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Abstract— This study employed geographic information 

systems (GIS) to analyze the spatial factors related to 

dengue fever (DF), dengue hemorrhagic fever (DHF), and 

dengue shock syndrome (DSS) epidemics. Chachoengsao 

province, Thailand, was chosen as the study area. This 

study examines the diffusion pattern of disease. Clinical 

data including gender and age of patients with disease 

were analyzed. The hotspot zonation of disease was 

carried out during the outbreaks for years 2001 and 2007 

by using local spatial autocorrelation statistics (LSAS) 
and kernel-density estimation (KDE) methods. The mean 

center locations and movement patterns of the disease 

were found. A risk zone map was generated for the 

incidence. Data for spatio-temporal analysis and risk 

zonation of DF/DHF/DSS were employed for years 2000 

to 2007. Results found that the age distribution of the 

cases was different from the general population’s age 

distribution. Taking into account that the quite high 

incidence of DF/DHF/DSS cases was in the age group of 

13-24 years old and the percentage rate of incidence was 

42.9%, a DF/DHF/DSS virus transmission out of village 

is suspected. An epidemic period of 20 weeks, starting on 
1st May and ending on 31st September, was analyzed. 

Approximately 25% of the cases occurred between 

Weeks 6-8. A pattern was found using mean centers of 

the data in critical months, especially during rainy season. 

Finally, it can be identified that from the total number of 

villages affected (821), the highest risk zone covered 7 

villages (0.85%); the moderate risk zone comprised 39 

villages (4.75%); for the low risk zone 22 villages (2.68%) 

were found; the very low risk zone consisted of 120 

villages (14.62%); and no case occurred in 633 villages 

(77.10%). The zones most at risk were shown in districts 

Mueang Chachoengsao, Bang Pakong, and Phanom 
Sarakham. This research presents useful information 

relating to the DF/DHF/DSS. To analyze the dynamic 

pattern of DF/DHF/DSS outbreaks, all cases were 

positioned in space and time by addressing the respective 

villages. Not only is it applicable in an epidemic, but this 

methodology is general and can be applied in other 

application fields such as dengue outbreak or other 

diseases during natural disasters.  

 

Index Terms— Geographic Information System (GIS), 

Dengue Fever (DF), Dengue Hemorrhagic Fever (DHF), 

Dengue Shock Syndrome (DSS), Local Spatial 

Autocorrelation Statistics (LSAS), Kernel-density 

estimation (KDE) 

 

I. INTRODUCTION 

Dengue fever (DF), and its more severe forms, dengue 

hemorrhagic fever (DHF) and dengue shock syndrome 

(DSS), is the most important arthropod-transmitted viral 
disease affecting humans in the world today [1]. The 

objective of this study was to analyze the epidemic 

outbreak patterns of DF/DHF/DSS in Chachoengsao 

province, central part of Thailand, in terms of geospatial 

distribution and risk area identification. The methodology 

and the results could be useful for public health officers 

to develop a system to monitor and prevent DF/DHF/DSS 

outbreaks.   

Vector borne diseases are the most common worldwide 

health hazard and represent a constant and serious risk to 

a large part of the world’s population [2]. Among these 

diseases, dengue fever, especially known in Southern 

Asia, is sweeping the world, hitting countries with 

tropical and warm climates. It is transmitted to humans 

by the mosquito of the genus Aedes and exists in two 

forms: the Dengue Fever (DF) or classic dengue and the 

Dengue Hemorrhagic Fever (DHF), which may evolve 

into a severe form known as Dengue Shock Syndrome 

(DSS) [3]. There are four dengue virus serotypes, called 

DEN-1, DEN-2, DEN-3, and DEN-4. They belong to the 
genus Flavivirus, family Flaviviridae [4]. The global 

prevalence of dengue diseases has grown dramatically in 

recent decades. The disease occurs in over 100 countries 

and territories and threatens the health of more than 2.5 

billion people in urban, periurban, and rural areas of the 

tropics and subtropics. The major disease burden is in 

Southern Asia and the Western Pacific [5]. Rapid 

expansion of urbanization, inadequate piped water 

supplies, increased movement of human populations 

within and between countries, and future development 

and spread of insecticide resistance in the mosquito 



 Spatial Temporal Dynamics and Risk Zonation of Dengue Fever, Dengue Hemorrhagic Fever,  59 

and Dengue Shock Syndrome in Thailand 

Copyright © 2012 MECS                                                    I.J. Modern Education and Computer Science, 2012, 9, 58-68 

vector populations are some of the reasons for the 

increase of dengue transmission in recent years [6]. 

