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Abstract — It is shown an incorrectness of introduction 
of a class of NP-complete problems, which reason is that 
Cook’s S.А. theorem on that the “satisfiability” problem 
is the universal NP-complete problem, is not true and, 
therefore, the issue on existence of at least one NP-
complete problem remains open, that explains failures of 
attempts to estimate correlations between P and NP 
classes. 
 
Index Terms— Theory to difficulties algorithm, Digital 
Systems. 
 

I. INTRODUCTION 

Whether the issue on those NP-complete problems 
is really hard to solve, is considered now as one of the 
key open issues of modern mathematics and theoretical 
cybernetics. Contrary to readiness of the majority of 
experts to consider that all NP-complete problems are 
hard to solve, there is no progress both in proof, and in a 
refutation of this proposal. Therefore the purpose of the 
work is an attempt to explain why there was the situation. 
The theory of NP-complete problems is constructed for 
problems of recognition of properties. The problem of 
recognition L can be considered as consisting of two sets: 
Di and Yд, where Di – set of all single problems, and Yд – 
set of problems with the answer "yes", thus Yд Di. The 
form of these problems consists of two parts. In the first 
part the exposition of conditions of the problem in terms 
of various components is given: sets, networks, numbers 
etc. In the second part the question assuming one of two 
answers "yes" or "no" is formulated. Informally, class of 
NP-complete problems is defined by means of concept 
of nondeterministic algorithm. Such algorithm consists 
of two stages: guessing and check. At first, under the set 
single problem I a guessing of structure S takes place, 
and further, taking into account statements of problem I, 
check by the determined algorithm which is ended either 
by the answer "yes" or "no" is carried out. As it is shown 
in [1], nondeterministic algorithm solves the problem of 
recognition L, if for any single problem I Di two 
following conditions are met: 

1. If I Yд there is such structure S which guessing 
leads to that the check stage will be completed by the 
answer "yes". 

2. If I Yд there is no such structure S which 
guessing for I will lead to that the check stage will be 
completed by the answer «no». 

The concept of polynomial "checkability" [1] 
allows actual selection of a class of NP-complete 
problems, and in addition, "checkability" for polynomial 
time does not attract decidability of the problem of 
recognition for polynomial time. The problem of 
recognition L is called NP - complete if L NP and any 
other problem L/ from this class is reduced to L 
polynomially.  

In his study [2] titled «Complexity of procedures of 
a conclusion of theorems», Cook has proven that one 
specific problem from class NP named “satisfiability” 
possesses the property that any other problem from class 
NP can be reduced to it for polynomial time. Let’s prove, 
that the statement is incorrect. 

 

II. FORMALISING OF THE “SATISFIABILITY” 

PROBLEM 

Let’s consider a Boolean function 
),..,,( 21 nxxxf  in the conjunctive notation 
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Operations  and   are Boolean and model 
elementary logical expressions: – "OR"; – "AND". 
For any binary gang ),..,,( 21 nxxxх   the function 

accepts one of two possible values: unit or zero. The 
“satisfiability” problem consists in the answer to the 
question: whether there is a gang of values of the 
variables ),..,,( 21 nxxxх   converting function f to 

unit.  
A. Problem setting and solution 
 

For estimation of satisfiability or an unsatisfiability 
of Boolean functions let’s, at first, consider properties of 
unsatisfiable functions and methodes of their obtaining. 

 
B. Properties of unsatisfiable Boolean functions 
 

Let's introduce concept of minimum conjunctive 
form Fmin

f of an arbitrary Boolean function f of two 
variables with a minimum number of disjuncts r at 
which Fmin

f accepts value “false" for all possible gangs 
of the function. For this purpose let’s consider a bipartite 
graph G22 of a view shown in Figure 1, which one part is 
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formed by variables (a, b), and the second is formed by 
variables ),( ba . In the graph those nodes are connected 

by edges which do not form inverse pairs of ),( aa type. 

 

 
 
 
 
 
 
 
           
                            Figure .1.Graph G22                                                                                                                    Figure.2.Graph G2f 

 
For inconsistency origin in a Boolean function, it is 

necessary that both variables (a,b), and ),( ba were present. 

