
I.J.Modern Education and Computer Science, 2012, 7, 31-41 
Published Online July 2012 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijmecs.2012.07.05 

Copyright © 2012 MECS                                                    I.J. Modern Education and Computer Science, 2012, 7, 31-41 

Ultra Encryption Standard Modified (UES) 

Version-I: Symmetric Key Cryptosystem With 

Multiple Encryption and Randomized Vernam 
Key Using Generalized Modified Vernam Cipher 

Method, Permutation Method, and Columnar 

Transposition Method 
 

Satyaki Roy 

Email: unrivaledsatyaki@gmail.com 

Navajit Maitra 
Email: ruttu04@gmail.com 

Shalabh Agarwal 

Email: shalabh@sxccal.edu 

Department of Computer Science, St. Xavier‟s College 

(Autonomous), Kolkata, India 

Joyshree Nath 
Email: joyshreenath@gmail.com 

A.K.Chaudhuri School of IT, Raja Bazar Science College, 

Calcutta University, Kolkata, India 

Asoke Nath 

Email: asokejoy@gmail.com 

Department of Computer Science, St. Xavier‟s College 

(Autonomous), Kolkata, India 

 

 

Abstract—  In the present paper a new combined 

cryptographic method called Modified UES Version-I 

has been introduced. Nath et al. have already developed 

several symmetric key methods. It combines three 

different methods namely, Generalized Modified 

Vernam Cipher method, Permutation method and 

Columnar Transposition method. Nath et al recently 

developed few efficient combined encryption methods 

such as TTJSA, DJMNA where they have used 

generalized MSA method, NJJSAA method and DJSA 

methods. Each of the methods can be applied 

independently to encrypt any message. Nath et. al 

showed that TTJSA and DJMNA is most suitable 
methods to encrypt password or any small message. 

The name of this method is Ultra Encryption Standard 

modified (UES) version-I since it is based on UES 

version-I developed by Roy et. al. In this method an 

encryption key pad in Vernam Cipher Method also the 

feedback has been used which is considered to make 

the encryption process stronger. Modified UES 

Version-I may be applied to encrypt data in any office, 

corporate sectors etc. The method is most suitable to 

encrypt any type of file such as text, audio, video, 

image and databases etc. 

Index terms — Encryption, Decryption, Feedback, 

Cycling, Upshift, Plain, Cipher 

I. INTRODUCTION 

The last one decade now it is a real challenge to all 

of us to send confidential data/information from one 

computer to another computer. The massive growth in 

communication technologies and the tremendous 
growth in internet technology in the last decade have 

made it a real challenge for a sender to send 

confidential data from one computer to another. When 

a sender is sending some data from one computer to 

another computer then in between there may be a 

middle man attack and the data may be diverted to 

different places. If the data is not properly encrypted or 

protected then the receiver may not always get correct 

data. The security of data has now become a big issue 

in data communication network. If we send any 

important message from one computer to another 

through the internet, then, an intruder might intercept 

that confidential/important message. The teachers send 

question papers through e-mail. This is no more a safe 

method now as the hackers may intercept it any time. It 



32 Ultra Encryption Standard Modified (UES) Version-I: Symmetric Key Cryptosystem With 

Multiple Encryption and Randomized Vernam Key Using Generalized Modified Vernam Cipher Method, 

Permutation Method, and Columnar Transposition Method 

Copyright © 2012 MECS                                                    I.J. Modern Education and Computer Science, 2012, 7, 31-41 

is not a difficult job for a hacker to intercept that mail 

and retrieve the question paper if it is not encrypted. In 

banking sectors the financial data must be secured if by 

chance the data goes to the hacker then the entire 

banking service may collapse. Weak password 

breaking is now not a problem. Many public software 

are available to decode password of some unknown e-

mail. Suppose in some financial transaction the hacker 

retrieves the password and after that what he can do is 

quite understandable. It must be ensured that, when a 

client is sending some confidential data from the client 

machine to another client machine or from the client 

machine to the server, then that data should not be 
intercepted by someone. The data must be protected 

from any unwanted intruder otherwise a massive 

disaster may take place. Suppose an intruder intercepts 

the confidential data of a company and sells it to a rival 

company, then it will be a big damage for the company 

from where the data has been intercepted. Because of 

this hacking problem now the network security and 

cryptography is an emerging research area where the 

people are trying to develop some good encryption 

algorithm so that no intruder can intercept the 

encrypted message. Cryptography algorithms are of 

two types (i) Symmetric key cryptography where we 

use single key for encryption and decryption purpose. 

And (ii) Public key cryptography where we use one 

key for encryption purpose and one key for decryption 

purpose.. Both the methods have their advantages as 

well as disadvantages. Nath et al. had developed some 

advanced symmetric key algorithm [1-8]. In the present 
work we are proposing a symmetric key method called 

Modified UES version-I which is a combination of 3 

distinct cryptographic methods, namely, (i) 

Generalized Modified Vernam Cipher Method, (ii) 

Permutation method and (iii)Columnar transposition 

method with features like multiple encryption, 

randomized Vernam key and multiple sequence of 

column extraction. We have tested this method on 

various types of known text files and we have found 

that, even if there is repetition in the input file, the 

encrypted file contains no repetition of patterns. In 

results section we have shown various known plain text 

and the corresponding encrypted text. 