Today, in several Asian countries, dengue incidence is a 

leading cause of pediatric hospitalization and death [7]. 

In Thailand there has been an upward trend in the 

incidence of dengue, and acute and severe forms of 
dengue virus infection, since the first dengue epidemic 

outbreak in 1958 [8]. In 2011, according to the dengue 

surveillance data, the total number of reported cases of 

dengue infections in Thailand is 37,728 cases with 27 

deaths nationwide. The number of reported dengue cases 

in Chachoengsao province in this same period is a total of 

1020 cases and no deaths (Ministry of Public Health, 

Thailand). 

Geographic Information System (GIS) technologies 

have long been extensively applied in public health 

studies and related issues like disease outbreak during 

natural disasters, at the regional or country level, to assess 

and identify potential risk factors involved in 

DF/DHF/DSS incidence transmission such as socio-

economic, climatic, demographic and physical-

environment variables to better understand essential 

characteristics of predicted risk areas [9,10]. Previous 

researchers such as Rotela et al., (2007) found the space-

time analysis of the dengue spreading dynamics in the 
2004 Tartagal outbreak, Northern Argentina. The results 

showed that the age distribution of the cases was different 

from the population age distribution, and the cases 

showed outbreak spotlights and spreading patterns that 

could be related to entomologic and epidemiologic 

factors [11]. GIS have proved great potentialities in 

addressing epidemiological problems [12]. The use of 

spatial analysis tools is important to identify critical 

control areas with several variables intimately related to 

the modulation of the disease dynamics [13]. A GIS is a 

valuable tool for investigating whether seropositivity for 

dengue is clustered [7]. Yost (2006) applied the model to 
GIS data or new sites to forecast probability of 

occurrence for unsampled areas within the spatial extent 

of sampling [14]. He demonstrates that using census data 

and statistical analysis coupled with GIS analysis can 

provide useful information for land management 

decision-making [15]. 

A GIS is agnostic to this distribution and handles 

spatial features without regard to the underlying statistical 
model. Without proper caution, it is therefore possible for 

the unwary user to apply totally inappropriate techniques 

to spatial objects (such as a point or polygon) contained 

in a GIS. Points, in particular, require special attention, 

since a point could be a sample location from a random 

surface (geostatistical analysis), or the location of a 

random event (point pattern analysis) [16]. In spatial 

analysis such as kernel-density estimation (KDE), spatial 

autocorrelation analysis (SAA), hotspot, or mean center, 

temporal dynamics are commonly used to symbolize 

spatial patterns of diseases and to test whether there is a 

considerable occurrence of clustering of disease 
incidences in a particular area [17- 21]. Previous research 

has used human cases in GIS by geocoding addresses to 

describe their distribution [20,22]. At the same time, 

kernel density functions were performed on dead crow 

data to document geographic density of the cases. Maps 

of human cases and cluster analysis were used to show 

the grouping of cases that were validated using virus 

positive mosquito sample sites in those same areas 

[20,23]. Research done by Brownstein et al., (2002) 

showed how GIS can be used in the spatial analysis of 

human infections when mosquito, human, and dead bird 
clusters were reported to estimate the risk of disease in a 

population [23]. Kernel-density estimation (KDE) 

represents a very popular subject of statisticians’ 

investigations [24]. The kernel is based on the value of 

the standard deviation in the Gaussian equation [14]. Wist 

et al., (2005) studied statistical properties of successive 

wave heights and successive wave periods. The 

histogram of the data and the kernel-density estimation of 

the data are compared with the Bretschneider model [25]. 