The perfect matching in graph G22 provides all possible 
additions of combinations of variables which can be 
connected among themselves by an edge as these nodes 
in the graph are not inverse. Addition of disjuncts 
comprising variables (a,b) and ),( ba  by disjuncts which 

comprise the variables stipulated by a perfect matching in 
the graph G22, will allow the minimum form to receive:  

))()()((min
2 abbababaF f  . (1) 

Let's present a Boolean function f in the form of 
sliced graph G where each variable in disjuncts 
corresponds to graph node, and each slice or a tier 
correspond to disjunct in which nodes are not linked 
among themselves. 

Connections between nodes of tiers are carried out 
as follows. The node i, corresponding to variable Хi of an 
arbitrary tier, is connected to all nodes of a following tier, 

except nodes i*, corresponding to a variable iХ . 

Let’s name nodes i and i* as inverse nodes of the 
graph. As it will be visible further, the arrangement order 
of tiers in graph G for the solved problem is of no 
concern. Let’s introduce also two dummy nodes s and t 
which are linked to all nodes of the first and last tier of 
graph G, accordingly. Then the graph of the function (1,) 
looks like in fig. 2. 

Clearly, that if in graph G of an arbitrary Boolean 
function f there is a path from node s to t which does not 
include inverse nodes, there is a gang of variables on 
which function f accepts value "true". Let’s assume, it is 
obtained the path from s to t in the graph G which does 
not contain inverse nodes (s, i, j, … k, t). A variable either 
Хi, or

iХ  corresponds to each node there, i.e. we can put 

in correspondence paths (s, i, j, … k, t) to a gang of 
variables (

kji XXX ,..., ) among which there are no 

contradictory, that ensures absence of inverse nodes in 
the path. Therefore, we can easily specify a gang of 
variables at which all gang will consist of units. However, 
as variables in the gang were used from each tier of the 
graph, it means that there will be unit at every disjunct  
and function f accepts value «true» for this gang of 
variables.  

Thus, if function f accepts value "false" for all gangs, 
then there is no path from node s to t in the graph of 
function G which does not include inverse nodes, that is 
clear on the graph presented on fig.2. Considered  
conjunctive forms possess the important property, , 
consisting in that the modification of a sign of inversion 
in an arbitrary literal leads to that changed function Ff, 
becomes satisfiable. It is easily possible to be convinced 
of that directly parsing graph G2f of the function Fmin

2f 
from which it is clear, that the modifications defined by 
property,  , will lead to occurrence of the paths in the 
graph which are not containing inverse nodes and, 
therefore, function f will become satisfiable. If we 
consider functions Fnf with arbitrary number of variables 
and with number of variables in disjunct not less two, it is 
possible to present such functions in the form of 
association of two graphs of bipartite graph G nf , see    
fig.3, in which nodes of one part correspond to 
variables  nXÕÕ ,...,, 21

, and for the second part - 

 nXХХ ,...,, 21  (subsets of binary graphs G/
nf in which 

links between nodes corresponding to variables 
 nXХХ ,...,, 21

 and  nXХХ ,...,, 21  are defined by 

perfect matchings in graph G nf) . 
 

 
Figure.3. The graph which generates functions Fnf 

 
Let's show, that conjunction of disjuncts defined by 

binary graphs {G/
пf}, which lead to an unsatisfiability of 

functions, is generally equal to 

nn XXXXÕÕ ...... 2121   and it is possible to present 

arbitrary function Fmin
nf in the form 



 On Correlation of Р And NP Classes 23 

Copyright © 2012 MECS                                                    I.J. Modern Education and Computer Science, 2012, 3, 21-27 

    
   

 
  )2(....)(

;...),(};1,0{};1,0{),()(

............

............

