
I.J.Modern Education and Computer Science, 2012, 6, 43-49
Published Online June 2012 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2012.06.06

Copyright © 2012 MECS I.J. Modern Education and Computer Science, 2012, 6, 43-49

SD-AREE-I Cipher: Amalgamation of Bit

Manipulation, Modified VERNAM CIPHER &
Modified Caesar Cipher (SD-AREE)

Somdip Dey, Student Member, IEEE

Department of Computer Science, St. Xavier‘s College [Autonomous], Kolkata, India

Email: somdipdey@acm.org

Abstract— This paper presents a new combined

symmetric key cryptographic technique, which is

generally an amalgamation of Bit Manipulation,

generalized Modified Vernam Cipher, Single Bit

Manipulation and Modified Caesar Cipher. The technique

proposed here is basically an advanced and upgraded

module of SD-AREE cryptographic method, which is

based on Modified Caesar Cipher along with Bit
Manipulation and the SD-AREE module is very useful in

excluding any repetition pattern from a message that is to

be encrypted. The proposed method, SD-AREE-I Cipher,

is a complete cipher method and unlike its predecessor,

SD-AREE, does not need to be added to other

cryptographic methods to make those methods stronger.

SD-AREE-I method is used to encrypt/decrypt different

file formats and the results were very satisfactory. This

method is unique and strong because the method contains

feedback mechanism and generates new encrypted output

every time even with slightest change in the input file

(message). The proposed method can also be used for
network security.

Index Terms— Cryptography, Repetition exclusion, Bit

Manipulation, Decryption, SD-REE, SD-AREE,

Modified Caesar Cipher

I. INTRODUCTION

In modern world, security is a big issue and securing

important data is very essential, so that the data can not

be intercepted or misused for illegal purposes. For that

reason, different cryptographic methods [7][8][9] are

used by different organizations and government

institutions to protect their data online. But, cryptography
hackers are always trying to break the cryptographic

methods or retrieve keys by different means. To deal with

this problem, cryptographers come up with different new

ideas of protecting the data using different cryptographic

means. SD-AREE-I is one such cryptographic method.

Dey et al. already proposed a cipher technique, called

SD-AREE [4][5], to exclude the repetitive characters in a

message to be encrypted and the technique is a type of

symmetric key cryptography [7][8][9].

The modern day cryptographic methods are of two

types: (i) symmetric key cryptography [7][8][9], where the

same key is used for encryption and for decryption

purpose. (ii) Public key cryptography [7][8][9], where we

use one key for encryption and one key for decryption

purpose.

Symmetric key algorithms are well accepted in the
modern communication network. The main advantage of

symmetric key cryptography is that the key management

is very simple. Only one key is used for both encryption

as well as for decryption purpose. There are many

methods of implementing symmetric key. In case of

symmetric key method, the key should never be revealed

/ disclosed to the outside world or to other user and

should be kept secure.

SD-AREE method, proposed by Dey et al. [] [], is

basically a new implementation of modified Caesar

Cipher in securing information in a better way. SD-

AREE-I is also a symmetric key cryptographic method

and the best part of this method is every time the cipher

technique generates new encrypted output results if there

is a slightest change in the input message. This technique

was only achievable after implementation of generalized

modified Vernam Cipher with feedback mechanism and

advanced bit manipulation technique.

In this paper the author present the cryptographic

technique SD-AREE-I, which is a both bit level and byte

level cryptographic method. First the message is broken

up into bits and it is saved in a matrix, then Matrix–

cycling Operation is performed on that matrix for random

number of times. After that the generalized modified

Vernam Cipher with feedback mechanism is executed on

the data. Then we apply Single Bit Manipulation followed

by a modified form of Advanced Caesar Cipher

Cryptographic Method [4] [5] [6]. In cryptography, a
Caesar cipher, also known as a Caesar's cipher or the shift

cipher or Caesar's code or Caesar shift, is one of the

simplest and basic known encryption techniques. It is a

type of replace cipher in which each letter in the plaintext

is replaced by a letter with a fixed position separated by a

numerical value used as a "key". Caesar Cipher is or was

probably the very first encryption methodology. It is a

type of substitution cipher in which each letter in

the plaintext is replaced by a letter some fixed number of

positions down the alphabet. For example, with a shift of

3, A would be replaced by D, B would become E, and so

on.

