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Abstract—A variation on the data-flow model is proposed to 
use for developing parallel architectures. While the model is 
a data driven model it has significant differences to the da-
ta-flow model. The proposed model has an evaluation cycle 
of processing elements (encapsulated data) that is similar to 
the instruction cycle of the von Neumann model. The ele-
ments contain the information required to process them. 
The model is inherently parallel. An emulation of the model 
has been implemented. The objective of this paper is to mo-
tivate support for taking the research further. Using matrix 
multiplication as a case study, the element/data-flow based 
model is compared with the instruction-based model. This 
is done using complexity analysis followed by empirical 
testing to verify this analysis. The positive results are given 
as motivation for the research to be taken to the next stage - 
that is, implementing the model using FPGAs.  
 
Index Terms—Computational Model, Data-Flow, Computer 
Architecture, Parallel Architecture. 
 

I.  INTRODUCTION 

The following two quotes are the motivation for the 
research. 

“For more than 30 years, researchers and designers 
have predicted the end of uniprocessors and their do-
minance by multiprocessors. During this time period the 
rise of microprocessors and their performance growth 
has largely limited the role of multiprocessors to limited 
market segments. In 2006, we are clearly at an inflection 
point where multiprocessors and thread-level parallelism 
will play a greater role...” [1] 

“Since real world applications are naturally parallel 
and hardware is naturally parallel, what we need is a 
programming model, system software, and a supporting 
architecture that are naturally parallel. Researchers have 
the rare opportunity to re-invent these cornerstones of 
computing, provided they simplify the efficient pro-
gramming of highly parallel systems.” [2] 

Given the need for parallelism, is it not worth looking 
at previous attempts at parallel models? In the 1970s, the 
data-flow model was explored with some limited success 
[3]. This paper explores how to build on some of the 
concepts of the data-flow model. This new data-driven 
model has significant differences from the previous da-
ta-flow models, as described below, as well as being in-
herently parallel, which simplifies parallel programming. 

 

Table 1: Comparison between Data-flow and Element  

 Data‐flow Element‐based 
program cyclic graph acyclic graph 
graph finite infinite 
edge pointer element 
node instruction relation 
values memory elements 
computation firing instruction processing element 

current state values in nodes active elements 

result of op a value a new element 
selection instructions partial functions 

As Hennessy [4] has pointed out, implementing a new 
architecture requires considerable resources. These are 
unavailable to us. The objective of this paper is to pro-
vide some evidence that it is worthwhile taking this re-
search further, in the hope that others may see some po-
tential in collaborating in this research. The method 
chosen to provide this evidence is to experiment with an 
example program and assess how the new model is likely 
to compare with the predominant instruction-based 
model. 

The model is built on theory relating to functions and 
sets that forms both the basis of the model and a language 
to express programs. Developing the language is a re-
search project on its own and its justification depends on 
acceptance of the model. For this reason the focus has 
been on the model. Understanding programs written in 
the language only requires an understanding of simple 
algebraic mathematical expressions. That is sufficient for 
this paper. 

The question is how best to assess the potential of a 
model given minimal resources. The approach chosen is 
to compare the model with the instruction-based model 
in two ways. The first comparison is the cost of data ac-
cesses per instruction versus per element processed. By 
studying the execution loops of each, an argument is 
made that processing an element is at least as efficient as 
executing an instruction. This does not give an indication 
of how they compare when doing real computations and 
in particular parallel computations. An example is used 
to explore this aspect, first by comparing the number of 
instructions to the number of elements processed and 
then by comparing the instruction-based run-time per-
formance with that of the emulation of an element model. 
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The paper reports experimental results of simulating 
some of the behavior of this model. These results suggest 
that such an architecture's performance scales well with 
increases in processors. An MPI [5] emulation is used to 
compute a matrix multiplication with increasing sizes 
and increasing numbers of processors. Based on given 
assumptions, an argument is made that an architecture 
based on this model scales linearly for the example. 