Spatial autocorrelation, or spatial dependence, is the 

characteristic that observations tend to take values that 

are not independent of those of neighbouring 
observations [26-29]. Spatial autocorrelation is a measure 

of the similarity of objects within an area [30]. Spatial 

autocorrelation is a powerful technique for the analysis of 

spatial patterning in variate values which has been 

successfully applied in locational geography [26,31,32]. 

Premo (2003) introduced two local spatial statistics that 

were designed to elucidate how distance-defined clusters 

of values, called spatial neighborhoods, contribute to the 

global spatial structure of a distribution. The results raise 

a number of local-scale hypotheses that, though 

undetected by previous global spatial analysis, might lead 

to a refined interpretation of the spatial distribution of 
dated monuments and, by extension, the reorganization of 

the Classic Maya [32]. Cai and Wang (2006) presented a 

method to quantify the spatial autocorrelation of 

topographic index (TI) in a catchment context using 

spatial statistical indices originating in geographic studies 

[33]. 

Local patterns of spatial autocorrelation were 

suggested as an appropriate perspective for understanding 
local instabilities and expressed as a local indicator of 

spatial association (LISA), local iG  and 
*

iG  statistics. 

Similar descriptions of this local autocorrelation were 

called “hot spot” [16,34,35]. The use of the Getis statistic 

(
*

iG ) provides insights on the spatial ramifications of a 

spatial change to model input. Specifically, the location 

of significant 
*

iG  values identified areas where the 

differences in leaf area index (LAI) and stand volume 

occur and are spatially clustered [36]. Local spatial 

autocorrelation indices are a decomposition of the global 

Moran I index [37]. Although spatial autocorrelation was 

defined decades ago, its application has been limited by 

computation capacity and software availability [38-41]. 

Recent advances in local spatial statistics have led to a 

growing interest in the detection of disease clusters or 

“hotspot”, for public health surveillance and for 
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improving our understanding of the disease such dengue 

incidence [16,34,35,42]. 

In this study, spatial analyses at a provincial scale 

(KDE, LSAS, mean center, temporal dynamics) were 

used to investigate spatio-temporal diffusion patterns of 

DF/DHF/DSS incidence. The main objectives of this 
work were to find a spatio-temporal diffusion pattern and 

risk zonation map of DF/DHF/DSS incidence that 

occurred in Chachoengsao province, Thailand from 2000 

until 2007 by using GIS elements for a better 

understanding of DF/DHF/DSS outbreak dynamics, and 

to correlate them to climatic and demographic factors. 

II. STUDY AREA AND METHODS 

A. Study area: Chachoengsao province, Thailand 

Chachoengsao province had a morbidity rate of 39.68 

per 100,000 population among provinces under the 

surveillance of the Ministry of Public Health of Thailand 
for 2007 (Table I). Chachoengsao, a province in the 

central part of Thailand, was selected as the study area 

(Figure 1). This province was selected as the study area 

because it has reported high incidence rates for the last 

several years. Chachoengsao province included 11 

districts, which are Mueang Chachoengsao, Bang Khla, 

Bang Nam Prieo, Bang Pakong, Ban Pho, Phanom 

Sarakham, Sanam Chai Khet, Plaeng Yao, Ratchasan, 

Tha Takiap, and Khlong Khuean. The province is 80 km 

distant from the eastern part of Bangkok, and covers an 

area of 5,238.31 sq. km. The province has a population of 

about 645,022 people (Department of Administration, 
2007). 

