is defined as the sum of 
membership values of each element in Ã, and denoted by 

( )Ae A
A eμ

∈
=∑ %%

% [15]. For each example e in dataset, 

the value of its the ith predictor attribute is denoted by 
ai(e), the domain of values of attribute ai is defined as the 
set including all values of this attribute, we denote it by 
dom(ai). The set of classes of examples is denoted by C, 
and each class denoted by ci(∈C). 

Traditional heuristics attempt to select the attribute 
that can most greatly reduce the impurity of examples 
belonging to current test node. In the construction of 
fuzzy decision tree, the candidate attributes, their 
discriminator functions having steeper transition regions, 
are more easily selected as split attributes at test nodes [2] 
[3] [5][28][29]. Since the attributes that have sharp 
discriminator can more crisply split examples in current 
test node into two child nodes, and the proportion of 

( )
i

LSe C
A eμ

∈
=∑% to ( )LSe LS

A eμ
∈

=∑% usually 

becomes larger (where fuzzy set LS consists of examples 
belonging to the left child node, Ci consists of examples 
in LS which belong to same class ci, consequently, 

( )
i

LSe C
A eμ

∈
=∑% is the cardinality of Ci, and 

( )LSe LS
A eμ

∈
=∑%  the cardinality of LS), that is, the set 

of examples in the left child node is purer. That is similar 
to the right child node. Hence, the attributes that have 
steeper discriminators can more reduce the impurity of 
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(a) Discriminator of attribute ai                                                                  (b) RWL of attribute ai. 

Figure 2. 

examples, this is why the kind of candidate attributes are 
more inclined to be selected as split attribute. The 
pathological character of heuristics used in the 
construction of fuzzy trees is external manifestation of 
the convexity property of heuristics [2] [3][28][29], and 
it has been verified empirically and theoretically. 
Therefore, some modification to traditional heuristics are 
proposed to avoid the pathological character in induction 
of fuzzy decision trees. 

SLIQ, Gini Index based algorithm, is popularly used 
to construct crisp trees. It uses pre-sorting technique and 
breadth-first tree growing strategy in induction of crisp 
decision trees. SLIQ can obtain higher accuracies by 
classifying larger training datasets which can not be 
handled by other classifiers. B. Chandra has integrated 
fuzzy set theory into SLIQ by fuzzifying Gini Index [1] 
[18]. The performance of G-FDT algorithm proposed in 
[1] outperforms its crisp counterpart with respect to 
classification accuracy and the size of decision tree. 

Let’s describe some of the details of G-FDT algorithm. 
What is most worth noting is the automatic construction 
of discriminator functions installed at test nodes. In 
induction of fuzzy binary trees, two kinds of 
discriminator are favored: Piecewise linear discriminator 
and Sigmoid discriminator shown in Fig. 1, and G-FDT 
algorithm uses the Sigmoid discriminator functions 
which could behave better in term of convergence 
properties than piecewise linear discriminators [3]. The 
construction of discriminators of G-FDT is to determine 
the width parameter, α, and split point, β, as described 
above. Now, let’s show the expression of discriminator 
used by G-FDT: 

( )( ) ( )( )
1

1 i
i a e

v a e
e σ α− −

=
+

 ,                  (1) 

where σ is the standard deviation of values of attribute ai 
of all training examples. Equation (1) is the discriminator 
of candidate attribute ai at current test node N. Examples 
in N is fuzzified into two fuzzy sets or linguistic items 
with candidate attribute ai, and membership functions of 
the two fuzzy sets is v and 1-v, respectively. If ai is 
selected as split attribute of N, each example e in N(The 

degree of membership of e to N is denoted by ( )N eμ %
, 

where N% is a fuzzy set corresponding to N) goes into left 
child node of N with membership ( ) ( )( )N i

e v a eμ %
, and 

the right with ( ) ( )( )( )1N i
e v a eμ −%

. Fig. 1 (b) shows the 

curve of 1 v− . 
The parameter β, width of transition region of 

discriminator defined in domain of attribute values, dose 
not appear in (1). Actually, there exists a function 
mapping between β and σ. With the value of σ increasing, 
the width of transition region of the discriminator is 
smaller and the shape of discriminator is steeper. On the 
contrary, the opposite is true. In other words, the width β 
is a decreasing function of σ. The function is denoted by 
f, that is, the expression of the function is 

β = f (σ)                                       (2) 
Therefore the determination of the width β depends on 
the determination of σ, or the steepness of the 
discriminator function depends on σ. Hence, the task of 
constructing discriminators used by G-FDT is specifying 
parameter α and σ. Apparently, σ is directly determined 
by computation. G-FDT evaluates every pre-selected 
split point value with fuzzifying Gini Index to determine 
the best split point α*. 