The rest of the paper is broken up into three sections. 
The first given a brief description of the model and 
compares it with other architectures. The next section 
describes the research method. The final section eva-
luates the research and considers how to take the research 
further. 

II. MODEL OF COMPUTATION 

A. Basics 

In many ways our model is similar to the von Neu-
mann model; however, instead of processing instructions, 
it processes elements. The elements consist of informa-
tion that uniquely conveys the meaning of the data as 
well as a value. This information is used to determine 
how the element is processed. Processing an element 
results in zero or more elements being created. The pro-
gram execution completes when there are no more ele-
ments to process. A comparison between the instruction 
model and element model execution cycle is given below 
in Table 2. 

Table 2: Comparison of Execution Cycles 

Instruction‐model Element‐model 
get instruction get element 
get data get relation 
perform instruction apply relation 
store result in memory push element(s) on queue 

Without going into too much detail, given an element 
b=5, a relation a=-b and the steps above the result is the 
element a=-5 being created. The question arises as to 
how one deals with an expression of the form a=b+c as 
the model only processes elements. This relation can be 
viewed as the operation + being applied to an element 
that is a tuple, i.e. (b,c). The way around this is that the 
elements b and c are used to create an element, say t, to 
which plus can be applied to create a. Thus the expres-
sion a=b+c is broken up into: 

   (1) 
where the operation is to create the zeroth part of 
the tuple and is to create the first part of the tuple. 
Alternatively it may be expressed as: 

       (2) 

Table 3 illustrates the computation given for c=3, b=5.  

Table 3:Evaluation of a=b+c 

 
A similar process allows one to decompose any 

number of binary or unary operations into a number of 
expressions consisting of one unary operation. 

Describing any meaningful computation requires se-
lection. The if operation is used to express selection. Here 
is an example of how it is used. 

       (3) 
The trick used here is to treat if as an operation. As in 

the C programming language, ? is used to denote if. We 
can express the first line as a graph, illustrated in Figure 1 
and as a sequence of expressions and relations in Table 4. 
The evaluation of these relations for x=3 and y=10 is 
shown in Table 5. Computing the expression z = x if x ≤ y 
results in the creation of the element z = 3. 

Finally to provide a complete computational model, 
repetition needs to be addressed. The following example 
of summation illustrates how to achieve this. 

      (4) 
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Figure 1:Graph of the expression z = x-y if x>y 

Table 4: Primitive Expressions for z =x-y if x>y 

 

Table 5: Evaluation of z =x-y if x>y 

 

Table 6: Primitive expressions for  

 

where [+1]0 indicates add one to index ze-
ro.1 

The expression  is used to describe 
how iteration is achieved. Indices are introduced that 
do not have bounds. This expression is an infinite 
graph as shown in Figure 2. 

                                                           
1 For simplicity we have not gone into the detail of how any 
number of indices is handled. Note that the index operation is 
explicitly specified and thus the index does not need to be cap-
tured as part of a relation. 

 
Figure 2: Graph of the expression  

 
An evaluation of these relations for s0=0, n0=3, n1=7 

and n2=13 is shown in Table 7. 

Table 7: Evaluation of Summation 

 

The Figure 3 shows the structure of a simple imple-
mentation of the model consisting of one processor. This 
implementation consists of: a queue of unprocessed ele-
ments that are waiting to be processed, the table relations 
and hash table. Elements are popped off the queue, 
processed using the relations – where the relation has a 
tuple operation the tuple is formed using the hash table, 
and finally the newly created elements are added to the 
queue. 

 

 
Figure 3:  Structure of Element Model 

The processor takes elements off the queue and loops 
through the relations indexed by the element name. The 
processor applies the operation in each relation to the 
values of the element. If the operation is defined, a new 
element is created with the range element name in the 
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relation and the values or indices resulting from applying 
the operation. The newly created element is pushed onto 
the stack. The process continues until there are no more 
elements to process. 

