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Abstract — This paper deals with an investigation on 

discrete model of host commensal pair. The model 

comprises of a commensal (S1), a host (S2) that benefit 

S1, without getting effected either positively or 

adversely. The model is characterized by a couple of 

first order non-linear ordinary differential equations. In 

all, four equilibrium points of the model would exist and 

their stability criteria is discussed. The model would be 

stable if each of the eigen values is numerically less 

than one.  Further the growth rates of the species are 

numerically estimated using Runge-Kutta fourth order 

scheme.  
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I.  INTRODUCTION 

Mathematical modeling is an important 

interdisciplinary activity which involves the study of 

some aspects of diverse disciplines. Biology, 

Epidemiology, Physiology, Ecology, Immunology, Bio-

economics, Genetics some of those disciplines. This 

mathematical modeling has raised to the zenith in recent 

years and spread to all branches of life and drew the 

attention of every one. 

Mathematical modeling of ecosystem was initiated by 

Lotka[1] and by Volterra[2]. Since then, several 
mathematicians and ecologists May[3], Kushing[4], 

Smith[5], Kapur[6], contributed to the growth of this 

area of knowledge. 

Competitive eco-systems of two species and three 

species with limited and unlimited resources were 

investigated by Srinivas[7] while Laxminarayan and 

Pattabhi Ramacharyulu[8] studied Prey-Predator 

ecological models with partial cover for the prey and 

alternate food for the predator. Archana Reddy[9] and 

Bhaskara Rama Sharma[10] investigated diverse 

problems related to two species competitive systems 

with time delay. Further Phani Kumar[11] studied some 

mathematical models of ecological commensalism. 

More  

recently the criteria for a four species syn eco-system 

was discussed at length by the present authors[12-20]. 

The present investigation is a study of discrete model 

of commensalism between two species. Figure 1 shows 

the schematic sketch of the system under investigation. 

 
 

Figure 1: Schematic sketch of the system 

 

Commensalism is a symbiotic interaction between 

two populations where one population (S1) gets benefit 

from (S2) while the other (S2) is neither harmed nor 

benefited due to the interaction with (S1). The benefited 

species (S1) is called the commensal and the other (S2) 

is called the host. Some real-life examples of 

commensalism are presented below. 

 

 
 

Figure 2.  Example for commensalism 

 

1. Epiphytes are small green plants found growing on 

other plants for space only. They absorb water and 
minerals from the atmosphere by their hygroscopic 

roots and prepare their own food. The plants are not 

harmed in any way. This is shown in Figure 2.  
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2. A squirrel in an oak tree gets a place to live and 

food for its survival, while the tree remains neither 

benefited nor harmed. 

 

3. The clownfish shelters among the tentacles of the 

sea anemone, while the sea anemone is not effected 

 

II. BASIC EQUATIONS 

The model equations for two species host-commensal 

is given by the following system of first order non-

linear differential equations employing the following 

notation. 
 

Notation Adopted: 

N1(t): The population strength of commensal  species 

(S1) 

N2(t): The population strength of host species (S2) 

t : Time instant 

ai : Natural growth rates of Si, i = 1, 2 

aii : Self inhibition coefficient of Si, i = 1, 2 

a12 : Commensal coefficient of S1 due to S2 

Ki = 

ii

i

a

a  : Carrying capacities of Si, i = 1,2 

Further the variables N1, N2 are non-negative and the 

model parameters a1, a2, a11, a12, a22 are assumed to be 

non-negative constants. 

The basic model equations for the growth rates of S1, 

S2 are 

2112

2

11111
1 NNaNaNa

dt

dN
                    (1) 

2

22222
2 NaNa

dt

dN
                                             (2) 

The discrete form of the equations (1) and (2) is 

N1(t)=1N1(t-1)–a11
2

1N (t-1)+a12N1(t-1)N2(t-1)   (3)  

N2(t)=2N2(t-1)– a22 
2

2N (t-1)                                      (4) 
 

where 1 = a1 + 1 and 2 = a2+ 1                                (5)  

 

III.  EQUILIBRIUM STATES 

The system under investigation has four equilibrium 

points defined as 

Ni(t+1) = Ni(t), i = 1, 2                                                  (6)  

 

i)    Fully washed out state. 

E0 : 0N1  , 0N2   

 

ii)  The state in which only the host (S2) survives and the 

commensal (S1) is washed out. 