II. MODIFIED UES VERSION-I ALGORITHM 

Modified UES version-I has incorporated additional 

features like multiple encryption and randomized 

Vernam key generation and multiple sequences of 

extraction of columns on the Columnar Transposition, 

Modified Vernam Cipher and Randomization methods 

to make the encryption extremely strong ensuring no 

repetition of patterns. 

Multiple Encryption: The plain file is encrypted a 
number of times to generate a cipher file which is very 

strongly encrypted. This increases security and it will 

be very hard to crack the cipher code even through 

immense brute force. 

Randomized Key Generation: The password key for 

the UES is generated by a mathematical calculation, 

taking the ASCII codes of the 64-bit password (given 

by the user) into consideration. The key constructed is 

of 900 bytes. This key is randomized using the basic 

techniques employed by the randomization algorithm. 

The randomized key will enable the encryption to be 

even stronger. 

Multiple sequence of column extraction: In each 

iteration, the algorithm generates a sequence of column 

extraction from the 64-byte user password. In every 

iteration, three distinct levels of encryption are 

implemented namely Modified Vernam Cipher with 

feedback, Columnar Transposition and 

Randomization/Permutation Encryption Process (in 

that order). The encryption is performed in blocks of 

900 bytes. The residual bytes (of size less than 900 

bytes) are encrypted with the Modified Vernam Cipher 

Encryption Method. The algorithm may handle files of 

all formats and sizes. 

Algorithm for the integration of the three levels of 

encryption: 

Step 1: Start 

Step 2: Input the plain text file name in „plain []' 

(The plain file may be of any format). 

Step 3: Input the cipher text file name in „cipher []' 

Step4: The extracts the first byte in the file and 

stores it in 'ch' and it extracts the last byte of the file 

and stores in 'cha'. It replaces the first byte of the file 

with character with ASCII (ch+cha) %256. 

Step 5: The user enters a 64 byte encryption-key that 

is stored in „key []'. 

Step 6: Compute cod=key[i]*(i+1) where i 

represents the position of every character in the key. 

Step 7: Compute encryption number enc = mod (cod, 

17). If enc <0 then enc=7  

Step 8: Take the input file pointer to the end of the 

input file, such that the size of the input file can be 

computed. (The size of the input file is stored in long 

integer variable'n'.) 

Step 9: Declare a variable 'n1' of long int data type 

where n1 will store the number of iterations. Each 

iteration will process a 30 X 30 bytes block in every 

iteration of encryption. 

Step 10: Introduce a variable p=0 and compute 

cod=cod modulus 256. 

Step 11: If p is greater than or equal to enc then 

GOTO 19. 

Step 12: Increment cod and perform cod=cod%256. 

Step 13: Now create a key file by printing the 

characters with ASCII values of 0-255 in rotation. The 

first character is however the character with ASCII 



 Ultra Encryption Standard Modified (UES) Version-I: Symmetric Key Cryptosystem With 33 

Multiple Encryption and Randomized Vernam Key Using Generalized Modified Vernam Cipher Method, 

Permutation Method, and Columnar Transposition Method 

Copyright © 2012 MECS                                                    I.J. Modern Education and Computer Science, 2012, 7, 31-41 

'cod'. This key file serves as the input for the Modified 

Vernam Cipher with feedback. 

Step 14: This key is further randomized using 

randomization module and stored in the file 'file1.c'. 

Step 15: Initialize integer variable count to 0. 

Step 16: If count greater than or equal to n1 then 

Goto 25. 

Step 17: Define the intermediate file which will open, 
extract and process the first 900 bytes of the plain file. 

Step 18: The 900 bytes that have been extracted is 

now encrypted with the Modified Vernam Encryption 

process with Feedback 

Step 19: The output from the modified vernam 
cipher encryption process is fed as input to the 

columnar transposition encryption process. 

 Step 20: The output from the columnar encryption 

method will now undergo randomization/permutation 

encryption method. 

Step 21: The output file from the randomization 
process holds the encrypted 900 bytes. 

Step 22: The 900 bytes is written to the cipher file 

name provided by the user. 

Step 23: The value of 'count' is incremented by 1. 

Goto 17. 

Step 24: Once the control breaks from the loop, the 

program is left to process the residual bytes from the 

input file. 

Step 25: The residual bytes are processed by the 

modified Vernam cipher encryption technique. The 

encrypted bits are again written into the cipher file which 

serves as the input for the next iterations of encryption. 

Step 26: Increment p 

Step 27: Goto 12 

Step 28: When the control reaches this encryption 

the Modified Vernam Cipher, Columnar Transposition 

and Randomization modules are complete. We obtain 

the Cipher file. 

Step 29: The output is again written back to the 

cipher file whose name is provided by the user. 

Step 30: End 

Algorithm for the first level of encryption - Modified 

Vernam cipher encryption method with feedback. 