2211

2211
11

221121221121

212122112211
min

nnii

nniiiiii

n

i

i

n

i

iii

nnnnnn

nnnnnnnf

XXXxf

XXXxf沅�xfxxfx

XXXXXXXXXXXX

XXXXXXXXXXXXF




















  

As the “satisfiability” problem can be considered as 
the cover problem on a Boolean, then using a Boolean 
function let’s construct a matrix B in which variables 
 nXХХ ,...,, 21

 and  nXХХ ,...,, 21  there 

correspond to columns, and disjuncts of a Boolean 
function correspond to lines. Generally, the number of 
columns in a matrix B equal to 2n, and a number of lines 
is equal to number of disjuncts m in a Boolean function. 

For example, for a Boolean function 
  

     ,21134231

43214321

ХХХXХХХX

XХXXXХXXF nf





 
The matrix B will look like 

00100001

00010100

10000010

01000001

11110000

00001111

6

5

4

3

2

1
43214321 ХХХХХХХХ

B 
. 

Let’s name the columns corresponding to 
variables

iX  and iX in a matrix B as inverse. If in a 

matrix B there is a cover of lines by units which belongs 
not to inverse columns, it means that function f is 
satisfiable, and if such cover is not present it is 
unsatisfiable.  

And so, let the Boolean matrix B is set with 2n 
columns and m lines where m corresponds to number of 
disjuncts in a Boolean function f. Let’s define columns 
using a vector  nn XXXXХХ ,...,,,,...,, 2121

, 

and lines – using the vector M = {1, 2, …, m}. Let’s 
call as cover Q of lines M such set of graphs B which 
covers all lines of M with units. For definition of all 
covers of the matrix we will use an algebraic method of 
obtaining the reduced systems of simple implicants of 
Boolean functions using table of prime implicants. If to 
consider each column from a population 
 nn XXXXХХ ,...,,,,...,, 2121

 as a «prime 

implicant» cover population of lines M = {1, 2, …, m}, 
and each line I as a gang of the variables covered with 
prime implicants, then it is possible to present a matrix B 
as table of prime implicants of Boolean function f. At 
such interpretation of a matrix B, it is possible to note for 
each line i a disjunction of columns bi, cover considered 
line, as follows: 

dI = (хlv êõ v … …) 
… … … … … … …. (3) 

dm = (хРv tx v … …). 

Conjunction of disjunctions (3) for all lines 1, 
2, …, m of the matrix B forms conjunctive 
representation of the matrix B comprising all covers of a 
population of lines M: 

 
k(M)=d1·d2…dr=(хlv кх v…)…(хРv tx v…). (4) 
 

Removing the parentheses according to 
distributivity laws, we receive disjunctive representation 
of the matrix B forming the list of all possible covers of a 
population of lines M = {1,2, …, m}. For clearing up 
of existence of a cover, let’s take a principle of 
superposition in the Boolean algebra based on following 
equalities: 
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Without breaking the principle of superposition (5), it is 
possible to present an initial Boolean function in the form 
 n
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 Where  n
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Let's rewrite a relation (6) in the form 
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As follows from (7), in order that this Boolean 
function was identically equal 0 for all gangs of variables, 
it is necessary that functions  n

ni XXf  ,...,1
1

 and 

 n
ni XXf  ,...,1

1
/   were equal to nXXX  ...( 21  

and  )...21 nXХХ  , accordingly and, therefore, the 

relation (7) is degenerated into a relation (2), as was to be 
proved. 

In a disjunctive normal form, expression (2) looks 
like  
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Let's designate set of single “satisfiability” problems S. 
It is possible to divide the set into two subsets S+ - a 
subset of satisfiable single problems and S- - a subset of 
unsatisfiable single problems, when S = S +  S-.  