Although the way of determining discriminator at each 
test node is fairly simple, it suffers some defects. We are 
now analyzing the shortcomings of the method: For most 
datasets (as mentioned above, we restrict our discussion 
to the datasets of which examples only have numeric 
attribute value. It is also the case for G-FDT), the 
standard deviation of attribute values of training 
examples is greatly large especially for the datasets that 
have attributes values of which the interval has relatively 
great length. In order to describe the degree of steepness 
of discriminator, we use the ratio of the width of 
transition region of a attribute (ai) discriminator to the 
length of interval of this attribute, where the interval is 
[min{ai}, max{ai}], and min{ai} is the minimum of 
dom(ai), max{ai} is the maximum of dom(ai). Hence, the 
length of interval of this attribute ai is max{ai}-min{ai}. 
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(a)                                                                   (b)  

Figure 3. Distribution of attribute values. 

The width of transition region of discriminator function v 
is defined by 

β = | ai(e1) - ai(e2) | ,                       
where v(ai(e1)) = 0.99; v(ai(e2)) = 0.01. Thus, the 

ratio(denoted by RWL) can be defined as 

{ } { }max minWL
i i

R
a a

β
=

−
.            (3) 

We now present steepness of attribute discriminators 
determined by G-FDT with vehicle silhouette dataset 
which is taken from UCI machine learning repository. 
According to Fig. 2 (b), we can conclude that almost 
discriminators constructed by G-FDT are very steep, that 
is, the width of transition regions of almost 
discriminators is very small. We take RWL=0.075 for 
example, the paper gives the discriminator in Fig.2 (a). 
The partition of training examples approximates to crisp 
partition. These discriminators approximate to crisp 
discriminator used in traditional crisp decision trees. 
Actually, the fuzzy decision tree induced by G-FDT 
collapses into a crisp decision tree. This does not meet 
the original intention of inducing fuzzy decision trees. 

In practice, not every candidate attribute corresponds 
to a very steep discriminator constructed by G-FDT. The 
degree of steepness of some discriminators generated by 
G-FDT is acceptable to human thinking. Fuzzy trees 
assembled from these discriminators present excellent 
performance in terms of classification accuracy and size. 
However, as mentioned earlier, the candidate attributes, 
possessing discriminators of which transition regions are 
not very steep, are seldom selected as split attribute 
according to G-FDT. This apparently enlarges the 
possibilities that the fuzzy decision tree induced by G-
FDT collapses into a crisp decision tree. 

Generally speaking, the test nodes the fuzzy trees 
generated by G-FDT usually have such discriminators 
that have too narrow transition regions. Thus, the trees 
induced by G-FDT hardly present fuzzy decision tree’s 
advantage that fuzzy trees are good at handle the data 
with cognitive uncertainties and noises. In view of this, 
we manage to propose a method of generating 

discriminators to make up for the drawback. This method 
should meet the following tow requirements: 

Firstly, the proposed method makes sure that 
steepness of discriminator is not very large and is 
acceptable. This directly reduces the possibility that the 
fuzzy decision tree collapses into a crisp decision tree. 

Second, the method can make sure that the attributes 
with higher classification capability have relatively 
steeper discriminators. Thus, the kind of attributes are 
easy to be selected as split attributes according to 
fuzzifying classical heuristics. This can also try to 
overcome the pathological behavior of the attribute tests 
at split nodes inclining to select a crisp partition. 

It is a critical problem how we measure classification 
capability of each candidate attribute. It is also central 
issue of next section. 

Ⅲ.  SENSITIVITY DEGREE BASED INDUCTION ALGORITHM 

In this section, we will introduce our proposed method 
that is used to automatically build discriminator function 
for each candidate attribute. 