44 SD-AREE-I Cipher: Amalgamation of Bit Manipulation,

Modified VERNAM CIPHER & Modified Caesar Cipher (SD-AREE)

Copyright © 2012 MECS I.J. Modern Education and Computer Science, 2012, 6, 43-49

II. ENCRYPTION METHOD

SD-AREE-I Cipher follows the following algorithm:

Step-1) generate Code and poer_ex from the password

for future use in encryption

Step-2) Bit Level Matrix Cyclic Operation

Step-3) Modified Vernam Cipher with Feedback

mechanism

Step-4) Single Bit Manipulation

Step-5) Modified Caesar Cipher (SD-REE)

The aforementioned steps can be further clarified with

the block diagram of the proposed method:

Figure: Block Diagram of SD-AREE-I Cipher

Now, we elaborately explain each step followed in the

proposed method.

A. Generation of Code and power_ex from the

Symmetric Key:

The key is provided by the user in a string format and

let the string be ‗pwd[]‘. From the key, which is provided

by the user, we generate two numbers: ‗code‘ and

‗power_ex‘, which will be used for encrypting the

message. First we generate the ‗code‘ from the pass key.

Generation of code is as follows:

To generate the code, the ASCII value of each

character of the key is multiplied with the string-length of

the key and with 2
i
, where ‗i‘ is the position of the

character in the key, starting from position ‗0‘ as the

starting position. Then we sum up the resultant values of

each character, which we got from multiplying, and then

each digit of the resultant sum are added to form the
‗pseudo_code‘. Then we generate the code from the

pseudo_code by doing modular operation of pseudo_code

by 16, i.e.

code = (pseudo_code Modulus 16).

If code==0, then we set code =pseudo_code

The Algorithm for this is as follows:

Let us assume, pwd[] = key inserted by user

pp= 2
i
 , i=0,1,2,……..n; n  N.

Note: i can be treated as the position of each character

of the key.

Step 1: p[] = pwd[]

Step 2: pp = 2
i

Step 3: for (i=0;i < strlen(pwd); i++)

 p[i] = pwd[i];

 p[i] = p[i] * strlen(pwd) * pp;

 csum = csum + p[i];
Step 4: while (csum ≠ 0)

 c = csum Modulus 10;

 pseudo_code=pseudo_code +c;

 csum = csum / 10;

Step 5: code = (pseudo_code Modulus 16);

Note: strlen(pwd) is string-length of the pwd[] (key).

Generation of power_ex is as follows:

Now, we generate power_ex from the pseudo_code

generated from the above step. We add all the digits of

the pseudo_code and assign it as temporary_power_ex.

Then we do modular operation on temporary_power_ex

with 3 and save the resultant as power_ex.
i.e.

power_ex = (temporary_power_ex Modulus code)

If power_ex == 0 OR power_ex == 1, then we set

power_ex = code.

For example, if we choose the password, i.e. the key to

be ‗hello world‘. Then,

Length of pwd = 11

code = 10
power_ex = 4

Thus, we generate code and power_ex from the key

provided by the user.

B. Bit Level Matrix-Cyclic Operation:

Now, after the generation of ‗code‘ and ‗power_ex‘,

the text, which needs to be encrypted, is taken up as a

string and each character (for ASCII encoded text) or

byte is broken up into bits (8-bit pattern). Then a matrix

table is formed, which is of dimension (8 x 8), provided
that the number of bytes is equal or more than 8, and keep

on forming such matrices until all bytes of the message to

be encrypted have been transformed into bit-wise matrix

format. If the number of bytes is less than 8 then the

matrix formed will have the dimension (m x 8), where ‗m

<=8‘. In this matrix, we save the bits of each byte in the

column of the matrix and save each byte in the row of the

matrix. For example: if the text to be encrypted is ‗ABd‘,

then it can be represented in matrix form after extraction

of bits in the following fashion:

 SD-AREE-I Cipher: Amalgamation of Bit Manipulation, 45

Modified VERNAM CIPHER & Modified Caesar Cipher (SD-AREE)

Copyright © 2012 MECS I.J. Modern Education and Computer Science, 2012, 6, 43-49

Matri

x
(3 x 8)

Bit

7
(MS

B)

Bi

t 6

Bi

t 5

Bi

t 4

Bi

t 3

Bi

t 2

Bi

t 1

Bit 0

(LSB)

A -> 0 1 0 0 0 0 0 1

B -> 0 1 0 0 0 0 1 0

d -> 0 1 1 0 0 1 0 0

Note: In the above example matrix we can see that the

number of bytes is less than 8, so only 1 matrix is formed

and the dimension of the matrix is (3 x 8), where m=3,

which is <8.