E1 : 0N1  , 
22 KN   

 

iii)  The state in which the commensal (S1) only survives 

and the host (S2) is washed out. 

E2 : 11 KN  , 0N2   

 

iv)  The Co-existent state (or) Normal steady state. 

E3 : 

11

212
11

a

Ka
KN  , 

22 KN   

 

IV. STABILITY OF THE EQUILIBRIUM STATES 

The basic equations can be linearized about the 

equilibrium point E(
21 N,N ).We get the characteristic 

matrix is given by 















2222

1122121111

N2aα0

NaNaN2aα
A            (7)  

 

The equilibrium point  21 N,NE   is stable, if   the 

absolute values of all eigen values of the matrix A are 

less than one.  

4. a.   Stability of equilibrium point E0 

The characteristic matrix of this state is 

1

2

a 1 0
A

0 a 1

 
   

                                           (8)  

The eigen values of which are a1 + 1, a2+ 1 and the 

absolute values of these both are greater than one. 

Hence, E0 (0, 0) is unstable. 

4.b.   Stability of equilibrium point E1  

The characteristic matrix is state is 

1 12 2

2

a a K 1 0
A

0 1 a

  
   

                           (9) 
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The eigen values of which are a1+ a12 K2 + 1, 1-a2. 

Since, absolute value of one of the two eigen values is 

greater than one. 

Hence, E1(0, K2) is unstable. 

4.c.   Stability of equilibrium point E2   

The characteristic matrix in this state is 

1 12 1

2

1 a a K
A

0 a 1

 
   

                                         (10)  

The eigen values are 1 – a1, a2+1 

Since, absolute value of one of the two eigen values 

is greater than one. 

Hence, E2(K1, 0) is unstable.  

4.d.   Stability of equilibrium point E3  

The characteristic matrix of this state is 

  12
1 12 2 12 1 2

11

2

a
1- a a K a K K

a

0 1-a

A

  
   

   
 
 

          (11) 

The eigen values are 

 1 12 21 1
2

and aa a K    

Case (i): When  (a1 + a12 K2) < 2 and  a2 < 2 

The absolute value of both the eigen values is less 

than one. 

Hence, the equilibrium point  213 N,NE  is stable. 

Case (ii) : When   a1 + a12K2= 1 and a2= 1 

The absolute value of both the eigen values is less 

than one. Hence,  213 N,NE is stable. 

Case (iii) : When    a1 + a12 K2  2 or a2  2 or both  

2 

The absolute value of one of the two eigen values or 

both the eigen values is greater than one. In this case,  

 213 N,NE  is unstable. 

 

V.  A NUMERICAL APPROACH OF THE GROWTH 

RATE EQUATIONS 

The numerical solution of the growth rate equations 

(1) and (2) computed employing the fourth order 

Runge-Kutta method for specific values of the various 

parameters that characterize the model and the initial 

conditions.  For this MATLAB has been used, the 

results are illustrated in Figures 3 to 12 and the 

observations are presented below. 

Results and Observations 

 

 

 

 

Figure 3: Variation of N1 and N2 against time(t) for 

a1 =0.144, a11 =0.232, a12 =4, a2 =0.144, a22 =3.786, N10 

=4, N20 =2 

 

 

 

 
 

Figure 4: Variation of N1 and N2 against time(t) for 

a1 =0.125, a11 =0.906, a12 =0.567, a2 =0.345, a22 =0.543, 

N10 =2, N20 =2 
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Figure 5: Variation of N1 and N2 against time(t) for 

a1 =1.068, a11 =0.868, a12 =4, a2 =0.928, a22 =2.788,           

N10 =1.5, N20 =1.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Variation of N1 and N2 against time(t) for 

a1 =0.753, a11 =0.714, a12 =0.12, a2 =0.455, a22 =0.633,  

N10 =4.5, N20 =6 
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Figure 7: Variation of N1 and N2 against time(t) for 

a1 =4.685, a11 =0.26, a12 =0.155, a2 =4.82, a22 =0.1,           

N10 =3, N20 =3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Variation of N1 and N2 against time(t) for 

a1 =0.405, a11 =0.65, a12 =0.515, a2 =1.075, a22 =0.515, 

N10 =1, N20 =3
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Figure 9: Variation of N1 and N2 against time(t) for 

a1 =0.405, a11 =4.395, a12 =0.305, a2 =0.94, a22 =1.615,           

N10 =5, N20 =5 

 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

Figure 10: Variation of N1 and N2 against time(t) for 

a1 =0.144, a11 =0.896, a12 =0.304, a2 =0.648, a22 =0.792,           

N10 =4.5, N20 =2.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Variation of N1 and N2 against time(t) for 

a1 =0.91, a11 =0.142, a12 =0.13, a2 =1.956, a22 =0.046,           

N10 =1, N20 =5 

 