There are three classes of operations: those that result 
in a new value being computed; those that result in a new 
index being computed and those that compute a tuple. 
The paper does not go into the detail of all these opera-
tions. The only one requiring a little more detail are the 
operations that create tuples. The two elements used to 
create a tuple can come in any order. The first to arrive of 
the two elements that form a tuple is inserted in the hash 
table. The second element to arrive is then matched and 
the tuple is formed. The element name and the indices are 
used to match the two elements that form the tuple. 

The model is inherently parallel as any processor that 
has the relations to process that element can process any 
element2. Thus the element in the unprocessed queue can 
be distributed across any number of processors. 

B. Comparison with other architectures 

The element-based architecture has no instructions. 
The only other models that do not use instructions are 
theoretical models like the Turing Machine. Data-flow 
architectures do not have instructions executed in a se-
quential order like the von Neumann. However, the 
nodes are typically referred to as firing instructions. Even 
so, data-flow architectures come close in terms of shift-
ing the emphasis from executing instructions to 
processing data[6,7,8]. 

As with data-flow, element-based model programs can 
be viewed as graphs. The big difference is that the da-
ta-flow graphs are finite and allow for cycles, whereas in 
the element model programs, the graphs can be infinite 
and acyclic. A data-flow program is stored as a graph 
with pointers to the nodes in memory, restricting the 
graph to being finite and thus cyclic. A data-flow pro-
gram cannot be represented by an infinite graph as can be 
done with the element-based approach. The element 
model achieves this by expressing the graph using 
classes of relations that represent infinitely many nodes 
and edges and not representing the graph as nodes and 
pointers in memory. 

The unique aspect of this model is that values are not 
referenced by memory addresses, but rather, the seman-
tic information required to process the elements is kept 
together with values. The processor determines how to 
process the value based on the element name and indices. 
In the von Neumann model it is an instruction that de-
termines how the value will be processed. In the da-
ta-flow it is the instruction that gets fired when the re-
quired values arrive at a node. 

                                                           
2 Except in the case where a tuple operation is involved, where 
the semantic information of the element is used to redirect this 
operation to where its partner will be directed to. 

Like the von Neumann model, the element model has 
a simple three step execution cycle but instead of ex-
ecuting the next instruction, the next element on the 
queue is processed. There is no concept of the program 
counter and hence the state of the program execution is 
determined by active elements that are on the queue of 
elements waiting to be processed. This contrasts with the 
von Neumann model, where the program counter and the 
contents of memory capture the state, or the data-flow 
model where the state is determined by the state of the 
nodes. 

The data-flow model allows for parallelism in that any 
number of nodes can fire simultaneously. However there 
are a number of limitations. The cycles in the graph limit 
the degree to which available values can be processed. 
Either starting the next cycle has to wait for the previous 
cycle to finish or there has to be some mechanism for 
differentiating between cycles. The nodes are stored in 
memory that restricts the evaluation of values to take 
place in the processor where the nodes are stored. The 
element model is able to process all the active elements 
in any order and any number at the same time, limited 
only by the number of processors. 

Being able to process elements in this way facilitates 
parallelism for a number of reasons. Processing an ele-
ment is independent of other active elements and hence 
of the state of the program, thus any processor that has 
access to the relations associated with an element can 
process that element. The exception is forming tuples 
that requires a mechanism to handle that the two com-
ponents of the tuple need to access the same hash table. It 
does come at a cost and that is an aspect that this research 
attempts to evaluate. 