Any unsatisfiable Boolean function should comprise, 
in explicit or implicit form, Fmin

nл and if it comprises 
Fmin

nf implicitly, it can be always transformed to the form 
(2) or (8). For an arbitrary Boolean function with n 
variables it is possible to construct some minimum false 
forms, which number is actually defined by number of 
perfect combinations in graph G/

пf and as they can be 
present at a Boolean function and in various 
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combinations it is possible to make a conclusion that the 
potency of set of unsatisfiable single problems S- is 
exponential-fold than potencies of a set of satisfiable 
single problems S + i.e. the inequality is true 

│S-│>>│S+│ (9) 
As shown in studies [1-6], polynomial reducibility of 

the problem of recognition I1 to the problem of 
recognition I2 means availability of function f which 
transforms a subset of problems Di1 into a subset of 
problems Di2 (Di1 Di2), on the basis of some rule Пi and, 
thus, satisfies to two conditions: 

1. f – is calculated by a polynomial algorithm; 
2. For all I Di I Yд1, when and only when f (I) Yд2.  
Let's consider three subsets of problems {Ii}; {Zi}; 

{Ci}. Let the problem I-NP-is complete and represents 
the universal problem, and problems Z and C are also NP-
complete then, according to that as the class of NP-
complete problems is introduced, they should be reduced 
polynomially one to another and, thus, if the polynomial 
algorithm for one of them is discovered, there should be 
polynomial algorithms for all single problems {Ii}; {Zi}; 
{Ci}. As the universal problem can appear any of NP-
complete problems, all following reductions should be 
true 

{Ii} {Zi} {Ci}; (10) {Ii} {Ci} {Zi}; (11)  
{Ci} {Ii} {Zi}; (12) {Ci} {Ii} {Zi}; (13)  
{Zi} {Ci} {Ii}; (14) {Zi} {Ii} {Ci}. (15)  
 
In addition, there are rules Пiz and Пzc which permit to 

reduce problems Ip Zp and, thus, {Iр} Yдi and 

problems Zp Cp and, in this respect, {Zр}  дz, i.e. 
transformation rules Пiz and Пzc satisfy to conditions of 
polynomial reducibility 1 and 2. Let’s consider a case 
similar to (9) when structures S are such that they 
generate set of single problems {Z} which by its potency 
exceeds set of single problems {I}. If the subset {I} 
contains n single problems, and sets {Z} and {C} contain 
n+k single problems each, then for some subset of 
problems {Zn+1, Zn+2, …, Zk} we cannot put in 
correspondence any problem from {Ii}. Therefore, the 
reductions (10) and (11) are possible for all problems, 
and reductions (12), (13), (14) and (15) are possible not 
for all problems, they are not possible for problems {Сn+1, 
Сn+2, …, Сk} and {Zn+1, Zn+2, …, Zk}, and, it means in 
this case, that the statement about all NP-complete 
problems are polynomially reduced to each other, is not 
fulfilled. Thus, the concept of the NP-complete problem 
requires an improvement. In order that the NP-complete 
problem was universal and reduced in any directions 
within a class, it is necessary that there was a one-to-one 
correspondence between all single problems {Ii}; {Zi}; 
{Ci}, i.e. for any pair of single problems there should be 
the direct and inverse polynomial reduction defined by 
conditions 1 and 2.  

Thus, if we have subsets of problems {Ii}; {Zi}; {Ci}, 
and the potency of set of single problems {Ii} differs from 
a potency of sets of problems {Zi} and {Ci}, then to prove 
that some problem I is NP-complete, it is not enough to 
show that any single problem {Ii} is polynomially 
reduced to set of problems {Zi} and {Ci}, i.e. conditions 1 

and 2 are satisfied as it was made in the proof of NP-
completeness of the “satisfiability” problem in Cook's 
and Carp’s studies, but thus it is necessary to show, that 
there are also problems {Іn+1, Іn+2, …, Іk}, which are 
polynomially reduced to problems {Сn+1, Сn+2, …, Сk} 
and {Zn+1, Zn+2, …, Zk}, and "checkability" of these 
recognition problems should remain possible for 
polynomial time.  