We now firstly give an example of distribution of 
attribute values, taking a dataset as example. Examples 
of the dataset here can be categorized into 2 classes 
(denoted by Class1 and Class2, respectively). Fig. 3 (a) 
and (b) present value distributions of two attributes of 
examples in the dataset with class, respectively. The 
vertical coordinates in each coordinate system 
correspond to the values of corresponding attribute, and 
Class1 is denoted by * point, Class2 by × point. 

One intuitively thinks that the attribute shown in (b) 
can better categorize examples than the attribute shown 
in (a), because the points above horizontal line in (b) 
mostly belong to examples which belong to Class1, the 
ones below the line mostly belong to Class2. We here 
think that the attribute shown in (b) is more sensitive to 
final classification results of unseen data. The more 
sensitive candidate attributes should be understandably 
selected as split attributes in construction of fuzzy trees. 
Now, what we concern is that how the sensitivity of each 
of attributes is measured. As can be seen from Fig. 3 (b), 
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Figure 4. Distribution of attribute values. 

the difference of the two mean values of attribute values 
of examples (respectively belonging to Class1 and 
Class2) is obvious. Hence, we can specify the sensitivity 
degree of attributes to classes of examples according to 
the difference mentioned above. 
Fig. 4 presents a distribution of another attribute of 
examples belong to the same dataset. Apparently, the 
attribute can also categorize examples well, and the 
attribute is fairly sensitive to categories of examples. 
However, it is difficult to determine the sensitivity 
degree with the difference mentioned above, because the 
difference between mean values is slight Another index 
needs to be raised in order to overcome drawbacks 
brought by only using mean values of attribute values 
The standard deviation measures the spread of the data 
about the mean value. It is useful in comparing sets of 
data which may have the same mean but a different 
range. Therefore standard deviation certainly can 
measure the sensitivity degree of attributes especially for 
the case in Fig. 4. 

We temporarily center our attention on datasets that 
have two categories. Then, datasets of examples having 
more than two categories are discussed later. 
Consequently, the sensitivity degree (denoted by λ) of 
each attribute ai to classes in C (where ||C||=2) is a 
function, φ, with respect to mean value μij and standard 
deviation σij of the attribute of examples belonging to 
same class cj∈C (where j = 1, 2). Thus, the sensitivity 
degree λ(ai) of attribute ai to classes is denoted by 

( ) ( )1 1 2 2, , ,i i i i ia u uλ ϕ σ σ= ,              (4) 
Where 

( )1

j

ij i
e Cj

a e
C

μ
∈

= ∑                   (5) 

and 

( ) ( )2
1

j

ij i ij j
e C

a e Cσ μ
∈

⎡ ⎤= − −⎣ ⎦∑  ,       (6) 

Cj (a crisp set) consists of examples which belong to 
class cj(j = 1, 2), and ||Cj|| is the number of elements in 
Cj . In order to determine the sensitivity degree (λ) of ai 
with differences of mean values and standard deviation 
values, we firstly define a function δ(x1, x2) to measure 
the differences between x1 and x2, where x1, x2 are 
arbitrary real numbers: 

Case1: ( ) { }
{ }

1 2
1 2 1 2

1 2

max ,
, , 0,

min ,
x x

x x x x
x x

δ = >  

Case1: when  x1x2≤0, 

( ) 1 2
1 2

1 2

1.0, 0.25
,

1.5, 0.25

x x boundary
x x

x x boundary
δ

⎧ − ≤ ×⎪= ⎨
− > ×⎪⎩

 

Based on the fact that σij plays more important role in 
determining φ when the difference of μij is small. We 
propose specific mathematical expression of function ' 
for datasets having two categories: 

( ) ( ) ( ) ( )2 2
1 2 1 2

1 2

1, 1 , 1
,i i i i i

i i

a ξλ δ μ μ δ σ σ
δ μ μ

= − + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
 

(7) 
Evidently, λ(ai) ≥ 0 is true. When μi1=μi2 and σi1=σi2, 

λ(ai) = 0. In other words, when the attribute ai has 
relatively approximate or same values of mean and 
standard deviation of attribute values with respect to the 
two categories of examples, ai are not sensitive to 
categories of examples as a whole, and examples at 
current test node is not well categorized with attribute ai. 
Moreover, the parameter ξ is used to adjust the values of 
λ(ai), trying to avoid the fact that the values of λ are 
extremely large or small. In here, we make ξ = 5 on the 
basis of the experimental experience. 