The element model is a functional one, yet different 
from current models. Instead of expressing and evaluat-
ing a program as a function that gets applied to values, a 
program is a set of algebraic expressions of relations 
between sets of elements. Such a relation defines the 
mapping between the elements of the two sets. A relation 
and an element in its domain are used to create an ele-
ment in the range. Thus a relation, such as  

a = f(b),       (5) 

and an element in the domain, e.g.  

b=(5,3),       (6) 

are enough to determine the element  

a=8.       (7) 

An element consists of an identifier (name and indices) 
and a value. The element name is used to establish for 
which relations the element is a member of its domain. 
When a new element is created, the relation determines 
what the identifier is and what operation has to be applied 
to determine the value of the new element. 

Identifiers are used in a different way. Most languages 
typically express a function such as square something 
like square(x) = x*x. 
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In this example the variable identifier x has no signi-
ficance other than that it represents the value passed to 
the function. The variable x can be used in the definition 
of other functions and using the same variable does not 
imply any relationship between these functions and the 
function square. An element example of a relation is  

volume = area * height.     (8) 

Here the meaning of area is not confined to this rela-
tionship. Hence using the same identifier in another re-
lation relates the two relations. For example if there is 
another relation  

area = length * breadth,     (9) 

then area refers to the same entity in both relations. 
Whereas the functional approach sees the function 
square as the mapping  

, 

the element-based relation describing volume is viewed 
as the mapping  

.     (10) 

The variable x has no significance once the function 
square has been computed. The element area has a life 
independent of the relation that created it and its meaning 
holds for the entire computation. 

Since the meaning of an element holds for the entire 
computation, the order in which it is processed is not 
important. This property enables elements to be 
processed in any order as well as on different processors, 
facilitating parallel processing. This property also helps 
with programming. The programmer does not need to 
have to design the order in which the execution takes 
place and, more important, does not need to design the 
coordination between the processors. Since the meanings 
of elements are static, relations also are. This is unlike 
instruction-based programming where the programmer 
needs to take into account that a statement has different 
meanings as different values are iterated through it. 

Given that in any program one is limited to a finite 
number of identifiers, this suggests that one is limited to a 
fixed number of elements and computations. Both in-
structional and functional models get around this by 
reusing identifiers. The element-based model overcomes 
this limitation by having element identifiers consisting of 
a name and indices. For practical purposes, this enables 
infinitely many unique element identifiers. By using 
implied universal quantifiers this enables any algebraic 
expression, such as  

si+1 = si + ni,      (11) 

to define infinitely many relations, called a class relation, 
and to be able to process an unlimited number of ele-
ments. The name part of the identifier identifies the class 
relation and the indices instantiate a particular relation to 
process that element. 

The element-based approach does not use indices in 
the same way as the instruction-based model. An index is 
part of the element identifier and not an offset into some 
fixed memory. The element name and indices provide 
the semantic information required to process the element 
and thus this avoids having to use addressing to access 
data. The other advantage is that elements are never al-
tered: they are created, processed and discarded; hence 
there are no cache memory writes. Again this facilitates 
distribution across processors. 

The element model is computationally equivalent to 
the instruction model as it can implement a Turing ma-
chine. A series of examples, such as sorts and pattern 
matching, have been successfully implemented. Like 
with any model some algorithms are better suited to the 
element model. The purpose of this research is to explore 
how the element model is likely to perform for the spe-
cific case of simple matrix multiplication. The reason this 
case has been chosen is that it is a tightly coupled com-
putationally intensive example. 

III. RESEARCH APPROACH 

What is the best way to evaluate the proposed model, 
especially only having von Neumann hardware available? 
The success of the model depends on it being able to 
compete head on with current technology. For this reason, 
the choice was made to do a direct comparison with the 
instruction-based model. Since the research is around 
finding better models for parallel computing, the case 
study needs to focus on this aspect. Experiments were 
run on a cluster as this was the only resource available. 
An MPI emulation was used for running the element 
based programs. A comparison is made between a MPI C 
program and an element-based program. 

