
I.J.Modern Education and Computer Science, 2013, 1, 14-20
Published Online January 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2013.01.02

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 1, 14-20

Improve Abstract Reasoning in Computer

Introductory Courses

Aharon Yadin

Department of Information Systems, The Max Stern Yezreel Valley College (YVC), Israel

Email: aharony@yvc.ac.il

Abstract—Due to the elevated programming courses'

failing rate in our department (45%) an action research

was initiated. As part of this action research, that was

performed during four semesters several course

structures and learning tactics were examined. The

evaluation methodology was simple and based only on

the percentage of failing students. The success achieved

was attributed to two main factors (1) using a

visualization environment (Micro-world) for the whole

duration of the course, which helped in understanding

the more complex and abstract issues, and (2) using

individual assignments that enforced better learning

habits and development of individual algorithmic

thinking. The paper describes the various attempts, as

well as the final structure, that reduced the failing

students by over 77%.

Index Terms—Algorithmic Thinking, Individual

Assignments, Introductory Programming Courses

I. INTRODUCTION

This paper describes an action research for defining

the right structure of an introductory programming

course that will increase algorithmic thinking and by that

decrease the high course drop-out rate. The research was

performed in a small regional college due to an elevated

percentage of failures..

Following the fast progress of technology, in recent

years, and its wide integration in many human activities,

education has been changed as well. From mainly a

teaching discipline in the past, it transformed into an

integrated learning environment that uses various

technological tools and solution for enhanced

understanding. As a result, education has shifted from

just content delivery to a continuous process in which

the students acquire facts and theories, through their

own experience and build the conceptual models

representing their understanding [1]. Conceptual models,

sometimes referred to as mental models are considered

the necessary building blocks for problem-solving skills.

These skills which are a significant part of introductory

courses' outcome are also required for succeeding in the

modern society. The change, from teaching in which the

instructor assumes responsibility for content delivery, to

learning where the responsibility is transferred to the

student is not new. This paradigm shift started over a

decade ago and was addressed by many scholars [2], [3],

[4], to name a few and was influenced by the

understanding that effective learning occurs when the

students construct their own knowledge. Following this

understanding, at present, successful learning is viewed

as a student-centered process in which students are

exposed to various events, explore and enhance their

experience and knowledge. This new perceived

knowledge that is based on the students' own experience

combined with already existing knowledge, constructs

new layers of understanding that modify, renew and

enhance the existing learners' conceptual models [5], [6].

With the massive technological integration in many

aspects of our lives, the traditional learning environment

has changed as well. Currently, technology is not

confined any more only to the classroom. The wealth of

available applications and the wide spread of computers

made it possible to extend the learning process and

provide it on demand, anytime and anywhere. The

continuous process of learning that is based on adapting

and enhancing one's own conceptual models occurs in a

variety of learning locations and by using technology it

can be even in virtual environments representing the real

world.

In the second section I will discuss some of the

existing learning theories in order to assess the students'

learning processes. In the third section, the introductory

programming courses will be described including

methods for enhancing understandability. Section four

describes the study and the results obtained and the last

section provides the discussion and implications of the

current study.

II. LEARNING THEORIES

Over the years, many researchers were involved in

understanding and evaluating learning and as a result

many theories were developed. However, the learning

theory that is widely used is the constructivism theory,

which is based on Piaget's theory of children's

development. According to Piaget, information and data

are perceived through the various senses and maintained

using "mental structures" that represent knowledge.

Based on this theory, every living creature constantly

compares its existing mental structures with the new

received information in order to assess its validity. If the

new received information makes sense, it will be

integrated into the existing mental structure (or

accommodated in Piaget's terms). This process of

accommodation reaffirms and renews the mental

 Improve Abstract Reasoning in Computer Introductory Courses 15

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 1, 14-20

structure and sometimes it modifies and enhances it

which represents learning. If, on the other hand, the new

information is very different, or contradicts the mental

structure, it will be discarded or changed so that it will

fit the structure. If students are forced to "understand"

the new information, for example as it happens by

delivery of content, but if it does not fit their mental

structure, they will memorize it without the proper

understanding. This type of "learning" implies that it is

not conceptualized and will not contribute to future

problem-solving capabilities. According to the

constructivism theory, learning is defined as integration

of new experiences with the past mental structures. As

such, learning means changing these previous models

with relevant new information [7]. For the past 4

decades, cognitive researchers [8], [9], [10], [11] have

distinguished between two types of knowledge:

declarative and procedural. Declarative knowledge (also

referred to as propositional knowledge) is defined as

factual information ("knowing that"), while procedural

knowledge ("knowing how") is about how to perform a

specific task, or the skills required to operate in the

environment. Before choosing the proper teaching

mechanisms, the instructor has to define the required

learning outcomes and select the proper activities that

will help acquiring the two types of knowledge. The

shift in the instructors' role from teaching to facilitating

learning is based on the understanding that teaching is

not just transmission of information to the students

(declarative knowledge), but rather, it should be used to

create various relevant activities that will stimulate

students and help them construct their own mental

models representing meaning. By using this learning

theory, instead of delivering content, the instructor has

to define the learning environment, including activities,

methods and assignments, so that it will enable the

students to acquire the required declarative as well as

procedural knowledge.

The constructivist model is a learner-centred process

in which the learning responsibility relies on the students.

In achieving the defined learning goals, students may be

involved in both group and individual learning activities.

Many researchers however have reported that group

learning is more successful and helps the students build

their understanding faster and more efficiently [12], [13],

[14]. Group learning has had many different names: peer

learning, collaborative learning, team studying,

collective learning, study or work group, etc. However,

according to [15], regardless of the name, all of these

learning methods can be categorized by three general

types: (1) informal learning groups – which are formed

ad hoc. This is a one-time learning session for

addressing a specific issue; (2) formal learning groups –

which are formed for a specific task, with a longer

duration (for example a project). Such formal learning

groups usually require several meetings; and (3) study

teams – which are formal learning groups, working

together for an even longer duration (whole semester, or

the whole academic year). In many cases, study teams

form a social group in which the relationships among the

team extend the study sessions. However, although

collaborative learning is more efficient and the study

group and its social interaction form a supportive

learning environment, the learning (or accommodations

in the mental structures) and attaining knowledge

remains an individual process. For that reason, some

researchers suggest structuring courses not only on

collaborative study, but on cooperative study as well. In

such teams there is a greater emphasis on individual

responsibility and accountability [16]. This and the

introduction of technology supported collaborative

learning systems that provide virtual and remote

collaboration, imply that students have to be more

autonomous in their learning attitude [17].

III. INTRODUCTORY PROGRAMMING COURSES

Undergraduate Introductory Computer Science (CS1)

courses which represent the students' first encounter

with the professional computing world are often

perceived by the students as problematic based on the

relatively high drop-out rates. Furthermore, the skills,

both programming and problem solving, acquired by the

students after successfully completing these courses are

often not sufficient [18]. These students' difficulties are

not a new issue and were addressed by many debates

among researchers, scholars and educators. One of the

explanations that was suggested for these difficulties is

the high degree of abstraction and complexity required

when dealing with the programming paradigm concepts

[19], [20]. Other researchers suggest that the

introductory courses have to only briefly address the

programming concepts, and to concentrate on

algorithmic thinking. This means spending more time

training students on ways to find solution to problems

[21], [22], instead of concentrating on the programming

language itself. As such, this approach uses a higher

level of abstraction, almost ignoring the specific

programming language and focuses mainly on building

and enhancing the capabilities required for algorithm

constructing [23]. By using the constructivist theory

definitions, this approach is about modifying or

enhancing the mental models. This debate on the issue

of defining the most successful ways to tackle the CS1

courses is fueled by the low students' enrollment which

unfortunately, was not affected by the fact the market

recovered from the problems caused by the burst of the

dot.com bubble. The decreased interest in the CS

(Computer Science) discipline [18], [24] combined with

the very high (sometimes up to 50%) drop-out rates [25],

[20], [26], [27] increased the urgency for various

additional attempts to solve the problem.