Now, after the matrices are created we perform cyclic

operation [2] on the matrix several times, i.e. multiple

times and form a new set of values.

Matrix-cyclic [2] operation can be explained in the

following example:

A B C D

L M N E

K P O F

J I H G

Fig 1.1: Real Matrix

Fig 1.2: Cyclic Operation Starts

L A B C

K N O D

J M P E

I H G F

Fig 1.3: Matrix After Cyclic Operation

We perform the cyclic operation ‗n‘ number of times,

where n= code, which is generated from the key. After

the cyclic operation we again change back the binary

value of the bytes into its decimal form i.e. the ASCII

form.

Algorithm for this whole step:

Step 1: extract all bytes of the message into a string

Step 2: extract the bits of each byte from the string i.e.

convert ASCII value of each byte to binary form

Step 3: save the bits in a 2 dimension array such as
a[r][c], where r -> row and c -> column

Step 4: r = each byte

 c = each bit of that byte

Step 5: perform cyclic() ‗n‘ times on a[r][c], where n =

code

Step 6: convert the binary form to ASCII value

(decimal form)

Step 7: store the result in text[]

Note: text[] is an array, where the ASCII value of the

bytes after bit level encryption is stored.

C. Modified Vernam Cipher with Feedback:

The module of modified Vernam Cipher, which is used

in this method is a concept proposed by Nath et al. [1][2].

Nath et al. in their cryptographic method, called TTJSA

[1], has proposed an advanced form of generalized

modified Vernam Cipher with feedback mechanism. For
this reason, even if the data is slightly changed, the

encrypted output generated is very different from the

other outputs.

TTJSA method is a combination of 3 distinct

cryptographic methods, namely, (i) Generalized Modified

Vernam Cipher Method, (ii) MSA method and (iii)

NJJSA method. To begin the method a user has to enter a

text-key, which may be at most 16 characters in length.
From the text-key, the randomization number and the

encryption number is calculated using a method proposed

by Nath et al. A minor change in the text-key will change

the randomization number and the encryption number

quite a lot. The method have also been tested on various

types of known text files and have been found that, even

if there is repetition in the input file, the encrypted file

contains no repetition of patterns.

In SD-AREE-I Cipher method we have only used the

modified Vernam Cipher module of TTJSA by Nath et al.

Here, Code represents the randomization number and

power_ex represents the encryption number. All the data

in the file are converted to their equivalent 16 bit binary

format and broken down into blocks.

Algorithm for Modified Vernam Cipher with

feedback mechanism is as follows:

1) Algorithm of vernamenc(f1,f2):

Step 1: Start vernamenc() function

Step 2: The matrix mat[16][16] is initialized with

numbers 0-255 in row major wise order
Step 3: call function randomization() to

 randomize the contents of mat[16][16].

Step 4: Copy the elements of random matrix

 mat[16][16] into key[256] (row major wise)

Step 5: pass=1, times3=1, ch1=0

Step 6: Read a block from the input file f1 where

number of characters in the block 256 characters

Step 7: If block size < 256 then goto Step 15

Step 8: copy all the characters of the block into an

array str[256]

Step 9: call function encryption where str[] is passed as

parameter along with the size of the current block
Step 10: if pass=1 then

 times=(times+times3*11)%64

 pass=pass+1

else if pass=2 then

 times=(times+times3*3)%64

46 SD-AREE-I Cipher: Amalgamation of Bit Manipulation,

Modified VERNAM CIPHER & Modified Caesar Cipher (SD-AREE)

Copyright © 2012 MECS I.J. Modern Education and Computer Science, 2012, 6, 43-49

 pass=pass+1

else if pass=3 then

 times=(times+times3*7)%64

 pass=pass+1

else if pass=4 then

 times=(times+times3*13)%64

 pass=pass+1

else if pass=5 then

 times=(times+times3*times3)%64
 pass=pass+1

else if pass=6 then

 times=(times+times3*times3*times3)%64

 pass=1

Step 11: call function randomization() with

 current value of times

Step 12: copy the elements of mat [16][16] into

 key [256]