TABLE I.  TOP TEN MORBIDITY RATES OF DF/DHF/DSS 

INCIDENCE BY PROVINCE IN YEAR 2007 

Rank Province 
Morbidity rate 

(per 100,000 population) 

1. Ranong 55.63 

2. Chachoengsao 39.68 

3. Saraburi 32.78 

4. Phetburi 31.78 

5. Prachinburi 30.15 

6. Ratchaburi 27.51 

7. Rayong 23.93 

8. Bangkok 23.42 

9. Nakhonphatom 23.12 

10. Lopburi 22.87 

Source: Ministry of Public Health, Thailand 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

Figure 1. Study area: Chachoengsao province, Thailand 

B. Methods 

The flowchart summarizes the methodology of the 

study as shown in Figure 2. Different components of the 

methods are detailed below: 

 
 

Figure 2. Methodology for mapping risk zones of DF/DHF/DSS 

1) Data Preparation 

The study of spatio-temporal diffusion pattern and risk 

zonation of DF/DHF/DSS incidence covers the 821 

villages in Chachoengsao province: 
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a) DF/DHF/DSS incidence data 

Chachoengsao province was selected for the case study 

because in every year, the incidence of DF/DHF/DSS has 

been high. DF/DHF/DSS data during years 2000 through 

2007 were collected from the Chachoengsao Provincial 

Public Health Office, with regard to the number of 

reported cases per district per month, to record the 

probable and confirmed DF/DHF/DSS cases. Data 

represents only the patients who visit the hospital and fill 

the official Form 506 from the Bureau of Vector borne 

Disease, Ministry of Public Health, Thailand. The forms 
provided data such as the total of DF/DHF/DSS cases by 

month and year, type of disease, gender, and address of 

each patient. This data was employed for the study. 

b) Demographic data 

The weekly data of the DF/DHF/DSS incidences in 

years 2001 and 2007, as they had high numbers of 

DF/DHF/DSS cases, and the total number of population 

by each village in year 2007 were also collected from 

Chachoengsao Provincial Public Health Office and 
Department of Administration, in order to deepen the 

observation and support the demographic aspect analysis. 

Some groupings were constructed, i.e., on the basis of the 

population distribution, age distribution, and gender using 

the data for year 2007 (Table III). Also, the classification 

by gender is presented in Table 2. Data analysis (Table II) 

revealed that the worst outbreak of DF/DHF/DSS cases 

took place in years 2001 (1,236 cases) and in 2007 (792 

cases). Accordingly, data for these years were employed 

to define risk zonation in Chachoengsao province. 

c) Climatic data 

Monthly weather data of rainfall, temperature, and 

humidity for the years from 2000 to 2007 were collected 

from the Department of Meteorology, Thailand. 

DF/DHF/DSS incidence outbreaks in Chachoengsao 

province occurred in years 2001 and 2007. The climate 

office has reported that that the DF/DHF/DSS incidence 

outbreaks coincided with El Nino years. El Nino events 

in Thailand are actually related to high temperature and 

also to low rainfall [2]. Thailand experiences rains from 

May to September. The remaining part of the year 
remains mostly dry. Besides the rainfall and temperature, 

humidity also influences dengue transmission [43]. Due 

to high humidity in rainy season, mosquito survival is 

longer and growth is conducive [44]. Overall, the 

temperature in Chachoengsao province was between 

26.63 to 29.98°C in 8 years (2000-2007). Higher than 

20°C is the favorable temperature for Aedes Aegypti 

mosquitoes [45]. The average monthly humidity in 8 

years (2000-2007) was found to be 72.68%. 

2) Data Analysis  

a) Hotspot Delineation using Spatio-temporal Analysis 

It was found from data analysis that the worst outbreak 

of suspected DF/DHF/DSS cases happened in years 2001 

(1,236 cases) and 2007 (792 cases). Thus those data were 

applied in this study to define hotspot and risk zonation 

during both years. The dengue (DF/DHF/DSS) incidence 

rate (IRDengue) is a ratio of number of observed incidence 

cases (ni) in each year divided by total population in each 

village (p). More explicitly; 

p

n
IR i

Dengue                                                  (1) 

In addition, hotspot analysis was carried out by using 

the empirical Bayes smoothing method, and dengue 

incidence rates were used to estimate underlying risk [46]. 