According to (7), we can draw such a conclusion that 
the more approximate the values of mean of attribute 
values with categories of examples are, the less the 
values of mean of attribute values contribute to value of 
λ(ai), the more important the values of standard deviation 
of attribute values with categories of examples play role 
in measuring the sensitivity degree of ai to categories of 
examples, and vice versa. Therefore the proposed 
method, which is used to measure sensitivity degree of 
attributes to categories of examples, certainly works well 
for circumstances encountered in Fig. 3 and Fig. 4. 

For the sake of understanding, previous parts of the 
section mainly present our proposed method under this 
circumstance that examples are only categorized into two 
categories. We now give details about measuring 
sensitivity degree of a attribute to categories of examples 
in datasets of which examples can be categorized into 
more than two groups. Above all, suppose that the 
currently considered datasets have N (N > 2) classes of 
examples. Under the enlightenment of the way of 
determining sensitivity degree for datasets having two 
classes of examples, we consider that the distribution of 
attribute values with respect to any two of categories of 
examples can contribute to the sensitivity degree of the 
attribute ai to categories of examples. Consequently, we 
define the sensitivity of ai with respect to any two 
categories cm, cn(∈C), and it is denote by λ(ai, cm, cn): 

( )

( ) ( ) ( )2 2

, ,

1, 1 , 1
,

i m n

im in im in
im in

a c c

ξ

λ

δ μ μ δ σ σ
δ μ μ

= − + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
 (8) 

Where μij and σij (j= m, n, and m, n∈{1, 2, …, N }) are 
same as (5) and (6), respectively. Finally, we obtain λ(ai), 
the sensitivity degree of ai to all categories of examples, 
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Figure 5. Degree of steepness of discriminators constructed by 
proposed method.. 

by computing the arithmetic mean of values of λ(ai, cm, 
cn) for any two (cm, cn) of categories of examples: 

( ) ( ) ( )
,

1 , ,
, 2

m n

i i j k
c c C

a a c c
C N

λ λ
∈

= ∑            (9) 

Where C(N, 2) is the number of all combinations of any 
two categories cm, cn in C (the set of categories of 
examples, and ||C || = N). 

Undoubtedly, the (9) will evolve into (7), when N = 2. 
Hence, (9) can be used to measure the sensitivity degree 
of attributes to categories of examples that are classified 
into two or more classes (N ≥2). In addition, boundary is 
the mean of μij (j= 1, 2… N) when we compute the 
differences of mean values, and the mean of σij (j= 1, 
2, …, N) when we compute the differences of standard 
deviation values. 

As mentioned above, the more sensitive to categories 
of examples attribute is, the better examples are split 
with the attribute, that is, the higher classification 
capability the attribute has. Therefore candidate 
attributes with larger sensitivity degree are more inclined 
to be selected as test attributes at test nodes, these 
attributes should correspond to discriminator functions 
with steeper transition regions. Thus, we now define 
proposed discriminator function as bellow: 

( )( ) ( ) ( )( )
1

1 i i
i a a e

v a e
e ρλ α− −

=
+

              (10) 

where λ(ai) and α are same as above. The parameter ρ 
plays similar role as parameter ξ in (8). Generally, ρ= 
1.35 according to experiments, so ρ is used to enlarge the 
value of λ(ai). In meanwhile, (2) evolves into: 

β = f (ρλ(ai)).                                  (11) 
In other words, the width β of transition region of 
discriminator indirectly depends on sensitivity degree of 
corresponding attribute. 

As stated above, the proposed discriminator well 
conforms to the second requirement mentioned at the end 
of Section 3. We also present the values of RWL(Fig. 5) of 
attributes of examples in same dataset in order to make 
sure whether proposed discriminator conforms to the first 
requirement or not. From the analysis of Fig. 5, the 
transition regions of most discriminators generated by 
our proposed method slope gently, this greatly reduces 
the possibility that induced fuzzy trees collapse into crisp 
decision trees. There also exists some of attributes that 
have steeper discriminators, but these attributes are 
sensitive to categories of examples, therefore steeper 
discriminators make corresponding candidate attributes 
prone to be selected as split attributes. It is obvious that 
our proposed method, which is used to generate 
discriminators, well satisfy the requirements referred to 
in Section 2. 