Step 1: Start 

Step 2: The plain text serves as the input file for the 

program. 

Step 3: Create a dictionary of characters in the 

character array where position i will be the ASCII 

value for the character placed in the i-th location of the 
array. 

Step 4: Define the encryption key which must be 

same as the key provided during decryption. 

Step 5: Start processing the characters in the input 

file. Define a integer variable 'feed' and initialize it 

with 0. 

Step 6: Extract a character in the input file and store 

in ch1. If ch1is NULL, goto 12 

Step 7: Extract a single character from the key file. 

Step 8: Compute m,n from the arrays arr[] where m 

and n are the ASCII values for the first characters of 

the input file and key files respectively. 

Step 9: Perform addition m=m+n+feed. Then 

calculate n=m modulus 256.The value of n is called the 

'Feedback' which allows the program to encrypt the 

characters in the plain file. 

 

Table 1: Modified Vernam Cipher Method 

Key: abc 

 

Plain text: a a a 

Plain Index(m): 97 97 97 

Key text: a b c 

Key Index(n): 97 98 99 

Feedback (feed): 0 194 133 

m=m+n+feed 194 389 329 

n=m%256 194 133 73 

Cipher text: ┬ à I 

 

Step 10: Write the contents of the array in the 

intermediate output file one by one, where the array in 

the n-th place of the array is the encrypted character. 

Step 11: Goto 7. 

Step 12: Once the control comes out of the loop, the 

encryption process is complete. 

Step 13: END 

Algorithm for the second level of encryption-Columnar 

Transposition Method 

Step 1: Start 

Step 2: Now the algorithm extracts the first character 

of the 'file1.c' in 'cha' and computes 'od'=cha modulus 6. 

The value of od determines the sequence of columns 

everytime the columnar module is invoked.   

Step 3: Now we compute the array 'arra[]' where the 

first entry is od. Then 'od' is subsequentely 

decremented. If the value of od becomes 0 then it is 

replaced by 5. This array decided the definite order of 



34 Ultra Encryption Standard Modified (UES) Version-I: Symmetric Key Cryptosystem With  

Multiple Encryption and Randomized Vernam Key Using Generalized Modified Vernam Cipher Method, 

Permutation Method, and Columnar Transposition Method 

Copyright © 2012 MECS                                                    I.J. Modern Education and Computer Science, 2012, 7, 31-41 

the sequence of columns extracted.  

Step 4: The 900 bytes of output from the Modified 

Vernam Method serves as the input file for Columnar 

Transposition Method. 

Step 5: Initialize the variable n to an arbitrary integer 

value which represents the number of columns of the 

columnar transposition array in which the plain file 

characters will be stored. Typically n may have any 

value. 

Step 6: Initialize both integer variables 'row' and 'col' 

to 0 

Step 7: Initialize all the elements in the specified 

array arr[][] to NULL('\0') 

Step 8: Store the plain text file byte by byte in the 

array arr[][] where the row and column positions are 

determined by 'row' and 'col'. 

Step 9: Increment column index by 1 once a byte is 

read and placed in the array 

Step 10: If col is equal to n then increment row by 1 

and intialize col variable to 0 to keep a check on the 

row and column parameters. 

Step 11: Goto 9 until the storing of the intermediate 

plain text in the array is complete. 

Step 12: If col==0 then we decrement the row index 

by 1 to ensure that the character array arr[] does not 

produce an extra row.This happens when a character is 

placed at the last column of a particular row. 

Step 13 Initialize both variables 'count' and 'index' to 0. 

Step 14: If (count>=n) goto 17 

Table-II (a): Plain Text 

 

 

 

 

 

  Plain text:  Letsallgonow   

 The plain text is placed in array ‘arr’.  

 arra[]={5,4,3,2,1,0} (assume) 

 p=arra[index](where index=0 and subsequently 

 index=index+1) 

 p=5, 4, 3,2,1,0 respectively where p stands for the 

extracted 

  column. Table-II(b): Cipher Text 

 

Table II (b): Columnar Transposition 

Cipher Text:lwaosntoegll 

 

 

 

 

Step 15: Count is incremented by 1  

Step 16: Initialize variable p to arra[index]. Here the 

'arra[]' stores the order in which the columns will be 

transported to the same columnar transposition array 

arr[] to implement the columnar transposition 

encryption method. The variable 'index' is subsequently 

incremented to transport the rest of the columns of the 

columnar transposition array 

Step 17: End 

Algorithm for the third level of encryption-

Randomization / Permutation Method 

Step 1: Start 

Step 2: The output from the columnar transposition 

method serves as the input for the 

randomization/permutation process. 

Step 3: Define integer arrays 'arr' that will store the 

randomization key. Define 2-d character arrays 

'chararr[][]to store all the 900 bytes in the file and 

chararr2[][] to store the randomized characters.  

Step 4: Initialize all the elements in the character 

arrays chararr [][] and chararr2[][] to 'null'. 

Step 5: Initialize m to 30 and n to 1. 'm' holds the 

number of rows and columns in the square matrix of 

chararr[][],chararr2[][], arr[][]. 