Concerning the empirical Bayes smoothing method, when 
raw rates are used to estimate this underlying risk, 

differences in population size result in variance instability 

and spurious outliers. So, rate smoothing is one way to 

address this variance instability. Essentially, rates are 

smoothed and thus stabilized by borrowing strength from 

other spatial units by using GeoDa 0.9.5i open source 

software [10,16,47] so all DF/DHF/DSS cases data in 

years 2001 and 2007 in Chachoengsao province were 

geocoded using GeoDa 0.9.5i and a custom address 

locator, which included village code. The 821 village 

locations were geocoded and saved in dBASE format. If 

choosing the latter, the counts for DF/DHF/DSS cases are 
usually standardized and compared with total of 

population distribution by villages for a total of 821 

villages. Although this is a very common strategy, it is 

not always expected that the results are dependent on the 

configuration of area units. As a result, it has become 

common recently within studies of geographical 

epidemiology to conduct analysis that uses the point 

events themselves. Based on the local spatial 

autocorrelation statistics (LSAS) method, the hotspot of 

DF/DHF/DSS incidence analysis map was generated for 

2001 and 2007 years in ArcGIS 10. 

So to test for statistically significant local 

DF/DHF/DSS clusters for each year, and to determine the 

spatial extent of these clusters, the Getis-Ord 
*

iG statistic 

was used [34,48,49]. The 
*

iG  statistic is useful for 

identifying individual members of local clusters by 
determining the spatial dependence and neighboring 

observations [49-51]. The 
*

iG  statistic includes the value 

at i in the calculation of 
*

iG . 
*

iG is calculated and then is 

output as the standard normal variant with an associated 

probability from the z-score distribution [49,52]. The 
*

iG  

is a group-level statistic, where point data must first be 

aggregated to areas. 
*

iG  was calculated using the spatial 

statistics tools in the ArcGIS 10 ArcToolbox. 

Using the ratio of number of DF/DHF/DSS incidences 

in each village during years 2001 and 2007 divided by 

number of the population in each village in years 2001 

and 2007, it was found that as many as 352 (2001) and 

254 (2007) villages affected by DF/DHF/DSS incidence 

location at Chachoengsao matched the criteria to be the 
variables. 

Moreover, the hotspot by using kernel-density 

estimation (KDE) method was carried out for finding the 



62 Spatial Temporal Dynamics and Risk Zonation of Dengue Fever, Dengue Hemorrhagic Fever,   

and Dengue Shock Syndrome in Thailand 

Copyright © 2012 MECS                                                    I.J. Modern Education and Computer Science, 2012, 9, 58-68 

DF/DHF/DSS incidence hotspot zonation map. Usually, 

the KDE is that the pattern has a density at any location 

in the study area. This density is estimated by counting 

the number of DF/DHF/DSS incidence cases in 

Chachoengsao province; centering the location where the 

estimate is to be made. The simplest approach, called the 

naive method in the literature, is to use a circle centered 

at the location for which a density estimate is required. 

KDE relates to location data and refers to a kernel 
method for obtaining a spatially smooth estimate of the 

local intensity of events over Chachoengsao province, 

which essentially amounts to a “DF/DHF/DSS risk zone” 

for the occurrence of those events.  

DF/DHF/DSS incidence zonation maps were created 

using LSAS and KDE methods. The mean center or 

spatial mean gave the central location of disease points 

[53]. In this study, the UTM zone 47 North and WGS 84 
coordinate system was adopted. With the coordinate 

system defined, the mean center can be found easily by 

calculating the mean of the x-coordinates (or Easting) and 

the mean of the y-coordinates (or Northing). These two 

means of the coordinates define the location of the mean 

center of DF/DHF/DSS incidence location as: 
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Where xmc and ymc are the coordinates of DF/DHF/DSS 

incidence mean center, xi and yi are the coordinates of 

DF/DHF/DSS incidence in each point, and n is the 
number of points [54]. The incidence risk zones map was 

generated based on LSAS and KDE methods by using 

spatial union analysis. 