Let's show, that the “satisfiability” problem is not 
universal. So, Cook has proved universality of the 
“satisfiability” problem at first. After one NP-complete 
problem has become known, process of the proof of NP-
completeness of the problem A becomes simpler. To 
prove NP-completeness of problem АNP it is enough to 
show, that any known NP-complete problem A / can be 
reduced to А as property of polynomial reducibility is 
transitive i.e. if the problem A for polynomial time is 
transformed to the problem B and if B is transformed to C 
for polynomial time, then A is transformed to C for 
polynomial time. First, under the circuit NP-completeness 
of six primal problems has been proved: «three-
dimensional combination»; "partition"; «vertex cover", 
"Hamilton cycle";"complete subgraph». As they were 
first problems which have been introduced into a class of 
NP-complete ones after the “satisfiability” problem, the 
proof of their NP-completeness was reduced to 
introduction of rule П on which basis for some arbitrary 
“satisfiability” problem Yy structure S possessing 

property ν if and only if y accepts value “true”. For 
example, for a «vertex cover» problem, graph G has 
appeared as structure S, and property ν consisted in that 
graph G has a vertex cover with number of elements no 
more K, if and only if a gang of 
disjunctions, },...,,{ 21 mcссС  is fulfilled defining 

the arbitrary single "3-satisfiability" problem. Generally, 
the «satisfiability» problem represents some set Y of 
single problems defined by various modes of set up of 
logical function. It should be noted that during proof of 
NP-completeness of all six enumerated problems the 

arbitrary single problem is selected at first Yу  and 

then under the problem graph G is built for polynomial 
time. That graph should contain interesting structure 
which possess the necessary property,, only if the 
logical function corresponding to the single problem, 
accepts value «true». As graph G can be arbitrary, we 
will solve some single problem Zz   where Z is the set 
of problems generated by usage of various types of 
graphs G.  

During solution of the arbitrary NP-complete problem 
of graph theory there is an inverse problem: arbitrary 
graph G is set, and then it is required to determine, 

whether the graph G possesses structure with property, 
or not. 

This brings up the questions: what single problem (y) 
from set of single “satisfiability” problems Y corresponds 
to the problem Zz  generated by graph G, and 
whether for all problems Z there is an inverse 
correspondence, and if such correspondence exists, how 
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to construct it under the initial graph and whether will be 
this construction polynomial or not?  

In the theory of NP-complete problems [1-5] there are 
no answers to these problems yet, and property of inverse 
polynomial reducibility of single problems yz is by 
default transferred to sets Y and Z. 

Let's show that if consider «satisfiability» problem as 
universal the circuit according to which all list of NP-
complete problems is actually obtained, does not ensure 
existence of correspondence of problems yz and their 
polynomial reducibility to each other. Let’s consider 
correspondence of problems yz, in which we should 
assign a corresponding «satisfiability» problem to 
structure S possessing property ν, and the problem 
accepts value “true” when and only when structure S 
possesses property ν.  

 Let rule П is introduced, on which basis under some 
arbitrary «satisfiability» problem Yy  structure S has 

been constructed which possesses property ν in then and 
only then when y accepts value «true». It should be noted 
that this approach has been used for proof of NP-
completeness of all six principal NP-complete problems.  

 Generally, in order to justify a possibility of that 
correspondences yz at the proposal that the 
«satisfiability» problem is NP- complete, cannot take 
place and thus the problem z cannot be transformed to the 
initial problem y for polynomial time it is enough to show 
it by the example of one of six principal NP-complete 
problems. Let’s consider this by the example of a «vertex 
cover» problem. 

Let's mention the rule П which was used for the proof 
of NP-completeness of the «vertex cover» problem in the 
study [1]. Let },...,,{ 21 nuuuU  and },...,,{ 21 mcccC   

define the arbitrary single "3-satisfiability" problem. 
Let’s specify graph G (V, E) and a positive integer K ≤ |V 
| such that G has a vertex cover with number of units no 
more K when and only when a gang of disjunctions C is 
fulfilled. For each variable Uui   there is a component 

),( iii EVT   of truth values gang (where },{ iii uuV  , 

}},{{ iii uuE  ), i.e. iT is pair of the nodes connected 

by an edge, thus any vertex cover should cover an edge 
from  

iE  ,  therefore  it  should  contain  at   least one          

node iu  or iu .  For   each disjunction,    Cc j   there is 

a  component  of   satisfiability   check   ),( ||
jjj EVS   

consisting of three nodes and three edges connecting 
them and forming a triangle: 