The model is evaluated in 3 ways: ease of program-
ming; use of resources; and performance. The evaluation 
of the model is done on a number of levels.  An impor-
tant one is how easy it is to write programs. As the lan-
guage has not been discussed in detail, a brief compari-
son is given. The next level is a complexity analysis of 
the resources required, looking at memory requirements 
and number of instructions executed and how this scales 
with the number of processors.  Data collected in the 
emulation of the element-based model is used to verify 
the analysis. Finally a study is made of how the runtimes 
of the two programs compare as the size of the matrix 
and the number of processors increases. 

At the end of the day what matters is whether the 
element-based model has the potential to out-perform the 
current technologies, and in particular, scale better with 
the number of processors. 

A. The programs 

To make a fair comparison and facilitate the analysis, 
the approach was to use the most basic design of the 
program for both cases. The algorithm for matrix mul-
tiplication of  is simple: 
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(12) 
where nc and nr are the number of columns and rows.  
This can be expressed as a simple C program as follows: 

 
Figure 4: C Matrix Multiplication Code 

In the case of the element base program one can al-
most use the expression as is. However to make the 
program more explicit we expand the above expression 
to: 

   (13) 
and further develop it to: 
 
 

        (14) 
 
The “assembly” code is given in Figure 4. 

 

Figure 4: Element based assembly code 

The two programs appear similarly complex, but we 
now need to look at the parallel versions. In the case of 
the C program we chose to distribute the computation of 
each element of A[r,c] to a processor as outlined below. 

 

Figure 5: MPI C Matrix Multiplication Code 

The implementation of this is somewhat more com-
plicated using MPI. Managing the slaves and synchro-
nizing requires additional code provided in Figure 6. 

The element-based program, by comparison, is inhe-
rently parallel and does not need to be rewritten to run on 
a parallel architecture. Also there are no built in restric-
tions as to the size of the buffers for message passing. 
Using an old measure of lines of code, the element-based 
program is a fraction of the size. There is no need to 
come to grips with message passing or synchronization. 
Not having to manage the parallelism gives the ele-
ment-based approach an advantage. 
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Figure 6: Parallel MPI Matrix Multiplication Program 

The assembly code generated by the parallel version of 
the C program ran to 600 odd lines and 20 lines for the 
slave. A small sample is given in Figure 7. Comparing 
the element-based code with the C code, there is a close 
mapping between the element program and the low level 
machine code, in contrast to the instruction-based. In the 
element-based model the semantic gap between the 
high-level program and the machine code is small re-

sulting in a small amount of machine code. The second 
aspect is that the element-based program does not need to 
be altered to run on a parallel architecture. It is inherently 
parallel. 

 

 

Figure 7: Sample of assembly code for MPI program 

B. Complexity Analysis 
The complexity of the instruction-based model can be 

measured in terms of the number of instructions, whereas 
for the element-based model, elements can be used. A 
starting point is to show that the complexity of the ele-
ment-based model is at least equivalent, if not better, than 
the instruction-based model for the matrix example. 
Having established that the complexity of the ele-
ment-based model is comparable with the instruction 
model, the focus can turn to a comparison between the 
execution times and scalability with increased number of 
processors. 

The analysis is a waste of time if processing an ele-
ment is clearly vastly more expensive than executing an 
instruction. On the basis of the instruction cycle versus 
the element cycle, creating an element is argued to be at 
least as efficient as processing an element. Consider each 
step in the cycle. 

Accessing/storing elements from/to hardware queues 
should give the element-based approach a major advan-
tage over having to read/write data from/to memory.  
The element-based approach has the potential of being 
able to delay paging to access relations until there is 
enough demand. Except for tuples, information is only 
read, eliminating the need for cache block write-back. 
Any number of elements can be processed in parallel, as 
there are no dependencies between them. This scaling 
factor has the potential to far exceed any pipelining ap-
proach of the instruction model. Even though it is not 
clear what the full cost of performing the tuple operation 
will be, this seems a reasonable initial assumption that 
the cost of creating an element is likely to be better than 
performing an instruction. 
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Table 8: Comparison of memory accesses 