III. RESULTS AND DISCUSSION 

From documentation (Chachoengsao Provincial Public 

Health Office, 2007), it was found that DF/DHF/DSS 

occurred in the majority of the areas in Chachoengsao 

province; it inflicted severe health problems and financial 
tolls on the population affected. The worst outbreak of 

suspected DF/DHF/DSS cases was in year 2001 (1,236 

cases) and in year 2007 (792 cases). The lowest 

occurrence was in year 2000 (380 cases). To widen the 

observation, the data collected from years 2000-2007 

were classified into several groups for the ease of socio-

economic analysis, i.e. gender, area, timing, and age 

groups. Table II, shows that the total of cases reported 

was 5,565, composed of 2,989 males and 2,576 females. 

During the highest DF/DHF/DSS incidence in year 2001, 

male patients composed about 626 cases while female 

patients comprised only 610 cases. The ratio of male 
patients was higher than of female, which is 53.71%. 

 

TABLE II.  THE NUMBER OF DF/DHS/DSS CASES CLASSIFIED BY 

GENDER GROUP FROM YEARS 2000-2007 

Source: Chachoengsao Provincial Public Health Office 

The climate of Thailand can be divided into three 

seasons: the hot season (February-May), rainy season 

(May-October), and cold season (October-February) 

respectively. Observation of the epidemiological 

characteristics of DF/DHF/DSS disease follows in three 

seasons. The distribution of DF/DHF/DSS incidence in 

years 2000-2007 is shown in Figure 3. Interestingly, 

disease patterns indicated that the critical months of 
incidence were during May to September, which is in the 

rainy season. The worst incidence noted was in July 2001 

with more than 200 cases. The DF/DHF/DSS distribution 

in the whole province, having its highest incidence in 

rainy season, had a similar trend for every year. The 

cause of DF/DHF/DSS incidence is related to rainfall, 

temperature, and humidity so that DF/DHF/DSS 

generally occurred when the rainfall was comparatively 

lower and humidity was higher than average [2,55-57]. 

This demonstrates that rainfall, temperature, and 

humidity increased starting in May and after 

approximately 30 days or one month, the DF/DHF/DSS 
outbreak began. Moreover, in September, rainfall and 

humidity are highest. 

 

Figure 3. Number of DF/DHF/DSS cases and average rainfall on 

monthly basis from years 2000-2007 

Year 
Gender 

Total 
Male Female 

2000 218 162 380 

2001 626 610 1,236 

2002 475 456 931 

2003 374 316 690 

2004 323 221 544 

2005 306 217 523 

2006 251 218 469 

2007 416 416 792 

Percentage 

(%) 
53.71 46.29 100.00 
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The monthly data was also broken down into a more 

detailed investigation. During year 2007, one of the 

highest outbreak years, 792 patients were suspected with 

DF/DHF/DSS cases. At that time, the epidemic took 20 

weeks or 152 days, starting on 1st May and ending in 

high mobility of this population group on 31st September 

- in other words, the rainy season period. There were as 

many as 521 suspected DF/DHF/DSS cases spread 

throughout the region and it affected 0.08% of the total 
population (Figure 4). Approximately 25% of the cases 

occurred between Weeks 6-8, with the highest number 

occurring in Mueang Chachoengsao district of which 178 

cases were reported, and the second highest was Panom 

Sarakham district with 170 cases. Most cases happened in 

June 2007, with 171 cases, while February 2007 had the 

lowest rate with only 9 cases. 

0

5

10

15

20

25

30

35

40

45

50

w1 w4 w8 w12 w16 w20
Calendar weeks

N
u
m

b
e
r 

o
f 
 c

a
s
e
s

Epidemic days

 

Figure 4. Number of suspected DF/DHF/DSS cases reported weekly 

during the 2007 epidemic (May 01-September 30) 

Disease distribution based on age of the patients was 

also determined. The age distribution of DF/DHF/DSS 

cases was different from the population age distribution 

and the highest incidence was in the 13 to 24 year group 

and percentage rate of incidence was 42.9%, with a lower 

incidence on population older than 25 years old and 

percentage rate of incidence was 24.3% (Table III). 