Step 13: read the next block

Step 14: goto Step 7

Step 15: copy the last block (residual character if any)

into str[]
Step 16: call function encryption() using str[] and the

no. of residual characters

Step 17: Return

2) Algorithm of function encryption(str[],n):

Step 1: Start encryption() function

Step2: ch1=0

Step 3: calculate ch=(str[0]+key[0]+ch1)%256

Step 4: write ch into output file

Step 5: ch1=ch

Step 6: i=1

Step 7: if in then goto Step 13

Step 8: ch=(str[i]+key[i]+ch1)%256
Step 9: write ch into the output file

Step 10: ch1=ch

Step 11: i=i+1

Step 12: goto Step 7

Step 13: Return

3) Algortihm for function randomization():

The randomization of key matrix is done using the

following function calls:

Step-1: call Function cycling()

Step-2: call Function upshift()

Step-3: call Function downshift()

Step-4: call Function leftshift()

Step-5: call Function rightshift()

Note: Cycling, upshift, downshift, leftshift, rightshift

are matrix operations performed (applied) on the matrix,

formed from the key. The aforementioned methods are
the steps followed in MSA algorithm [2] proposed by

Nath et al.

After the execution of modified Vernam Cipher, each

block is written down into the file and further processed

by next steps of the cipher method

D. Single Bit Manipulation:

The Single Bit Manipulation technique was proposed

by Dey et al. in their SJA-I [3] algorithm. In this stage,

we convert each byte / character of the message to be

encrypted, to its binary equivalent. Now, length of

password is considered for bit left shift. i.e., Number of

bits to be shifted to left will be decided by the length of
password. Let L be the length of the password and LR be

the number of bits to be rotated to left and reversed (i.e.

LR is the effective length of password). The relation

between L and LR is represented by equation (1).

LR =L mod 7 ------ eq. (1)

where ‗7‘ is the number of iterations required to

reverse entire input byte.

After this, the last two extreme positions of the bits are

swapped with each other to generate the final output

character, i.e. if the bit format is like [B8B7B6B5B4B3B2B1]

for input byte then B8 will be swapped with B1 and B7

will be swapped with B2. Thus, the binary equivalent of
the output byte will become: [B1B2B6B5B4B3B7B8] after

swapping of bits.

For example,

let Chin be any random character / byte from the
message. Then its binary equivalent will be:

[B8B7B6B5B4B3B2B1]. If the password provided for

encryption is ―somdi‖, then LR=5 and the bits will be

shifted by 5 positions to their left. Thus CHin will become

[B3B2B1B8B7B6B5B4] after left shift and then

[B3B2B1B4B5B6B7B8] after reversing. Then, according to

the algorithm the bits of extreme two sides are swapped

with each other at a time. Thus, the resultant binary

format is [B8B7B1B4B5B6B2B3].

Cin [B8B7B6B5B4B3B2B1]

[B8B7B1B4B5B6B2B3] Cout

E. Encrypting the Bit-Message using code and

power_ex (Modified Caesar Cipher Method – SD-
REE):

Now we use the code and power_ex, generated from

the key, to encrypt the bit level encrypted text. We extract

the ASCII value of each character of the text, which is

produced after bit level encryption, and add the code with

the ASCII value of each character. Then with the

resultant value of each character we add the (power_ex)
i
,

where i is the position of each character in the string,
starting from ‗0‘ as the starting position and goes up to n,

where j=position of end character of the message to be

encrypted, and if position = 0, then (power_ex)
i
 = 0. It

can be given by the formula:

text[i] = text[i] + code + (power_ex)
i

If, ASCII value of text[i] > 255, then set

text[i] = (text[i] Modulus 255)

 SD-AREE-I Cipher: Amalgamation of Bit Manipulation, 47

Modified VERNAM CIPHER & Modified Caesar Cipher (SD-AREE)

Copyright © 2012 MECS I.J. Modern Education and Computer Science, 2012, 6, 43-49

Note: ‗i‘ is the position of each character in the text

and text[] is the message to be encrypted, where text[i]

denotes each character of the text[] at position ‗i‘.

Since, the value of (power_ex)
i

 increases with the

increasing number of character (byte) i.e. with the

increasing number of string length, so we have applied
the method of Modular Reduction [10][11] to reduce the

large integral value to a smaller integral value.