In dealing with the students' difficulties, several

researchers claim that some of the modern programming

languages used for CS1 courses require the

understanding and mastering of advanced concepts at an

early stage of the learning process. This means that the

factual information required by the CS1 courses

interferes with the procedural knowledge. Students who

cannot cope with this early understanding are failing the

16 Improve Abstract Reasoning in Computer Introductory Courses

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 1, 14-20

course because they do not understand the more abstract

programming concepts [23]. For addressing these

difficulties, some researchers and educators started using

visual environments in order to improve understanding

some of the abstract concepts related to programming

and problem solving. For example, visual environments

are used to illustrate an abstract concept while changing

it into a more concrete object. The visualization approach

for enhancing students' understanding is not new and it

has been used to teach children in the late 70's, for

example by using LOGO [28], [29], [30], [31]. LOGO is

a simple and basic programming language developed for

learning by example or "discovery learning". This

learning and exploration environment was designed to

stimulate cognitive development and creativity.

Visualization environments, tools and methodologies

were later addressed as learning by example or Micro-

worlds [32], [33], [34], [35]. These multimedia based

Micro-worlds are small, interactive and dynamic visual

learning environments which represent a conceptual

model of some part of the real world. For better handling

abstract issues, the model usually simplifies the real

world and makes it more understandable by using a

concrete visual representation and by providing various

tools to explore or manipulate it [36]. The reason for

implementing such mechanisms in which first children

and later students could develop algorithms without the

usage, or knowledge of formal programming language

was explained by Eric Roberts: "In real-world

programming languages like C, there are so many details

that learning about them tends to dominate the first few

weeks of a programming course. All too often, they

become the focus of the course, and the much more

critical issues of problem solving get lost in the shuffle"

[37]. The learning by example puts a greater emphasis on

the learning based on one's own experiences, which leads

to developing the right problem solving and algorithmic

thinking skills, instead of mastering the specifics of a

particular programming language.

The fast technological advancements affected the

visual environments as well and brought a wealth of

additional new tools that were addressing the students'

difficulties and were aiming to solve the problem. The

new environments defined and designed a friendlier and

gentler approach for teaching programming. One such

environment is "Karel the Robot" [38] that was

originally introduced for teaching Pascal. This is a non-

threatening, visual environment with a robot living in a

two dimensional world (Micro-world). The robot

performs tasks that emphasize programming logic. The

student instructs the robot to successfully perform some

pre-defined tasks while avoiding the various obstacles

presented in the world. By defining and controlling the

robot activities, the student is gradually exposed to the

principles of a programming language. Furthermore, the

environment provides a solid foundation for developing

problem solving methodologies such as logical

deduction and reasoning. The Karel environment was

later migrated to support additional programming

language, especially Java [38], [40], [41] and Python.

IV. THE STUDY

The current action research was performed during

four semesters as part of the CS1 course. The course is

delivered during the first semester of the first year and

represents the primary encounter students have with

programming, logic and problems solving. CS1 is

intended to set the foundations for the later more

complex courses, however for students with no prior

programming knowledge it is difficult and represents a

significant challenge. Our CS1 course is concentrating

on procedural programming, while the next

programming courses concentrate on the Object

Oriented paradigm. The first programming language,

used in this is course is Python, while next programming

courses use JAVA. During 2009 the course was taught

on both semesters and on 2010 and 2011 only during the

first semester. The total number of students enrolled is

relatively small and in addition there was a large

fluctuation in this number, as demonstrated by figure 1.

Figure 1. Number of students per semester

The problems associated with the our course were

similar to problems reported by other academic institutes,

i.e. a relatively high drop-out rate and the students who

successfully completed the course possessed lower than

expected programming and problem solving skills.

Originally, the course structure was simple and consisted

of three hour lecture using Python, a two hours lab

exercise and an additional support course. Python is an

easy-to-use interpreted language, yet powerful, portable,

object-oriented and open source. It can be used for

writing stand-alone programs, quick scripts, and

prototypes for large applications. In using Python, the

aim was to concentrate more of developing algorithms

and improving problem solving skills (procedural

knowledge) and less of the language syntax and

constructs (declarative knowledge). The support course

was included mainly for lowering the understanding

barriers and helping students construct their mental

models that represent knowledge. The support course

was a two hour lecture and lab, using "Karel the Robot"

Micro-world. The intension was to strengthen the

algorithmic thinking capabilities and provide a visual

environment and an easier way of understanding. This

visual environment was intended mainly for the more

abstract issues such as nested loops, nested conditions

and recursion.