 

 

 

 

 

Figure 12: Variation of N1 and N2 against time(t) for 

a1 =0.21, a11 =0.927, a12 =2.844, a2 =0.189, a22 =1.923,           

N10 =1, N20 =1 
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Figure 13: Variation of N1 and N2 against time(t) for 

a1 =0.230, a11 =1.490, a12 =1.460, a2 =0.190, a22 =1.40, 

N10 =5, N20 =10 

 

Observations of the above graphs 

Case-i:  In this case the first species would always 

dominates the second species.  Further the first species 
has a steep rise and later falls at a very low rate.  The 

second species decreases initially and in course of time 

it is almost extinct as seen in Figure 3. 

 

Case-ii:  In this case initial strength of both the species 

is same and the first species dominates over the second 

species till the time instant t*=2.4  and thereafter the 

dominance is reversed.  Further both the species 

maintain steady variation with low growth rates as seen 

in Fig 4. 
 

Case-iii:  In this case initial strength of both the species 

is same and the second species dominates over the first 

species till the time instant t*=1  and thereafter the 

dominance is reversed.  Further we notice that both the 

species have a steady variation with no appreciable 

growth rates. This is i l lu st rated in F igure 5 .  

 

Case-iv:  In this case initially the second species 

dominates over the first species till the time instant 

t*=0.45  and thereafter the dominance is reversed.  It 

is evident that both the species asymptotically converge 

to the equilibrium point. Further both the species 

maintain steady variation with low growth rates as seen 

in Fig 6. 
 

Case-v:  In this case initial strength of both the species 

is same and the second species would always dominate 

over the first species.  Further we notice that both the 

species have a steady variation with no appreciable 

growth rates.  This is shown in Figure 7. 

Case-vi:  In this case initially the second species 

dominates over the first species till the time instant 

t*=1.5  and thereafter the dominance is reversed. 

Further we see that the first species rises initially and 

later maintains a steady variation with no appreciable 

growth rate. Where as the second species decreases 

initially and in course of time it is almost extinct as seen 

in Figure 8. 
 

Case-vii:  In this case initial strength of both the species 

is same and the second species would always dominate 

over the first species.  It is evident that both the species 

asymptotically converge to the equilibrium point. 

Further both the species maintain steady variation with 

low growth rates as seen in Figure 9. 

 

Case-viii:  In this case initially the first species 

dominates over the second species till the time instant 

t*=1  and thereafter the dominance is reversed. It is 

evident that both  the species asymptotically converge to 
the equilibrium point. Further both the species maintain 

steady variation with low growth rates as seen in Fig 10. 

 

Case-ix:  In this case initially the second species 

dominates over the first species till the time instant 

t*=2  and thereafter the dominance is reversed. Further 

we notice that both species have a steady variation with 

no appreciable growth rates. This is shown in Figure 11. 

 

Case-x:  In this case initial strength of both the species 
is same and the first species would always dominates 

the second species.  Further the first species has a steep 

rise and later falls at a very low rate.  The second 

species decreases initially and in course of time it is 

almost extinct as seen in Figure 12. 

 

Case-xi In this case initially the second species 

dominates over the first species till the time instant 

t*=0.2  and thereafter the dominance is reversed.  

Further the first species has a steep rise and later falls at 
a low rate. It is evident that both the species 

asymptotically converge to the equilibrium point as 

shown in Figure 13. 

 

VI.  CONCLUSION 

The present paper deals with the study on discrete 

model of commensalism between two species.  The 

model comprises of a commensal (S1), a host (S2) that 

benefit S1, without getting effected either positively or 

adversely.  Al the four equilibrium points are identified 

based on the model equations. The model would  be  

stable, if each of the eigen  values is numerically less 

then one. It is observed that, in all four equilibrium 

states, only the coexistent state is stable when 

 

(i)    1 12 2 22 2a a K and a    

(ii)    1 12 2 21 1a a K and a    
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