Step 6: Input the numbers 1, 2, 3..., 900 to the 

integer array arr [][] by incrementing the value of n. 

The characters in the input file are copied to the 

character array „chararr []'. 

Step 7: Now randomize the numbers in the integer 

array with the help of the functions defined in the 

program. 

Step 8: The program invokes function 'leftshift()' 

which shifts every column in the integer array to one 

place left thus the first column is displaced to the 

position of the last column. 

Step 9: Invoke function 'topshift() which shifts very 

row to the row above. Therefore the elements in first 

row are displaced in the corresponding position of the 

last row. 

Step 10: Subsequently perform cycling operation on 

the integer array „arr [][]' . Intialize i to 1. 

Step 11: If i is greater than m/2 Goto 15. 

Step 12: If i is odd, perform clockwise cycling of the 

i-th cycle of the character array. Invoke functions 

rights(),downs(), lefts(),tops() to implement the 

clockwise displacement of the elements in arr[][]. 

Step 13: If i is even, perform anti-clockwise cycling 

of the i-th cycle of the character array.  

Invoke functions ac_rights(), ac_downs(), ac_lefts(), 

ac_tops() to implement the anti-clockwise 

displacement of the elements in arr[][]. Therefore the 

0 1 2 3 4 5 

l e t s a l 

l g o n o w 

0 1 2 3 4 5 

l W A O S N 

t O E G L L 



 Ultra Encryption Standard Modified (UES) Version-I: Symmetric Key Cryptosystem With 35 

Multiple Encryption and Randomized Vernam Key Using Generalized Modified Vernam Cipher Method, 

Permutation Method, and Columnar Transposition Method 

Copyright © 2012 MECS                                                    I.J. Modern Education and Computer Science, 2012, 7, 31-41 

integer array arr[][] is alternately randomized in 

clockwise and anit-clockwise cycles. 

Step 14: Increment i. Goto 11. 

Step 15: The program invokes function 'rightshift()' 

which shifts every column in the integer array to one 

place right thus the last column is displaced to the 

position of the first column. 

Step 16: Invoke function „downshift () which shifts 

very row to the row below. Therefore the elements last 

row is displaced in the corresponding position of the 

first row. 

Step 17: Invoke the function 'left diagonal ()' that 

performs downshift on the elements in the left diagonal 

such that the lowermost element is displaced to the 

position of the topmost element in the left diagonal. 

Step 18: Invoke the function „rightdiagonal ()' that 

performs downshift on the elements in the right diagonal 

such that the lowermost element is displaced to the 

position of the topmost element in the right diagonal. 

Step 19: To arrange the elements in the character 

array chararr[][] according to the randomized integer 

array arr[][]. Initialize i to 1. 

Step 19: Initialize j to 1 

Step 20: Store element arr[i][j] in z.  

Step 21: Compute the row and column position 

pointed by the element z which is stored in 'k','l' 

respectively. 

Step 22: Place chararr[k][l] in auxiliary character 

array chararr2[][] in positions chararr2[i][j]. 

Step 23: Increment j. 

Step 24: If j<=m goto 20 

Step 25: Increment i 

Step 26: If j<=m goto 20 

Step 27: Write the randomized elements in character 

array chararr2 [i][j] to the intermediate output file. 

Step 28:.End. 

III. DECRYPTION PROCESS: 

The decryption algorithm follows the reverse 

process of the three levels of encryption that have been 

implemented. Therefore in every iteration, the three of 

decryption processes employed are 

Randomization/Permutation Decryption Method, 

Columnar Transposition Decryption Method and 

Modified Vernam Cipher Decryption with feedback (in 

the specified order). Again, the algorithm performs the 

decryption in blocks of 900 bytes and the residual bytes 

of the cipher file (size less than 900 bytes) are 

processed with the Modified Vernam Decryption 

Method with feedback. 

Algorithm of Integration of the three levels of 

Decryption Methods: 

Step 1:  Enter the name of the encrypted file. 

Step 2:  Enter the name of the decrypted file. 

Step 3:  Decrypt the cipher file using the encryption 

methods in reverse order. 

Step 4:  Enter the 64 byte character key. 

Step 5:  Compute cod=summation (key[i]*(i+1)) 

where i represents the positional value of character. 

Compute the encryption number from the 64 byte key 

entered by the user where enc=cod%7. 

Step 6:  If enc<7 then enc=7 

Step 7:  Compute n1 where n1where each iteration 

will encrypt a block of 900 bytes. 

Step 8:  Declare p=0 

Step 9:  If p>=enc GOTO 21 

Step 10: Generate the randomized key for the 

modified Vernam Cipher. 

Step 11:Declare count=0 

Step 12:if count=n1 then GOTO 13 

Step 13:Feed the 900 byte block to the 

Randomization Module. 

Step 14:The output from the Randomization Module 

is fed as input to the Columnar Transposition Method 

Step 15: The output from the columnar 

Transposition Method is fed as input to the Modified 

Vernam Cipher with feedback. 