There are many academic institutes which use Micro-

world environments as part of their introductory

45

20
26

41

0

10

20

30

40

50

2009-1 2009-2 2010-1 2011-1

 Improve Abstract Reasoning in Computer Introductory Courses 17

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 1, 14-20

programming courses. However, unlike other institutes

that use the Karel environment mainly during the first

one or two lessons and just for preliminary

understanding of basic programming constructs, the

structure we employed was based on a semester long

usage. This way Karel was used not only for

understanding the basic programming constructs, but

also for visualizing some of the more complex concepts.

Specially, we used the environment so that students will

be able to design and check various algorithms for

solving problems while evaluating and debating among

themselves and in class each algorithm. Although

students worked individually, the lab acted as a formal

learning group during the whole semester, in which the

students worked individually, but learned collectively.

Unfortunately, this course structure which was based

on Python as the primary programming language

supported by a semester long usage of a visualization

tool, had no positive effect in our case and the

percentage of the failing students was very high (43.1%).

Due to these poor results an action research study was

initiated. The main idea was to find the best way for

teaching the course. The only dependent variable used to

assess the success was the failing students' percentage.

The action research study was based on 3 evolutionary

course versions (Table 1) and was run during 4

semesters.

In order to affirm the results obtained using the first

course structure (Python and Karel the Robot) the same

structure was repeated during the second semester.

Unfortunately, during the two semesters in 2009, in

which this structure was employed, the failing

percentages were similar and very high (43.1% and

45.8% see Figure 2). A thorough analysis which

included discussions with students regarding their

difficulties revealed that "Karel the Robot", which

initially was considered a visualization tool for

enhancing understanding, caused more confusion. The

course lectures concentrated on teaching procedural

programming, while Karel is using an object oriented

approach. This difference not only did not provide the

required assistance, but it even caused more

misunderstanding. Furthermore, although the two

courses (CS1 and the support course) were two parts of

the same course, they were delivered by two instructors,

which may have caused additional confusion. Another

much more troubling issue was linked to the Karel

environment that proved to be unstable. During normal

work, the environment may suddenly abort, without

saving the current project. In such cases, all the work

performed was lost. Due to the course structure, in

which the Karel environment was used throughout the

whole semester, the stability issues became of a great

importance, unfortunately with a negative impact.

During the first half of the semester, while the examples

and exercises were relatively simple, everything worked

fine. However, during the second half, when the

exercises became more complicated and the students had

to define many new procedures the environment turned

out to be unstable. This problematic behavior translated

into many lost hours and turned into a frustrating issue.

As a consequence some students preferred to stop using

the environment, even at the expense of decreased

understanding and a lower grade.

Based on Python's success in other institutes, the

decision was made to continue using Python as the first

programming language, and replace the supporting

visualization environment. On the third semester, a

second version of the course structure was employed.

"Karel the Robot" was replaced by GvR (Guido van

Robot) a Python based implementation of "Karel the

Robot". This is an open source product that can be

downloaded freely and installed on the students'

computers, supporting a variety of platforms. As part of

the preparations for the course a long and intense

benchmark was carried and several problems that were

discovered in the product were corrected. For enhancing

understanding the two courses were delivered by the

same instructor, which allowed for better integration

between the two courses and relating smoothly from one

course concepts to the other. This change was very

successful and the number of failing students, in this

version of the course, was reduced by 63.5%, from

45.8% of failing students to 16.7% (Figure 2).

Due to the author's experience with individual and

unique assignments [42], [43] it was decided to

implement this tactic as well. This was done mainly, in

an effort to further reduce the failing students'

percentage. The last version of the course was very

similar, with only one change. The support course (the

GvR Micro-world), which included several assignments

and contributed 10% to the CS1 course grade was

changed to use individual and unique assignments. This

type of assignments is based on individual assignments,

which means that the students cannot share or borrow

solutions with/from their friends. Each exercise is

unique, so students can only discuss among themselves

the algorithms; since each student receives a different

assignment one student solution is irrelevant to the other.

This change was successful and reduced failing students'

percentage by additional 41.6%, from 16.7% to 9.8%

(Figure 2).

Figure 2. Failing students percentage

Table 1 summarizes the 3 versions of the course

structure, including the main attributes of each version,

the weaknesses and the results obtained by utilizing it.