]}}.[],[{]},[],[{]},[],[{{

]},[],[],[{

323121
|

321
|

jajajajajajaE

jajajaV

j

j



  

 
Any vertex cover should contain at least two nodes 

from |
jV  to cover all three edges from |

jE . Linking edges 

are the single part of a construction depending on what 
literals enter into disjunctions. We put in correspondence 
three literals jjj plx ,,  to each disjunction Cc j   

containing those literals. Then the linking edges which 
are starting from jS  are set as follows: 

}}.],[{},],[{},],[{ 321
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Construction of the single «vertex cover» problem is 
ended if to suppose  К=n+2m  and  G = (V, E),  where 
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       Let's consider a Boolean function 
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 According to described procedure П, graph G1 = (V1, E1)  
 

Figure.4. Graph G1 = (V1, E1) 
for the function will be of the form shown on fig.4. Thus 
the number of the nodes forming the minimum cover in 
the graph should not exceed K = n+2m=5+16=21. Let’s 
show that function (16) is unsatisfiable on any gang of 
variables. For this purpose let’s consider function of two 
variables  

)uu)(uu)(uu)(uu(f 12212121   (17) 

It is easy to check up, that function (17) is 
unsatisfiable on any gang of variables. Let’s transform 
(16), having added into each parenthesis a variable 3u  and 

having increased function (17) by a 
multiplier )uuu)(uuu)(uuu)(uuu( 543543543543  . It is 

easy to see, that thus we will receive function (16). Such 
adding of variables leads to that the variable 3u  will 

accept value "false" in any gang of the validity which 
fulfills conditions (16). Therefore disjuncts containing by 
two variables in (17) will be equivalent to disjuncts 
substituted them, therefore, function (16) is satisfiable 
when and only when function (17) is satisfiable. 
Considering that (17) is unsatisfiable on any gang of 
variables, the function (16) is unsatisfiable on any gang 
of variables, too. From fig. 4 it is clear that there is no the 
cover in graph G1 consisting of 21 nodes that is well 
agree with that there is no gang of variables on which 
function (16) would be satisfiable. But, it is easy to 
specify a cover on graph G1 = (V1, E1) consisting of 22 
nodes; these nodes are shown on fig. 4 as boldfaced, thus 
it is easy to check up, that the current cover in graph G1 is 
minimum. There is a question, whether it is possible to 
construct such Boolean function for graph G1, adhering to 
rule П, that it would be satisfiable only in that case when 
the minimum cover in graph G1 did not exceed 22 nodes. 
It is obvious, that such function should contain function 
(16), and this part of function will ensure, that there is no 
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cover less than 22 in graph G1, and a number of disjuncts 
which is necessary to have in its structure in order that 
rule П was fulfilled, should be equal to (22-5)/2=8,5. 
That is impossible, as such function, at first, will be 
unsatisfiable for all possible gangs as it includes function 
(16), and, secondly, the number of disjuncts in function 
cannot be fractional. If trying to realize reconversion for 
an arbitrary graph considering rule П, we should have the 
number of disjuncts in the single “satisfiability” problem 
equal to m = (K-n)/2, i.e. if K-n is odd, the number of 
disjuncts will be fractional number. Thus, there is no such 
«satisfiability» problem which function constructed on 
the basis of rule П, considered in the study [1], would 
accept value «true» when and only when the number of 
nodes in a cover of graph G1 does not exceed 22. It is 
possible to construct so much such examples, how many 
unsatisfiable functions exist, i.e. exponentially large set. 
It is necessary also to note, that even if a conversion 
exists, after performance of the conversion the number of 
true propositions can appear exponentially large, and only 
one true proposition possessing some property will 

satisfy to property   of initial graph. So, it is shown in 
the study [6], that if f is the Boolean function constructed 
by graph G = (V, E) in the form of product of disjuncts 

(Vi Vj) where {Vi} 0,1}, ni ,1 nj ,1 i  j and in 

the same time every disjunct (Vi Vj) corresponds to an 
edge (Vi, Vj) all gangs of variables {Vi, Vj} for which it 
accepts value «true» correspond to vertex covers in graph 
G = (V, E). It follows that for enumeration of all vertex 
covers of graph G = (V, E), it is necessary to define those 
systems of values of variables {Vi, Vj}, at which 
expression is true 

f(V1,V2…Vn)=1, (18) 
In order to determine these systems of values of 

variables {vi,vj}, it is necessary to reduce the left          
part (18) to minimum DNF (a disjunctive normal form) 
removing the parenthesis and using the law of absorption. 
Such form is unique in view of logical negations in (18) 
are absent. Let’s demonstrate this by an example of graph 
G presented in fig.5. 