TABLE III.  THE NUMBER OF DF/DHF/DSS CASES BY AGE GROUP 

DISTRIBUTION FOR YEAR 2007 

Age 

group 

(year) 

DF/DHF/ 

DSS 

(case) 

Total 

population 

2007 

Rate of 

DF/DHF/DSS 

 Incidence 

(%) 

Population 

Rate (%) 

0-12 260 117,194 32.8 18.2 

13-24 340 118,823 42.9 18.4 

25-36 121 132,832 15.3 20.6 

37-48 52 126,104 6.6 19.5 

> 48 19 150,069 2.4 23.3 

Total 792 645,022 100.0 100.0 

Source: Chachoengsao Provincial Public Health Office 

All spatial statistics processing to create hotspots was 

carried out using the spatial statistics tools in the ArcGIS 

10 ArcToolbox. The hotspot analysis was carried out 

using the “Hotspot Analysis (Getis-Ord 
*

iG )” tool in the 

mapping cluster tools extension. By plotting the hotspots 

of outbreaks in years 2001 and 2007, the zonation was 

found to be along the Bang Pakong River (Figure 5). 

A DF/DHF/DSS incidence map was constructed from 

the cumulative number of cases during the entire 

epidemic, and confirmed that DF/DHF/DSS cases were 

spreading all around the province with hotspots in the 

Mueang Chachoengsao (2001) and Panom Sarakham 

(2001 and 2007), and were around the urban centers 

(Figure 6). 

The mean center of the cases were found in critical 

months, especially during rainy season from May through 

September in years 2001 and 2007 (Figure 7). It also 

showed the trend diffusion cluster pattern in the center of 

the province at Bang Khla district. 

From Figure 8, it can be concluded that movement 
from location 1 (May) to location 2 (June) moved to the 

east in 2001 but moved to the west in 2007, and changed 

direction to the west to location 3 (July) in 2001 but 

moved to the north in 2007 and moved to location 4 

(August) in the north and changed direction to location 5 

(September) in the west, same as year 2007. This kind of 

recording is necessary for agent-based models as implied 

in our study of pedestrian disease in space and time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. Incidence maps showing the hotspot distribution of 

DF/DHF/DSS outbreaks during the years 2001 and 2007 using local 

spatial autocorrelation statistic (LSAS) method 
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Figure 6. Incidence map showing cumulative number of DF/DHF/DSS 

cases in 2001 and 2007 outbreaks using kernel-density estimation (KDE) 

method 

 
 

Figure 7. The mean center locations of DF/DHF/DSS outbreaks 

between May-September in years 2001 and 2007 

 

 
Figure 8.  Temporal dynamics in space and time. The mean center 

locations of DF/DHF/DSS outbreaks between May-September (1 → 2 

→ 3 → 4 → 5) in years 2001 and 2007 

Lastly, Figure 9 represents the DF/DHF/DSS risk zone 

map in Chachoengsao province by spatial union analysis. 
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Figure 9. DF/DHF/DSS risk zone map of Chachoengsao province, Thailand 

Table IV shows the summary of DF/DHF/DSS risk 
zones with the total number of villages (821 villages). 

Results indicated that the highest risk zone covered 7 

villages (0.85%, 2.45 km
2
 of total area), the moderate risk 

zone comprised of 39 villages (4.75%, 23.49 km
2
 of total 

area), the low risk zone of 22 villages (2.68%, 26.07 km
2
 

of total area) was found, the very low risk zone consisted 

of 120 villages (14.62%, 111.49 km
2
 of total area) and no 

case consisted 633 villages (77.10%, 5074.81 km
2
 of total 

area). 

TABLE IV.  SUMMARY OF VILLAGES DF/DHF/DSS AFFECTED 

Risk 

classes 

DF/DHF/DSS 

affected 

Percentage 

(%) 

Area 

(km
2
) 

High 7 0.85 2.45 

Moderate 39 4.75 23.49 

Low 22 2.68 26.07 

Very low 120 14.62 111.49 

No case 633 77.10 5074.81 

Total 821 100.00 5238.31 

 

IV. CONCLUSION 

Recent monitoring and planning of control measures 

for dengue epidemics have become a critical issue. This 

research offered useful information relating to the 

DF/DHF/DSS incidences. To analyze the dynamic pattern 

of the 2001 and 2007 DF/DHF/DSS outbreaks in 

Chachoengsao province, Thailand, all DF/DHF/DSS 

cases were positioned in space and time by addressing the 

respective villages. 