43.1% 45.8%

16.7%
9.8%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

2009-1 2009-2 2010-1 2011-1

18 Improve Abstract Reasoning in Computer Introductory Courses

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 1, 14-20

TABLE I. COURSES VERSIONS SUMMARY

Ver. Year Tools Instructors Weakness Failing %

1 2009
Python & "Karel the

robot"

2 instructors; one for

python and one for Karel

Karel stability issues that
hampered usage and

understanding

43.1% on 1st
usage of this version,

45.8% on 2nd

2 2010
Python & GVR ordinary

assignments
1 instructor for both
Python and GVR

 16.7%

3 2011
Python & GVR individual

assignments

1 instructor for both

Python and GVR
 9.8%

V. RESULTS AND DISCUSSION

This paper describes an action research study that was

performed in order to help students cope better with the

difficulties related to introductory programming courses

by improving their algorithmic thinking and problem

solving skills. The original structure, which used Python

and was based on a standard 3 hours lecture, followed

by a 2 hours exercise and an additional 2 hours Micro-

world lecture/lab was slightly modified. The last and

more successful structure used same general components;

however, the visual environment in the support course

was replaced. In addition, the assignments as part of the

support course emphasized individual learning in a

cooperative environment, which added another level of

success. During the four semesters of this action

research, the students' failing percentage was dropped by

77.4% (from 43.1% to 9.8%).

The issues raised by this action research support

similar findings presented in other papers that adding a

visualization environment (Micro-world) improved the

students' operational knowledge. In the first version of

the course, the visualization environment was not

successful; however it was related to stability issues with

that environment, which lead to many students

abandoning it. The net result was that the students

enhanced their mental models by developing abstract

knowledge related to programming concepts and

algorithms for solving problems, instead of

concentrating on syntax issues. This was evident,

because the exam concentrates on algorithmic issues and

not just syntax. Succeeding in the exam is possible only

for students who understand the principles and are

capable to solve problems. The use of the GvR Micro-

world provided additional insight into the process. The

importance of visual environments especially when

dealing with abstract concepts is not new and was

already addressed by many researchers (Papert, 1980;

Dagdilelis and Satratzemi, 2001; Hoyles, Noss &

Adamson,2002; Sarama & Clements, 2002 to name a

few). However, this action research demonstrated the

importance of these environments and a direct link

between them and the actual CS1 course. The 77.4%

improvement in the failing percentage may be attributed

to the fact we used the Micro-world environment during

the whole the semester, while, in many academic

institutes, where Micro-worlds are integrated into the

CS1 course they are being used only for the first one or

two lectures.

The impact of using the Micro-world was intensified

by the fact it created a semester long team based

collaboration. Although each student had to work

individually on his/her assignments, in the lab, there

were sub-groups who worked and learned together, as

was evident by the fact they used same seats throughout

the whole semester. This supports similar findings by

many researches that group learning helps students build

their understanding more efficiently (Beckman, 1990;

Cooper et al., 1990; Goodsell, et al., 1992). The lab

exercises provided an additional way of collaboration,

since it acted as a foundation for discussions regarding

various solutions and the benefits and shortcomings of

each one. The success attributed to using individual and

unique assignments support similar findings and it

contributed to further lowering the failing rate.

The reasons behind the fluctuations in the number of

enrolled students are unknown. It may, however, be

related to the high percentage of failing students. This is

a relatively small regional college and the information,

especially in the social networks era is spreading fast.

There is some correlation between the failing percentage

and the reduction in the enrolment. However, this issue

will have to be monitored in the future, before it will

become conclusive.

REFERENCES

[1] A. Dillon, “Knowledge Acquisition and

Conceptual Models: A Cognitive Analysis of the

Interface” in Diaper, D. and R. Winder (eds.)

People and Computers III, Cambridge, UK:

Cambridge University, pp. 371-379, 1987

[2] R. Barr, and J. Tagg, “From Teaching to Learning-

a New Paradigm for Undergraduate Education”,

Change Magazine, Nov/Dec, pp. 13-25, 1995

[3] S. Bell, S. and A. Lane. "From Teaching to

Learning: Technological potential and sustainable,

supported open learning“, Systemic Practice and

Action Research, 11(6), pp. 629-650, 1998

[4] R. DuFour, R. Eaker, and R. DuFour, On common

ground: The power of professional learning

communities, Bloomington, IN: Solution Tree,

2005

[5] Stoica, I, Moraru, S and Miron , C. Concept Maps,

A Must for the Modern Teaching-Learning Process.