Step 16: The output from the Vernam module is 

written into the cipher file. Increment count. Goto 12 

Step 17: Once the control flows out of the loop, the 

residual bytes (that is less than 900 bytes file size) are 

processed by Modified Vernam Cipher with feedback. 

Step 18: The encrypted residual bytes are written 

into the cipher file. 

Step 19: The cipher file is now treated as the plain 

input file to enable successive encryption. Increment p. 

Step 20: GOTO 9 

Step 21: When the control flow is out of the loop we 

readjust the first character in the decrypted file where 

the ASCII of the first byte is replaced by the difference 

of the ASCII of the first and last byte to get the final 

decrypted file.  

Step 22: End 



36 Ultra Encryption Standard Modified (UES) Version-I: Symmetric Key Cryptosystem With  

Multiple Encryption and Randomized Vernam Key Using Generalized Modified Vernam Cipher Method, 

Permutation Method, and Columnar Transposition Method 

Copyright © 2012 MECS                                                    I.J. Modern Education and Computer Science, 2012, 7, 31-41 

Algorithm for the first level of decryption 

Randomization / Permutation Decryption Method: 

Step 1: Start 

Step 2: The program processes the 900 bytes of the 

decrypted file as the input file.  

Step 3: Define integer arrays 'arr' that will store the 

randomized key. Define 2-d character arrays 

'chararr[][]'  to store all the 900 bytes in the encrypted 

file and chararr2[][] to store the decrypted characters.  

Step 4: Initialize all the elements in the character 

arrays chararr [][] and chararr2[][] to 'null'. 

Step 5: Initialize m to 30 and n to 1. 'm' holds the 

number of rows and columns in the square matrix of 

chararr[][],chararr2[][], arr[][]. 

Step 6: Input the numbers 1,2,3...,900 to the integer 

array arr[][] by incrementing the value of n. The 

characters in the input file are copied to the character 

array 'chararr[]'. 

Step 7: Now de-randomize the characters in the array 

chararr [][] we use the numbers in the randomized 

integer array made with the help of the functions 

subsequently defined in the program. 

Step 8: The program invokes function 'leftshift()' 

which shifts every column in the integer array to one 

place left thus the first column is displaced to the 

position of the last column. 

Step 9: Invoke function 'topshift() which shifts every 

row to the row above. Therefore the elements in first 

row are displaced in the corresponding position of the 

last row. 

Step 10: Perform cycling operation on the integer 

array 'arr[][]' . Initialize i to 1. 

Step 11: If i is greater than m/2 goto 15. 

Step 12: If i is odd, perform clockwise cycling of the 

i-th cycle of the character array. Invoke functions 

rights(),downs(), lefts(),tops() to implement the 

clockwise displacement of the elements in arr[][]. 

Step 13: If i is even, perform anti-clockwise cycling 

of the i-th cycle of the character array. Invoke functions 

ac_rights(), ac_downs(), ac_lefts(), ac_tops() to 

implement the anti-clockwise displacement of the 

elements in arr[][]. Therefore the integer array arr[][] is 
alternately randomized in clockwise and anit-clockwise 

cycles. 

Step 14: Increment i. Goto 11. 

Step 15: The program invokes function 'rightshift()' 

which shifts every column in the integer array to one 

place right thus the last column is displaced to the 
position of the first column. 

Step 16: Invoke function 'downshift() which shifts 

very row to the row below. Therefore the elements last 

row is displaced in the corresponding position of the 

first row. 

Step 17: Invoke the function 'leftdiagonal()' that 

performs downshift on the elements in the left diagonal 

such that the lowermost element is displaced to the 

position of the topmost element in the left diagonal. 

Step 18: Invoke the function 'rightdiagonal()' that 

performs downshift on the elements in the right diagonal 

such that the lowermost element is displaced to the 

position of the topmost element in the right diagonal. 

Step 19: To de-randomize the elements in the 

character array chararr[][] we utilize the  integer array 

arr[][]. The decrypted characters are stored in auxilliary 
character array chararr2[].Initialize i to 1. 

Step 20: Initialize j to 1 

Step 21: Initialize integer variables flag to 0, k to 0 

and l to 0. 

Step 22: if arr[k][l] is not equal to n goto 24 

Step 23: chararr2[i][j] assumes the value in 

chararr[k][l], flag=1 and BREAK. 

Step 24: If 'flag' is equal to 1 break 

Step 25: Increment l.  

Step 26: If l is less than or equal to m goto 22. 

Step 27: Increment k 

Step 28: If k is less than or equal to m goto 22. 

Step 29: Increment n. 

Step 30. Increment j.  

Step 31. If j is less than or equal to m goto 21. 

Step 32. Increment i 

Step 33: If i is less than or equal to m goto 22. 

Step 34: Write the decrypted elements in the character 
array chararr2 [][] in the intermediate output file.  

Step 35: End 

Algorithm for the second level of Decryption - 

Columnar Transposition Decryption Method 

Step 1: Start 

Step 2: Now the algorithm extracts the first character 

of the 'file1.c' in 'cha' and computes 'od'=cha modulus 6. 