Finally, we modify the G-FDT by substituting our 
proposed method of constructing discriminators for the 
one of G-FDT proposed by B. Chandra, and the fuzzy 
inference mechanism of our proposed algorithm is the 
same as the one used in [1], so called “×-×-+ method” 
[12]. Thus, the version of modified G-FDT is our 
proposed fuzzy decision tree algorithm called sensitivity 
degree based fuzzy SLIQ decision tree algorithm (called 
SG-FDT for short). 

IV. EMPIRICAL RESULTS 

In order to reveal the performance of our proposed 
fuzzy trees algorithm, we present comparison between 
G-FDT and SG-FDT in terms of classification accuracy, 

TABLE I.   
CLASSIFICATION ACCURACY 

No. Dataset NA NC G-FDT  
Average accuracy ± std. dev.

SG-FDT 
Average accuracy ± std. dev.

1 Haberman 3 2 72.58±7.79 74.15±8.95
2 Blood transfusion service 4 2 77.95±3.88 79.95±4.88
3 Balance scale 4 3 84.03±8.28 89.29±3.57
4 Australian credit approval 14 2 78.41±4.76 81.59±2.56
5 Vehicle silhouettes 18 4 70.12±4.58 72.47±5.40
6 Contraceptive Method Choice 9 3 52.00±5.34 52.48±3.39
7 Pima Indians diabetes 8 2 74.94±5.97 74.09±4.87 
8 Wine 13 3 88.89±4.45 89.38±9.61
9 Statlog(Heart) 13 2 75.33±6.71 77.78±6.05
10 Dermatology 34 6 75.42±8.33 94.83±5.18
11 Parkinsons 22 2 82.95±13.40 84.00±10.69
12 Liver 6 2 60.48±14.76 69.28±6.50
13 Image segmentation 18 7 89.29±5.41 90.71±6.19

NA: number of attributes; NC: number of categories. 
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Figure 4. Distribution of attribute values. 

size of induced fuzzy decision tree and time taken to 
construct decision tree, using 13 datasets from the UCI 

machine learning repository. We acquire all empirical 
results according to 10-fold cross validation. 

The comparison in classification accuracy is presented 
in Table I. Apparently, almost all accuracy results for 
SG-FDT are better than those for G-FDT, and the 
increase of accuracy on Dermatology dataset, Liver and 
Balance scale dataset is very obvious. 

The comparison in sizes of induced trees is presented 
in Figure 6. Vertical ordinate of each point in Fig. 6 is 
the ratio of size of tree for SG-FDT to that for G-FDT. 
As shown in Fig. 6, the nodes of trees induced by SG-
FDT are usually much more than ones of trees induced 
by G-FDT, it is hardly accepted. As mentioned in 
Section 2, the fuzzy decision tree induced by G-FDT 
usually collapses into a crisp decision tree, but the fuzzy 
trees induced by SG-FDT do not do that. Actually, the 
fact, which is referred to in many related literatures, is 
that the size of fuzzy tree induced with fuzzifying 
heuristics will be much more than that of crisp tree 
induced with corresponding traditional heuristics if the 
construction of decision trees does not include the usage 
of pruning technology. Therefore we can explain why the 
sizes of trees induced by SG-FDT are usually much 
larger than ones of trees induced by G-FDT. Similarly, 
the time taken to construct tree with SG-FDT is more 
than that with G-FDT. 

V. CONCLUSION 

One method of specifying discriminator is proposed 
according to the pathological character of traditional 
heuristics in this paper. With the method, our sensitivity 
degree based fuzzy SLIQ decision tree algorithm (SG-
FDT) well overcomes drawbacks of G-FDT, and it can 
induce real fuzzy trees. That is what G-FDT seldom can 
do. In addition, our proposed algorithm outperform G-
FDT algorithm in term of classification accuracy. 
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