Romanian Reports in Physics, 63(2), pp. 567–576,

2011

 Improve Abstract Reasoning in Computer Introductory Courses 19

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 1, 14-20

[6] Lavy, V. What Makes an Effective Teacher?

Quasi-Experimental Evidence, The National

Bureau of Economic Research Working Paper No.

16885, 2011

[7] E. Zhi-Feng, S. Liu, C. Chi-Huang, and Y. Shyan-

Ming, “Web-Based Peer Review: The Learner as

Both Adapter and Reviewer”, IEEE Transactions

on Education, 44(3), p. 246, 2001

[8] J. R. Anderson, Cognitive Psychology and its

Implications, San Francisco: Freeman, 1980

[9] L. R. Squire, Memory and Brain. New York:

Oxford University Press, 1987

[10] K. Johnson, Language Teaching and Skill Learning,

Oxford, Basil Blackwell, 1995

[11] J. B. Biggs, Teaching for Quality Learning at

University, Second edition, Buckingham, Open

University Press, Open University Press/Society

for Research into Higher Education, 2003

[12] M. Beckman, "Collaborative Learning: Preparation

for the Workplace and Democracy", College

Teaching, 38(4), 128-133, 1990

[13] J. Cooper, "Cooperative Learning and College

Teaching: Tips from the Trenches", Teaching

Professor, 4(5), pp.1-2, 1990

[14] A. Goodsell, M. Maher, V. Tinto, L. Smith, & J.

MacGregor (eds.) Collaborative Learning: A

Sourcebook for Higher Education. University Park:

National Center on Postsecondary Teaching,

Learning, and Assessment, Pennsylvania State

University, 1992

[15] D. W. Johnson, R. T. Johnson, and K. A. Smith,

Cooperative Learning: Increasing College Faculty

Instructional Productivity. ASHE-FRIC Higher

Education Report No.4, Washington, D.C.: School

of Education and Human Development, George

Washington University, 1991

[16] M. Prince, “Does Active Learning Work? A

Review of the Research”, Journal of Engineering

Education, 93(3), pp. 223-231, 2004

[17] R. Webster, and F. Sudweeks, "Enabling Effective

Collaborative Learning in Networked Virtual

Environments", Current Developments in

Technology-Assisted Education, (2) pp.1437-1441,

2006

[18] U. Nikula J. Sajaniemi, M. Tedre S. Wray, Python

and Roles of Variables in Introductory

Programming: Experiences from three Educational

Institutions. Journal of Information Technology

Education, 6, 199-214, 2007 Available at

http://jite.org/documents/Vol6/JITEv6p199-

214Nikula269.pdf Accessed August 2012

[19] A. Robins, J, Rountree, & N. Rountree, Learning

and teaching programming: A review and

discussion. Computer Science Education, 13(2),

137-172, 2003

[20] L. Rich, H. Perry,& M. Guzdial, A CS1 course

designed to address interests of women, 35th

SIGCSE Technical Symposium on Computer

Science Education (pp. 190-194). Norfolk, Virginia,

USA: ACM Press, 2004

[21] A. I. Forsyth, T.A. Keenan, E. I. Organick, and W.

Stenberg, Computer science: A first course, John

Wiley, 1975.

[22] G. Futschek, Algorithmic Thinking: The Key for

Understanding Computer Science. In Lecture

Notes in Computer Science 4226, Springer, pp. 159

– 168, 2006

[23] B. N. Miller, and D. L. Ranum, Teaching an

introductory Computer Science Sequence with

Python. Proceedings of the 38th Midwest

Instructional and Computing Symposium, Eau

Claire, Wisconsin, USA, 2005.

[24] A. Radenski, "Python first": A lab-based digital

introduction to computer science, 11th annual

SIGCSE conference on innovation and technology

in computer science education (pp. 197-201).

Bologna, Italy: ACM Press. 2006

[25] M. Guzdial, Media Computation Course for Non-

Majors. ITiCSE Proceedings. P104-108 .ACM. NY.

2003

[26] N. Herrmann, J. L. Popyack, B. Char, P. Zoski, C.