The value of od determines the sequence of columns 

everytime the columnar module is invoked.  

Step 3:Now we compute the array 'arra[]' where the 

first entry is od. Then 'od' is subsequentely 

decremented. If the value of od becomes 0 then it is 

replaced by 5. This array decided the definite order of 

the sequence of columns extracted. 

Step 4:The 900 bytes of output from the 



 Ultra Encryption Standard Modified (UES) Version-I: Symmetric Key Cryptosystem With 37 

Multiple Encryption and Randomized Vernam Key Using Generalized Modified Vernam Cipher Method, 

Permutation Method, and Columnar Transposition Method 

Copyright © 2012 MECS                                                    I.J. Modern Education and Computer Science, 2012, 7, 31-41 

Randomization/Permutation serves as the input file for 

Columnar Transposition Method. 

Step 5: Declare 'count' which stores the size of the file. 

Step 6: Compute 'no' where no is equal to count 

modulus 6 (where 6 is the number of columns in this 

case).  

Step 7: If count modulus 6 is 0 then increment 'no'. 

Step 8: Declare i=0 

Step 9: The encrypted file is now transferred to an 

array. 

Step 10: If i is greater than or equal to 6 then GOTO 

17 

Step 11: Define p=num[i] and k=0 

Step 12: If k is greater than or equal to 'no' GOTO 16 

Step 13: Write the character of the cipher file in an 

array. 

Step 14: Increment k 

Step 15: GOTO 12 

Step 16: Increment i. GOTO 10 

Step 17: The array is written row-wise to yield the 

decrypted file. 

Step 18: End 

Algorithm for the third level of decryption- Modified 

Vernam Cipher Decryption with feedback 

Step 1: Start 

Step 2: The output from the columnar transposition 
method serves as the input file for the decryption 

program. 

Step 3: Create a dictionary of characters in the 

character array arr[] where i will be the ASCII value 

for character arr[i].   

Step 4: Define decryption key which must be same 

as the key provided during encryption. 

Step 5: Start processing the characters in the 

encrypted input file.  

Step 6: Extract the first character in the input file and 

the key files and store in ch1, ch2.  

Step 7: Compute m and n from the dictionary of 

characters  

where m is the ASCII for ch1 and n is the ASCII for 

ch2. Perform n=m-n. 

Step 8: If n is less than 0 then n=n+256. Here the 

character arr[n] serves as the first decrypted character.  

Step 9: Extract the subsequent character in the 
encrypted input file and store in character variable 'ch1'. 

If ch1 is NULL Goto 19 

Step 10: Store the next character from the key file in 

ch2.  

Step 11: Store the ASCII for ch1 in integer variables 

'p' and 'r'. 

Step 12:  Store the ASCII for ch2 in integer variable 'q'. 

Step 13: Compute p=p-(q+m). 

Step 14: Compute p=p+256 

Step 15: If p is less than 0 Goto 14 

Step 16: The integer variable 'p' is the ASCII for the 

decrypted character. Write arr[p] in the output file 
whose name is provided by the user. 

Step 17: Assign the value of 'r' to 'm'. 

Step 18: Goto 9. 

Step 19: Once the control comes out of the loop, 

decryption is complete.  

Step 20: End 



38 Ultra Encryption Standard Modified (UES) Version-I: Symmetric Key Cryptosystem With  

Multiple Encryption and Randomized Vernam Key Using Generalized Modified Vernam Cipher Method, 

Permutation Method, and Columnar Transposition Method 

Copyright © 2012 MECS                                                    I.J. Modern Education and Computer Science, 2012, 7, 31-41 

 
Figure-1: Diagrammatic Representation of Modified UES Version-I 

 

 

 

 

 

 

 

 

 

 



 Ultra Encryption Standard Modified (UES) Version-I: Symmetric Key Cryptosystem With 39 

Multiple Encryption and Randomized Vernam Key Using Generalized Modified Vernam Cipher Method, 

Permutation Method, and Columnar Transposition Method 

Copyright © 2012 MECS                                                    I.J. Modern Education and Computer Science, 2012, 7, 31-41 

IV. TEST RESULTS OF MODIFIED ULTRA ENCRYPTION METHOD VERSION-I 

Table-III: 

 

V. DISCUSSIONS ON TEST RESULTS 

In Modified UES Version-I, we have implemented 

the three techniques of encryption with a great deal of 

flexibility. The addition of multiple encryption 

technique (minimum 7 times), the randomized Vernam 

key generation and finally the automatic column 

sequence in columnar transposition method makes this 

algorithm formidable. For almost same characters as 

input, the cipher file is completely different. 