To apply Modular Reduction we apply the following

algorithm:

Step 1: n = power_ex * code * 10 //generate a random

number ‗n‘ from code and power_ex

Step 2: calculate n
th
 prime number

Step 3: For (i=0; i<string length[text]; i++)

Step 4: (power_ex)
i
 Modulus (n

th
 prime number)

Step 5: replace the value of (power_ex)
i
 with the value

generated in Step 4

Step 6: Next i

Following the previously mentioned steps, we can

reduce the value of (power_ex)
i
 to a significantly smaller

usable number.

Decryption:

The main formulae used for decryption is:

text[i] = text[i] - code - (power_ex)
i

Note: If, ASCII value of text[i] < 0, then set

text[i] = (text[i] Modulus 255)

‗i‘ is the position of each character in the text and text[]

is the message to be encrypted, where text[i] denotes each

character of the text[] at position ‗i‘.

IV. RESULTS AND DISCUSSIONS

In this section, we provide some test results of SD-

AREE-I Cipher method and few of the test cases are

provided in the following table:

Input Message Encrypted Message

St. Xavier‘s is an

autonomous

college

—

ÔšÁ§Î‗:æH�‰15Ãø§•Ï Ëu-¬™

Ó-7 Ú̧RÕµ+�Ác

128 bytes of ASCII

Value (1)

hÔÇGRBÖP—

T\<¯ÝÙ9†…£™mUžZ�Ø-

zfá:,þ¡Z�ªÅb

Ú�‡ŸüP%O£Ë�.å¶0rçÑ%�<á¸�

AÕ�ó¼(ôÂó†‡•�v÷/êµu�Ù�â!

=2;―²E—ÿ+÷•ÜX¸̄

 V�­×g1A�6"áí�ïÓ•â–

ë=÷u

128 bytes of ASCII

Value (5)

BÖP—

T\<¯ÝÙ9†…£™mUžZ�Ø-
zfá:,þ¡Z�ªÅbP%O£Ë�.å¶0rçÑ%

�<á̧��ó¼(ôÂó†‡•�v÷/êµu�Ù

�â!=2;―²E—ÿ+÷•ÜX¸̄

 GIYDG­×g1A�6"áí�ïÓ

•â

At that time, barely

a quarter of the

world's

independent states

were democracies.

But today, the

number is 60

percent. Moreover,

nearly two in every

five states can

reasonably be

called liberal

democracies.

×8Ì³9—

Ó́u¥‚õþ‡)¸•½Ó#�C¤� €̧ óñþ́A

æ0¥�Ì�äIk&%ôhëMc¯7ð‡jeÃÔ ç

ÕÑ„$É�ò‚#œ�•� �ïAÍš�¬~ÐT˜

eòáìƒ´£œ{�¼£)HQã£Èb„6

¦Hm�æQÚ�’�―�DUC¿ªn"äÙ¥D

I̧Ðí(F•OÅÚ>=hùM¦B*ùÜ˜Ÿ$sœ

Ä ̈

V. EFFECTIVENESS OF FEEDBACK MECHANISM USED IN

MODIFIED VERNAM CIPHER

In this section, we prove that because of the

incorporation of Feedback mechanism in Modified

Vernam Cipher, the encrypted output generated by the

cipher method is always different for even a slight change

in the original message.

We chose two test cases and did spectral analysis of

the encrypted output of the test cases and the differences

were clearly seen. The spectral analysis were different for

different input data.

Test Case

No.

Test Case

(i) AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAA

AAAAAAAA……………………A

(1024 bytes of ‗A‘)

(ii) AAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA

……B (1023 bytes of ‗A‘ and 1 byte of

‗B‘)

Fig 2.1 shows the spectral analysis of the encrypted output of test

case (i) and Fig 2.2 shows the spectral analysis of the encrypted output

of test case (ii).

48 SD-AREE-I Cipher: Amalgamation of Bit Manipulation,

Modified VERNAM CIPHER & Modified Caesar Cipher (SD-AREE)

Copyright © 2012 MECS I.J. Modern Education and Computer Science, 2012, 6, 43-49

Fig 2.1: Spectral Analysis of the Encrypted Output of Test Case (i)

Fig 2.2: Spectral Analysis of the Encrypted Output of Test Case (ii)

Thus, from the spectral analysis it is evident that the

feedback mechanism is successful to generate different

output for even a slight change in the original data.