 
Figure.5. Graph G 

 
Boolean function for the graph will look like: 

)()(V)V()V()( 4142433221 VVVVVVVf 

= )V()( 3214312 VVVVVV  = 43132142 VVVVVVVV  .(19) 

Apparently from (19), as a result of disclosure of 
parenthesis and collecting terms, we have obtained the 

complete enumeration of vertex covers of graph               
G (fig.5). They are subsets of nodes: {2, 4}; {1, 2, 3}; {1, 
3, 4}. Generally, function (18) contains exponential 
number of true propositions as it does not contain logical 
negations and, thus, if we find the minimum cover, the 
expression should satisfy to the property  consisting that 
disjunct which corresponds to the minimum vertex cover, 
should be of minimum length, i.e. contain the least 
number of variables {Vi}. The conversion can be easily 
applied to graph G1, but at the same time for definition of 
property of the graph , performance of exponential 
number of steps is required. If to assume nevertheless, 
that in this case there is a polynomial algorithm for the 
conversion, it would mean, that the «vertex cover» 
problem is solvable for polynomial time that contradicts 
the proposal that NP-complete problems are insoluble for 
polynomial time. Therefore, if direct and inverse 
conversions are exist, reconversion can be exponential, 
instead of polynomial. 

 It means, that if to assume in example (10-15), that І 
is the «satisfiability» problem, then we basically can put 
in correspondence for problems {Сn+1, Сn+2, …, Сk} and 
{Zn+1, Zn+2, …, Zk} the problem {Іn+1, Іn+2, …, Іk} such 
that all reducibilities (10-15) are satisfiable for 
polynomial time, but upon that, "checkability" of the 
problem of recognition Ipn can require exponential 
number of steps. 

And so, if to select the «satisfiability» problem as the 
universal problem we can face a situation of impossibility 
of polynomial reducibility of some subset of problems in 
a class of NP-complete problems. It happens because 
Cook's proof is carried out for set of single problems of 
satisfiable Boolean functions S + for which polynomial 
reducibility is simply enough justified using a Turing 
machine as the calculator model, and upon that the set of 
single problems S - of unsatisfiable Boolean functions is 
completely eliminated from the analysis, which potency 
essentially exceeds a potency of set S +. 

 

III. INFERENCE 

So, the class of NP-complete problems is introduced 
improperly as the «satisfiability» problem cannot claim 
for a role of the universal NP-complete problem. Also, 
the issue on existence of at least one NP-complete 
problem remains open as universality of any problem 
from NP class, except the «satisfiability» problem, has 
not been proved, and they have been included in list of 
NP-complete problems only on the basis of reducibility 
of the «satisfiability» problem to them. 

Upon that, it is actually possible to divide all known 
set of problems which are called NP-complete into 
subsets within which polynomial reducibility between all 
problems of the subset is possible, for example: vertex 
cover, maximum independent set and a complete 
subgraph in the graph. However, most likely, reducibility 
between subsets can take place only for separate single 
problems [7]. The problem of polynomial reducibility 
between subsets can appear algorithmically insoluble 
problem. Therefore, while if we cannot answer a question 
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whether there is at least one universal NP-complete 
problem then the question if Р=NP or not, is simply 
premature and has no sense yet. It is necessary to note 
also, that all conclusions made in the theory of problems 
from class NP on the basis of the proposal on "total" 
polynomial reducibility in a class of NP-complete 
problems, can appear incorrect if the problem of 
existence of a universal problem appears insoluble. 
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