To illustrate our point consider the following 

example 

Plain Text: he is good 

Cipher Text: ZZ_üm‡ŧ_�_ 

Plain Text: he is goon 

Cipher text: Gj\·u›�° 

 

 

Plain Text Cipher Text 

he is great eª‚;5¨T4@ŧŠ/ 

se is great pIZKÁũüDn-Ÿ 

ie is great �¤˜¿+¥_`%_‹Ť 

Aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaa 

hH‰Ï£oWkR�•ÐN��µ�<¿V�-p‡Œz“3š-x¬E²U?:ť'¶•

Ť�j°=§«�RŢ†?hQi�<XÃÁ¤G/•'�„AŒP±zÊ¤)›0Ol2ŸŤ�

)̧~úW½Xî0ùÿÑb •Ä°údfâ\îPÙo"ÖÍ 

The Indian Higher education System has established 

itself as one of the largest in the world in terms of the 

number and diversity of institutions and student 

enrolment. However the nature of demand for higher 

education in the 21
st
 century is undoubtedly influenced 

by macro-economic trends like the changing 

composition and preferences of students, an increasing 

willingness to spend more on quality education, a 

greater demand for global education, employability 

linked education, rapid privatization and globalization. 

=~_7_K…ˆ_6m�±œ·mÂMH¿ÐGˆ[�ª#•D�_�›z°¿°Ū

N˜ª|%�iµÆ¹;_vÜˆ_¤�'�9“Ø=Îu_Kµy¨D$¥•q¬[3Kí_Þ

¦:��Â�ŢH³�p\_+v„(OzUZøz�¤oZHTQ�yD`[p_µ�_ÐÏkj

¶©3¨_¤Ť]Ţ_§Œ†Hšţ¯�_Úÿ$„"Ÿœ�¡YØÎ_N€6ÿAHX

¥¥¤d<�W„‚Á._/Üø�ü•½y8¹â_&ñWfMÛø¶h%~ ¥̧•]ý²

‰Ew±b_y‰§4Ť†7¨ü@‡š_µEY:§KK��_�ÿ¿”º9·_••¡

!eÛ•^"_F=¨“˜>UŧŸi:ÁÆø@µ_�Íţj,R�ŧª�ŪSBË‰_

};šª©ÎJšb$Â%¤üˆL¿#�Ãu>¸'IRÐ_ª�µ<ÿœŧÎ_ũp�y§_

�3(�«�z�(5±©<wÍ[w�K:k²æ?��°�´ixªløÿZÿ6Oc_Á„˜

b°¡ÜüOG³E_'Ÿ64��|Õ^_æL§|�_xµPZ_µ_/C[H{�__}@

"}�K�`rŠZ¢ũ�f«Z�xyq:���\_P�+MÂIŨÜk¸#_}„�ÕG

\ˆ¯�L`_¹OxÑl7ª�tc5ˆS�__2æ¤—ªwÍ 

Aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaab 

Ø_��¹vµ�´‰Šq_Î0¸¨ÛÐ§ŦB ”†Ò(']#_œK1_-

 *_ß@ )Óüµn,©vÍn¥Ù___Üe•I”=_f>]æ)YrË~`©bº¦?¤

H_Õü‟ir�Ť_‟¹4qu;¥_"�Uu_qVx.š`�_=„_ŪÂÐ&��O_“Ë_� 

AAAABBBAAAA —Ð!wvW½¿/_¾Ò 

 

AAA —Ð!P 

 

ABA —Ñ1Ø 

 

AAB ˜�ª• 

 

ABC ª�CX 

 

AB ˜�‟ 

 

A —© 

 

B ª� 

 



40 Ultra Encryption Standard Modified (UES) Version-I: Symmetric Key Cryptosystem With  

Multiple Encryption and Randomized Vernam Key Using Generalized Modified Vernam Cipher Method, 

Permutation Method, and Columnar Transposition Method 

Copyright © 2012 MECS                                                    I.J. Modern Education and Computer Science, 2012, 7, 31-41 

VI. CONCLUSION AND  FUTURE SCOPE 

In the present paper we have used three different 

cryptography algorithms in two distinct versions. In the 

Modified UES Version-I the authors have applied the 

three encryption methods empowered with multiple 

encryption, randomized key generation and sequence 

of column extraction on some known text where the 

same character repeats for a number of times and we 
have found that after encryption there is no repetition 

of pattern in the output file. At the outset the modified 

Vernam Cipher Encryption Technique with feedback 

encrypts the plain text file such that even the same 

characters are encrypted to different cipher characters. 

Then the Columnar Transposition and the 

Permutation/Randomization technique ensure that the 

cipher file becomes encrypted to a greater degree. 

There is lot of scope to modify the present method. The 

merit of this method is that it is almost impossible to 

break the encryption algorithm without knowing the 

exact key. We propose that this encryption method can 

be applied for data encryption and decryption in 

corporate sectors, academic institution etc. for sending 

confidential data. 

ACKNOWLEDGEMENT 

We are very much grateful to Department of 

Computer Science to give us opportunity to work on 

symmetric key Cryptography. One of the authors (AN) 

sincerely expresses his gratitude to Fr. Dr. Felix Raj 

and Fr. Jimmy Keepuram for giving constant 

inspiration to carry out research work. AN is grateful to 

the University Grants Commission for giving financial 

assistance through Minor Research Project. JN 

expresses her gratitude to A.K.School of IT for 

allowing us to work in research project at St. Xavier‟s 

College. SR, NM, SA and AN are also thankful to all 

3rd year Computer Science Hons. Students (2011-2012 
batch) for their encouragement to finish this work. 