VI. CONCLUSION

SD-AREE-I Cipher method is very effective to encrypt

data and produce different output for different input. SD-

AREE-I Cipher method is also able to encrypt file
containing only Unary data and palindromes. The use of

feedback in the modified Vernam Cipher generates

different output in SD-AREE-I Cipher technique and it is

the main game changer for the proposed method. The use

of Modified Caesar Cipher is another important part of

the method, because it shifts every byte in random

fashion and it excludes any type of pattern present in the

data. So, the amalgamation of Bit Manipulation along

with modified Vernam Cipher and modified Caesar

Cipher is very successful and effective as a whole

cryptographic method.

ACKNOWLEDGEMENT

SD is grateful to other fellow students of the

Department of Computer Science of St. Xavier‘s College

[Autonomous], Kolkata, India. He also thanks Prof. Dr.

Asoke Nath, the founder of Department of Computer

Science, for his motivation and contribution in
preparation of the paper.

REFERENCES

[1] Symmetric key cryptosystem using combined

cryptographic algorithms - Generalized modified

Vernam Cipher method, MSA method and NJJSAA

method: TTJSA algorithm ― Proceedings of

Information and Communication Technologies

(WICT), 2011 ― held at Mumbai, 11
th

 – 14
th

 Dec,
2011, pp.1175-1180.

[2] Symmetric Key Cryptography using Random Key

generator: Asoke Nath, Saima Ghosh, Meheboob

Alam Mallik: ―Proceedings of International

conference on Security and Management (SAM‘10‖

held at Las Vegas, USA Jull 12-15, 2010), P-Vol-2,

pp.239-244.

[3] Somdip Dey, Joyshree Nath and Asoke Nath.

Article: An Advanced Combined Symmetric Key

Cryptographic Method using Bit Manipulation, Bit

Reversal, Modified Caesar Cipher (SD-REE), DJSA

method, TTJSA method: SJA-I

Algorithm. International Journal of Computer

Applications 46(20):46-53, May 2012. Published by

Foundation of Computer Science, New York, USA.

[4] Somdip Dey, "SD-REE: A Cryptographic Method

To Exclude Repetition From a Message",

Proceedings of The International Conference on

Informatics & Applications (ICIA 2012), Malaysia,

p. 182 – 189.

[5] Somdip Dey, "SD-AREE: A New Modified Caesar

Cipher Cryptographic Method Along with Bit-

Manipulation to Exclude Repetition from a Message

to be Encrypted", Journal: Computing Research

Repository - CoRR, vol. abs/1205. 4279, 2012.

[6] Somdip Dey,Joyshree Nath,Asoke Nath,"An

Integrated Symmetric Key Cryptographic Method –

Amalgamation of TTJSA Algorithm, Advanced

Caesar Cipher Algorithm, Bit Rotation and Reversal

Method: SJA Algorithm", IJMECS, vol.4, no.5,

pp.1-9, 2012.

[7] Cryptography and Network Security, William

Stallings, Prentice Hall of India.

[8] Cryptography & Network Security, Behrouz A.

Forouzan, Tata McGraw Hill Book Company.

[9] Cryptography and Information Security, V. K.

Pachghare, Prentice Hall of India

 SD-AREE-I Cipher: Amalgamation of Bit Manipulation, 49

Modified VERNAM CIPHER & Modified Caesar Cipher (SD-AREE)

Copyright © 2012 MECS I.J. Modern Education and Computer Science, 2012, 6, 43-49

[10] Peter Montgomery, ―Modular Multiplication

Without Trial Division,‖ Math. Computation, Vol.

44, pp. 519–521, 1985.

[11] W. Hasenplaugh, G. Gaubatz, and V. Gopal, ―Fast

Integer Reduction,‖ 18th IEEE Symposium on

Computer Arithmetic (ARITH ‘07), pp. 225– 229,
2007.

Somdip Dey is currently a final year student of B.Sc

(Hons) in Computer Science at St. Xavier‘s College

[Autonomous], Kolkata, India. His interests of research

are on Cryptography, Information and Network Security,
Computer Architecture and HPC (High Performance

Computing), and have few publications on the

aforementioned topics. He is also a Microsoft Student

Partner (MSP) representing his college from India. He is

also a student member of IEEE (India Section) and ACM

(India Section). He has also been invited to moderate

different International Conferences and have reviewed for

few International Conferences on different technologies

related to Computer Science.