D. Cera, T. N. Lass, Redesigning introductory

computer programming using multi-level online

modules for a mixed audience, 34th SIGCSE

technical symposium on computer science

education (pp. 196-200). Reno, Nevada, USA:

ACM Press. 2003

[27] N. Nagappan, L. Williams, M. Ferzli, E. Wiebe, K.

Yang, C. Miller, et al.. Improving the CS1

experience with pair programming, 34th SIGCSE

technical symposium on computer science

education (pp. 359-362). Reno, Nevada, USA:

ACM Press. 2003

[28] W. Feurzeig, & G. Lukas, Logo: A programming

language for teaching mathematics. Educational

Technology, March, 1972.

[29] G. Fischer, Material and ideas to teach an

introductory programming course using Logo.

Irvine, Calif.: Department of Information and

Computer Science, U. C. Irvine, 1973.

[30] R. Rubinstein,. Computers and a liberal education:

Using Logo at the undergraduate level. Irvine,

Calif.: Department of Information and Computer

Science, U. C. Irvine, 1974.

[31] A. B. Cannara, “Experiments in Teaching Children

Computer Programming.” Technical Report No.

20 Improve Abstract Reasoning in Computer Introductory Courses

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 1, 14-20

271. Institute for Mathematical Studies in the

Social Sciences, Stanford University, 1976.

[32] S. Papert, Mindstorms: Children, Computers and

Powerful Ideas, Nova York: Basic Books, 1980

[33] V. Dagdilelis, and M. Satratzemi,. Post's Machine:

A Didactic Microworld as an Introduction to

Formal Programming, Educational and Information

Technologies, 6(2), 123-141, 2001

[34] C. Hoyles, R. Noss, & R. Adamson, Rethinking the

Microworld idea. Journal of Educational

Computing Research, 27(1&2), 29-53, 2002

[35] J. Sarama, & D. Clements, Design of Microworlds

in mathematics and science education. Journal of

Educational Computing Research, 27(1&2), 1-5,

2002

[36] J. Hogle, Computer Microworlds in education:

Catching up with Danny Dunn. (ERIC Document

Reproduction Service No. ED 425738), 1995

http://www.eric.ed.gov/ERICWebPortal/contentdel

ivery/servlet/ERICServlet?accno=ED425738

Accessed August 2012

[37] E. S. Roberts, The Art and Science of C: A

Library-Based Approach, Reading, MA: Addison-

Wesley, 1995

[38] R. E. Pattis, Karel the Robot: A Gentle

Introduction to the Art of Programming. John

Wiley & Sons Inc. New York, NY, USA. 1981

[39] B. Becker, Teaching CS1 with Karel the Robot.

Proc. ACM SIGCSE 32nd Technical Symposium

on Computer Science Education, Charlotte NC. 50-

54 ACM Press. 2001

[40] D. Buck, & B. Stucki, JKarelRobot: A Case Study

in Supporting Levels of Cognitive Development in

the Computer Science Curriculum. Proc. ACM

SIGCSE 32nd Technical Symposium on Computer

Science Education, Charlotte NC. 16-20 ACM

Press. 2001

[41] J. Bergin, M. Stehlik, J. Roberts, R. Pattis, Karel J.

Robot: A Gentle Introduction to the Art of Object

Oriented Programming. Dream Songs Press. 2005.

http://csis.pace.edu/~bergin/KarelJava2ed/Karel++

JavaEdition.html.

[42] A. Yadin, and R. Or-Bach, Fostering individual

learning: when and how. ACM SIGCSE Bulletin

40(4): 83-86 2008

[43] A. Yadin, "Reducing Students' Dropout – The Case

of Individual Assignments". eLSE 2011 - The 7th

International Scientific Conference - eLearning and

Software for Education – Bucharest, Romania,

April 2011 (2), pp 297-302

Dr. Aharon Yadin is a Senior Lecturer at the Max Stern

Yezreel Valley College (YVC), Management

Information Systems Department. Aharon's primary

teaching areas are related to computer architectures and

programming and business/management information

systems issues. Prior to entering the academic world,

Aharon worked in the High Tech industry. He has over

30 years of IT experience including: management,

system performance analysis and enhancement,

computer center and IS management, wireless networks

and communication technologies and document

management.

Aharon has published over one hundred papers,

assays and scientific and technological reports (many in

Hebrew), he is the author of 12 Hebrew instructional

books. In addition, he consults the European

Commission on software related projects and

technologies.