REFERENCES: 

[1] Symmetric Key Cryptography using Random Key 

generator: Asoke Nath, Saima Ghosh, Meheboob 

Alam Mallik: “Proceedings of International 

conference on security and management (SAM‟10” 

held at Las Vegas, USA Jull 12-15, 2010), P-Vol-2, 

239- 244(2010). 

[2] A new Symmetric key Cryptography Algorithm 

using extended MSA method: DJSA symmetric key 

algorithm, Dripto Chatterjee, Joyshree Nath, 

Suvadeep Dasgupta and Asoke Nath : Proceedings 

of IEEE CSNT-2011 held at SMVDU(Jammu) 3-5 

June,2011, Page-89-94. 

[3] New Symmetric key Cryptographic algorithm using 

combined bit manipulation and MSA encryption 

algorithm: NJJSAA symmetric key algorithm: 
Neeraj Khanna,Joel James,Joyshree Nath, Sayantan 

Chakraborty, Amlan Chakrabarti and Asoke Nath : 

Proceedings of IEEE CSNT-2011 held at 

SMVDU(Jammu) 03-06 June 2011, Page 125-130. 

[4] Advanced Symmetric key Cryptography using 

extended MSA method: DJSSA symmetric key 

algorithm: Dripto Chatterjee, Joyshree Nath, 

Soumitra Mondal, Suvadeep Dasgupta and Asoke 

Nath, Jounal of Computing, Vol3, issue-2, Page 66-

71,Feb(2011). 

[5] Advanced Steganography Algorithm using 

encrypted secret message: Joyshree Nath and 

Asoke Nath, International Journal of Advanced 

Computer Science and Applications, Vol-2, No-3, 

Page- 19-24, March (2011). 

[6] Symmetric key Cryptography using modified 

DJSSA symmetric key algorithm, Dripto Chatterjee, 

Joyshree Nath, Sankar Das, Shalabh Agarwal and 

Asoke nath, Proceedings of International 

conference Worldcomp 2011 held at Las Vegas, 

USA, July 18-21, Page 312-318, Vol-I(2011). 

[7] Cryptography and Network, Willian Stallings, 

Prentice Hall of India. 

[8] Cryptography & Network Security, B.A.Forouzan, 

Tata Mcgraw Hill Book Company. 

[9] An Integrated symmetric key cryptography 

algorithm using generalized vernam cipher method 

and DJSA method: DJMNA symmetric key 

algorithm, Debanjan Das, Joyshree Nath, 

Megholova Mukherjee, Neha Chaudhury and 

Asoke Nath, Proceedings of IEEE conference 

WICT-2011 held at Mumbai University Dec 11-

14,2011 

[10] Ultra Encryption Standard(UES) Version-I: 

Symmetric Key Cryptosystem using generalized 

modified Vernam Cipher method, Permutation 

method and Columnar Transposition method, 

Satyaki Roy, Navajit Maitra, Joyshree 

Nath,Shalabh Agarwal and Asoke Nath, 

Proceedings of IEEE sponsored National 

Conference on Recent Advances in Communication, 

Control and Computing Technology-RACCCT 

2012, 29-30 March held at Surat, Page 81-88(2012). 

 

 

Satyaki Roy  has  recently completed graduation  in 

Computer Science Honours  from St. Xavier‟s 

College(Autonomous), Kolkata. He is  currently 
working in cryptography at bit-level and have already 

published  UES Version-I whhich was his B.Sc. Project 

work. 

Navajit Maitra  has  recently completed graduation  in 

Computer Science Honours  from St. Xavier‟s 

College(Autonomous), Kolkata. His B.Sc Project was 

UES version-I which already published in a National 

conference. Currently he working in cryptography. 



 Ultra Encryption Standard Modified (UES) Version-I: Symmetric Key Cryptosystem With 41 

Multiple Encryption and Randomized Vernam Key Using Generalized Modified Vernam Cipher Method, 

Permutation Method, and Columnar Transposition Method 

Copyright © 2012 MECS                                                    I.J. Modern Education and Computer Science, 2012, 7, 31-41 

Joyshree Nath is a final year student  M.Tech(IT) . 

from Calcutta University. She has been actively 

involved in research work in the field of cryptography, 

Steganography. 

Shalabh Agarwal  is the Assistant Professor at St. 

Xavier‟s College(Autonomous), Kolkata. His field of 

research includes green computing ,  e-learning,  

cryptography and steganography. He has published 
many papers in National and International Journals and 

conferences. 

Asoke Nath is the Assistant Professor at St. Xavier‟s 

College(Autonomous), Kolkata. He is involved in 

research work in the area of  symmetric key 

cryptography, asymmetric key cryptography, 

Steganography, Green Computing, e-learning 

methodlogies, Distance education methodlogies. He 

has published many research papers from International 

Conferences and Journals. He has given invited tutorial 

on Introduction to Cryptography and Network security 
in National and International conferences.  

 