Step Instruction-based Element-based 
1 get instruction pop element 
 memory access stack register 
 cache/page faults none 
2 get data get relation 
 memory/register memory 
 cache/page faults cache/page faults 
3 perform instruction evaluate relation 
 exception branch inst exception tuple op

 cache/page fault cache/page fault 
4 store push element 
 memory/register stack register 
 cache/page faults none 

 
For the analysis, the multiplications of  matrices 

are compared. The master has an outer loop of 97 in-
structions and the inner loop is 92. The slave has 79 in-
structions of which 27 are in the loop. Every time the 
slave is passed a message it loops n times to compute one 
element in the resulting matrix resulting in 27n instruc-
tions. For every entity in the resulting matrix, a message 
is sent to the slave that is n2 messages. Thus, the number 
of instructions computed in the slave's loop is 27n3. 
There are 52 instructions remaining in the slave if one 
excludes the instructions in the slave's loop and the 92 
instructions in the inner loop of the master that are ex-
ecuted for each row and column. This gives 144 instruc-
tions that are executed n2 times. There are 5 instructions 
in the outer master loop not in the inner loop that are 
executed n times and some constant c instructions that 
are only executed once in the master. Thus the number of 
instructions executed for a  matrix is 
27n3+144n2+5n+c. This ignores the cost of the calls to 
MPI subroutines that should result in a significant num-
ber of additional instructions that get executed. 

Table 9 works out the number of elements processed 
to be 14n3+7n2. It should be no surprise that the number 
of instruction/operations in both the instruction and 
element-based programs are of order n3. Even so the 
number of elements processed, 14n3+7n2, is more or less 
half the number of instructions executed by the instruc-
tion-based program, 27n3+144n2+5n+c. However, the 
real issue is what improved performance can be expected 
by increasing the number of slaves and how the speed 
scales with increasing number of processors. 

Consider the instruction-based C program first. Given 
m slaves, the calculation of n2 entries of the resulting 
matrix is distributed to the m3 slaves as these processors 
become available. Given an ideal environment, in which 
there are no delays in sending and receiving data, the 
                                                           
3 One processor is used for the master. 

speed up should be directly related to the number of 
processors. The purpose of the empirical study is to as-
sess  
• what the overhead of the MPI model is on achieving 

this as well as the cost of transferring the data and  
• the weaknesses the instruction-based model has i.e. 

the memory wall, page faults etc.  
The particular program that is used does have a limit 

on the size of the matrices it can handle.  Other aspects 
that affect the performance are cache faults that can only 
be measured empirically. 

Table 9: Analysis of Elements Processed 

domain range op number 

 b  n2

 c  n2

b b$0 xins n2

b$0 b$2 xnfltr n3

 a$0 tuple 0 n3

b$2 b$0 xsub n3

c c$0 xins n2

c$0 c$2 xins n3

 a$0 tuple 1 n3

c$2 c$0 xsub n3

a$0 a$1 mult n3

a$1 a$2 xfltr n3

 a$3 xnfltr n3

a$2 a$4 xsub n3

a$3 a$5 tuple 0 n3

a$4 a$5 tuple 1 n3

a$5 a$6 add n3

a$6 a$7 xfltr n3

 a$2 xnfltr n3

a$7 a zdel n2

a print print n2

   14n3+7n2

The same argument holds for the element-based model 
that the elements can be distributed across the m pro-
cessors. There are however some advantages in terms of 
distributing the elements.  Elements can be processed in 
any order and one does not need to synchronize the 
sending and receiving of elements between processors. 
The element-based model processes elements rather than 
accessing data via an address in memory, eliminating this 
potential cause of page faults. The element-based model 
does synchronize using a hash table that has potential 
page fault costs. Part of the empirical study is to get some 
indication of this cost. In doing the comparison of cost, 
the following factors need to be taken into account: the 
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cost of emulation and the inability to tailor hardware to 
suit the element model.  Processing an element involves 
executing 12 emulator C statements. The hardware used 
to run the comparison is highly optimized for the in-
struction-based model.  The emulator has none of these 
benefits. Hardware queues and hardware designed to 
perform tuple hashing would improve the performance. 