This takes into account that the quite high incidence of 
DF/DHF/DSS cases were in the age group of 0-24 years 

old. It was also noted that males have a higher risk of 

incidence than females. Thanks to awareness amongst 

older people, the prior immunity to dengue in older 

individuals, and less mosquito biting rates in children, 

there are less numbers of victims in other age groups. 

Meanwhile, the mobility of productive aged people 

within “hotspot” neighborhoods has led them into the risk 

of getting infected with DF/DHF/DSS. Analysis of the 

climatic factors such as rainfall, temperature, and 

humidity with the dengue incidences has shown that 

dengue generally occurred when average temperature 
rose above normal, and also occurred when the humidity 

was higher than average and rainfall was reasonably 

lower. In 2007, the Chachoengsao Provincial Public 

Health Office reported 792 suspected DF/DHF/DSS cases 

and a total of 171 DF/DHF/DSS cases occurred in June. 

During the 152 days of the epidemic, there were as many 

as 521 suspected DF/DHF/DSS cases spread throughout 

the region and affected 0.08% of the total population. 

Furthermore, several studies confirmed that dengue risk 

exposure is greater at home because of endophilic habits 

of Aedes Aegypti and clinical symptoms may also be less 

reported in young people because of better self-recovery 

ability [11]. 

Spatial autocorrelation can be a valuable tool to study 

how spatial patterns change over time [58]. The empirical 

Bayes method has the technique to improve the 

population density from IRDengue to be empirical Bayes 

rate which is more accurate and useful. This theorem 

enables researchers to analyze population data and 

whatsoever by determining the total of DF/DHF/DSS 

cases with the number of population per village each year. 
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Based on the local spatial autocorrelation statistics (LSAS) 

method, the hotspot of DF/DHF/DSS incidence analysis 

map was generated for 2001 and 2007 years by using the 

spatial statistics tools in the ArcGIS 10 ArcToolbox 

software. Moreover, the kernel-density transformation is 

one of the most useful in applied GIS analysis. First, it 

provides a very good way of visualizing a point pattern to 

detect hotspots. Second, since it produces a map of 

estimates of the local intensity of any spatial process, it is 
also a useful way to check whether or not that process is 

first-order stationary. A first-order stationary process 

should show only local variations from the average 

intensity rather than marked trends across the study 

region. Third, it provides a good way of linking point 

objects to other geographic data [59]. KDE method is 

used to obtain spatially smooth estimates of the local 

intensity of points of DF/DHF/DSS cases by village 

locations in years 2001 and 2007 (Figure 6). The function 

gives the value of ̂ for a specified point pattern, 

evaluated over a grid of locations that span a particular 
polygon. The width of the kernel is specified by average 

distance of flying dengue mosquito of 2 kilometres. One 

useful display is a raster image [60]. The mean center of 

disease was shows cluster pattern in the center of the 

province, Bang Khla district, and also shows how the 

mean center locations of disease changed in space and 

time by movement of location 1 to location 5 (May to 

September) in years 2001 and 2007. The spatial statistics 

are used to summarize the description of a set of locations, 

followed by measures indicating the directional biases of 

a set of points.  The DF/DHF/DSS risk map obtained 

from the research is able to support public health officers 
in space and time so as to control and predict dengue 

spread over an extension area. Moreover, the risk map 

can be beneficial for public warning and awareness. 

Public health officers may employ the model to control 

DF/DHF/DSS distribution and hotspots through factors 

mentioned above. Not only it is applicable in epidemics, 

but this model is general and can also be applied in other 

application fields such as outbreak of other diseases 

during natural disasters. 
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