 

C. Empirical Study 

In the previous section a case is made that, potentially, 
the element model has significant advantages over the 
instruction model. However the argument is based on a 
number of assumptions. This section tries to get some 
handle on how valid these assumptions are. The runtimes 
of the instruction-based and the element-based programs 
are collected for different sizes of matrices and different 
numbers of processors. These runtimes are compared to 
assess:  
• whether the element-based program execution times 

are comparable with the instruction-based execution 
times, given that the code is emulated on an instruc-
tion-based computer, and  

• whether the element-based model scales better with 
the number of processors.  

An MPI program (see Figure 8) was used to emulate the 
behavior of the model to give some idea of its possible 
performance and highlight weaknesses. The results give 
some indication of the potential performance of an ele-
ment-based architecture. An evaluation of the experi-
ments is used to assess the validity of the assumptions 
made in the complexity analysis. On the basis of these 
results an assessment is made as to whether the element 
model is worth investigating further. 

Experiments were undertaken to assess if there are 
grounds to support the arguments that an element-based 
model:  
• can be implemented to do a computation such as 

matrix multiplication,  
• performs better without parallelism, and  
• scales better with increasing number of processors.  

The experiments involve comparing the performance of 
the emulation of the element-based program and the ex-
ecution of the C program. The following data is com-
pared:  
• the number of elements created with increasing sizes 

of matrices with a single slave, 
• the wall times of both with increasing sizes of ma-

trices with a single processor, and  
• the wall times of both for a given size of matrix with 

increasing number of slaves. 
The simple emulator shows that it is possible to im-

plement the model of computation to compute problems 
such as matrix multiplication. The model does handle the 

essential primitives i.e. selection, iteration and progres-
sion4. 

The predicted number of elements relates closely to 
the number of elements processed. The difference with 
the analysis 14n3+7n2 differs by a factor of n2 shown by 
Table 10. 

 
Table 10: Comparison Between Predicted and Actual 

Size Predicted Actual 

100 14 070 000,00 14 960 000,00 

110 18 718 700,00 19 916 600,00 

120 24 292 800,00 25 862 400,00 

130 30 876 300,00 32 887 400,00 

140 38 553 200,00 41 081 600,00 

150 47 407 500,00 50 535 000,00 

 
One reason for the discrepancy is an implementation 

design aspect that results in an additional element being 
created for each tuple operation. This is not a significant 
difference and aspects like system calls by the C program 
can result in similar discrepancies.  This result supports 
the argument that the element-based model will perform 
better, given the assumption that creating an element is 
no worse than executing an instruction. 

If we look at the execution times for the matrix of 100 
by 100 in Table 11 we see that the number of instructions 
per time unit is 15.5 for the element based technique and 
240.8 for the instruction based one. This is roughly 15.5 
times slower than the C program. Considering that the 
emulator has to execute well over twenty instructions for 
processing each element, it suggests that the assumption, 
that processing an element is at least equivalent to 
processing an instruction, may be a reasonable one. If 
one takes into account that the estimated number of in-
structions executed is three times the number of elements 
evaluated, this reduces the gap to just over 5 times 
slower. 

                                                           
4 The equivalent sequential execution in the instruction based 
form. 
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Figure 8: Outline of Emulator 

The picture does not look so favorable when the ma-
trix size increases and the element-based model is from 5 
times for (100 by 100) to 7.5 times slower for (150 by 
150) see Table 11. However the emulation is at present a 
very simple implementation and on a totally unsuitable 
architecture.  Like with the current architectures, con-
siderable effort will need to be put into its design. Since 
elements do not need to be processed in a predetermined 
order, this enables the processor to better manage the 
resources by determining the order in which elements are 
processed. This could have significant impacts on the 
implementation of the tuple operations that could explain 
the deterioration of performance as the size of the ma-
trices increase. 

The next comparison given in Table 11 looks at how 
the two approaches speed up with the number of slaves. 
The instruction-based times do not improve beyond two 
slaves whereas we see that the times of the ele-
ment-based program do.  The execution times for the 
element-based program show some unexpected results, 
even though for all measures, the best wall time of five 

executions was selected. Part of the problem may be a 
property of the cluster.  Both the instruction and ele-
ment-based times seem out of line for the case with 6 
slaves. The picture looks much better for the ele-
ment-based program if we look at the speedup factor. 
The performance is better than linear up to 8 slaves and 
unexpectedly there is a degree of superscalar speedup. 
This result further supports the argument that this model 
needs to be explored further. 

 
Table 11: Comparison of wall times 

 Element-based Instruction-based
Size Predicted Time Predicted Time
100 14070 907 42141 175 
110 18719 1211 56072 280 
120 24293 1530 72778 322 
130 30876 2052 92511 398 
140 38553 2665 115523 410 
150 47408 3299 142066 442 

 
Table 12: Comparison of wall times 

Elem  Instr
Number 

Processors
Time Speed 

up 
Time

1 10207 1.0 978
2 3959 2.6 646
3 3315 3.1 627
4 2250 4.5 573
5 1728 5.9 672
6 1865 5.5 661
7 1193 8.6 620
8 1198 8.5 626

IV. EVALUATION AND CONCLUSION 

This paper presents an alternative computational 
model that has significant advantages. The most signifi-
cant is the concept of processing elements one at a time 
in a similar way to processing instructions.  Underpin-
ning this mechanism is that elements encapsulate both 
semantic information and data. The semantic informa-
tion is used to determine how an element gets processed 
to create new elements.  Like the von Neumann model, 
the evaluation cycle is a simple three-step process. 

Since this paper is focused on the model as the basis 
for parallel architectures, the description of programs is 
touched on. The program in the case study is expressed in 
basic algebraic notation that maps closely to the machine 
level code.  There is a small semantic gap between the 
program and the code, unlike the C program. Both the 
source and the assembly code are more concise than the 
equivalent C program. The element program has a big 
advantage in that it is inherently parallel and does not 
need to be specially designed for parallel processors. If 
the case study is representative of writing programs for 
parallel architectures, then the element base architecture 
has a decided advantage. 
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The complexity analysis of the two programs unsur-
prisingly shows that both are of order n3.  However, on 
the basis of the given assumptions and potential advan-
tages of the element-based model, the analysis indicates 
that the element-based model is more efficient than in-
struction-based model. Both programs should exhibit 
linear speedup with the number of processors. 

The element-based execution times were considerably 
better than was expected, given that the element-based 
execution used a crude emulator running on an instruc-
tion-based cluster.  The area of concern is around the 
decline in performance as the matrix size increases. The 
suspected reason for this is the hashing with the asso-
ciated page faults. More investigation is needed to ex-
plore how to improve the tuple hashing by ordering the 
processing of tuples. Being able to use hardware queues 
rather than addressed memory access for the unprocessed 
elements, as well as passing elements between processes, 
should further improve the performance. 

The element-based execution times showed a better 
than linear speedup whereas the instruction-based did not. 
This contradicts the complexity analysis for the instruc-
tion base model that it would. This provides the strongest 
case that the element-based model may be a better model 
for parallel architectures. 

This paper provides evidence that, for a tightly 
coupled memory intensive program, the element-based 
model has the potential to perform better than the in-
struction-based model.  The next step is to implement 
the model using FPGAs [9]. However this is beyond my 
resources without some support for the potential of the 
model. Research is continuing informally, describing 
both the theory underpinning the model and the lan-
guage. 
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