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Abstract — This paper introduces an improved ear 
recognition approach based on 3 dimensional keypoint 
matching and combining local and holistic features. At 
first, the 3D keypoints are detected using the shape 
index image. The system consists of four primary steps: 
i) ear image segmentation; ii) local feature extraction 
and matching; iii) holistic feature extraction and 
matching; and iv) combination of local and holistic 
features at the match score level. For the segmentation 
purpose, we use an efficient skin segmentation algorithm, 
to localize a rectangular region containing the ear. For 
the local feature extraction and representation purpose, 
we use the Sparse Representation based Localized 
Feature Extraction. For the holistic matching component, 
we introduce a voxelization scheme for holistic ear 
representation. The match scores obtained from both the 
local and holistic matching components are combined to 
generate the final match scores. 
 
Index Terms — Biometrics, Ear biometrics, 3D ear 
recognition, 3D keypoint detection, shape index, 
voxelization. 
 

I. INTRODUCTION 

Ear recognition has attracted much attention in recent 
years. Compared with other popular human features, ear 
has many advantages, such as face, fingerprint and gait. 
For example, ear is rich in features; it is a stable 
structure which does not change with the age; it doesn’t 
change its shape with facial expressions, cosmetics and 
hair styles and so on. Especially, when we can’t capture 
the well-posed face images, ear recognition technique 
becomes more important. Much work has been done in 
this field and those approaches roughly can be classified 
into two categories: 2D-based approaches and 3D-based 
approaches [1, 2].Compared with the 2D-based 
approaches, the 3D-based approaches are relatively 
insensitive to pose and lighting variations. So in recent 
years, more and more researchers began to pay more and 
more attention to the recognition approaches based on 
3D ear data. Relevant research activities have 
significantly increased, and much progress has been 
made in recent years. However, most current systems 
perform well only under constrained environments, even 

requiring that the subjects be highly cooperative. 
Furthermore, it has been observed that the variations 
between the images of the same ear due to illumination 
and viewing direction are often larger than those caused 
by changes in ear identity. The introduction of the three-
dimensional (3-D) ear modality mitigates some of these 
challenges by introducing a depth dimension that is 
invariant to both lighting conditions and head pose. Ear 
images can be acquired in a similar manner to face 
images, and a number of researchers have suggested that 
the human ear is unique enough to each individual to be 
of practical use as a biometric. Several researchers have 
looked at using features from the ear’s appearance in 2D 
intensity images [3, 4]. A smaller number of researchers 
have looked at using 3D ear shape [5].  

The face and the ear have become popular due to their 
rich set of many distinctive features as well as the 
possibility of easy and non-intrusive acquisition of their 
images. Unlike most other traits (including iris), ear and 
face data can also be collected using 3D scanners. 
Although, 2D data are easier and less expensive to 
acquire, they have many inherent problems such as 
variance to pose and illumination, and sensitivity to the 
use of cosmetics, clothing and other decorations. 
Biometric systems using 3D data are potentially free of 
these problems. With the advancement in modern 
technology, 3D sensing devices are becoming cheaper 
and smaller enough to be feasible for a wider range of 
applications. Hand geometry data (including palm or 
finger shape) can also be collected using 3D sensors, 
however, it requires explicit cooperation of the users and 
a specialized and comparatively larger facility to extract 
the geometric features correctly. Besides, these features 
are not known to be very distinctive. They are also not 
stable during the growth period of children and often 
limited by an individual's dexterity (e.g. from arthritis) 
and the use of jewelry (e.g. rings). Consequently, there 
have been very few approaches using 3D hand 
biometrics alone or with the combination of 3D face 
biometrics. Considering these factors, we only focus in 
this survey on 3D ear and face biometrics. Ample 
research has been performed in the last few years 
proposing different methods of using ear and face as 
biometric traits for identification and authentication 
purposes. However, the accuracy and the robustness 
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required for real-world applications are still to be 
achieved. This implies that it would be beneficial to look 
at existing and proposed approaches to identify the 
challenges and suggest future research directions. 

The rest of the paper is organized as follows. Section II 
describes the related works. The technical approaches are 
described in section III. In section IV, conclusion is 
added. 

 

II. RELATED WORKS 

Bhanu and Chen presented a 3D ear recognition 
method using a local surface shape descriptor [6]. Twenty 
range images from 10 individuals (2 images each) are 
used in the experiments and a 100% recognition rate is 
reported. In [7], Chen and Bhanu use a two-step ICP 
algorithm on a dataset of 30 subjects with 3D ear images. 
They reported that this method yielded 2 incorrect 
matches out of 30 persons. In these two works, ears are 
manually extracted from profile images. They also 
presented an ear detection method in [8]. In the offline 
step, they build an ear model template from 20 subjects 
using the averaged histogram of shape index. In the 
online step, first they use a step edge detection and 
thresholding to find the sharp edge around the ear 
boundary, and then apply dilation on the edge image and 
connected-component labeling to search for ear region 
candidates. Each potential ear region is a rectangular box, 
and it grows in four directions to find the minimum 
distance to the model template. The region with minimum 
distance to the model template is the ear region. They get 
91.5% correct detection with 2.5% false alarm rate. No 
ear recognition is performed based on this ear detection 
method. Hurley et al. [9] developed a novel feature 
extraction technique by using force field transformation. 
Each image is represented by a compact characteristic 
vector, which is invariant to initialization, scale, rotation 
and noise. The experiment displays the robustness of the 
technique to extract the 2D ear. Their extended research 
applies the force field technique on ear biometrics [10]. 
In the experiments, they use 252 images from 63 subjects, 
with 4 images per person, and no subject is included if 
the ear is covered by hair. A classification rate of 99.2% 
is claimed on their dataset. Victor [11] and Chang [12] 
compared 2D ear to 2D face using the same Principal 
Component Analysis (PCA) recognition algorithm. The 
two studies came to slightly different conclusions in 
comparing ear biometrics and face biometrics. Both ear 
and face show similar performance in Chang’s study, 
while ear performance is worse in Victor’s study. Chang 
explained that the difference might be due to differing ear 
image quality in the two studies. Moreno et al. [13] 
experimented with three neural net approaches to 
recognize people from 2D intensity images of the ear. 
Their testing uses a gallery of 28 persons plus another 20 
persons not in the gallery. They find a recognition rate of 
93% for the best of the three approaches. Yuizono [14] 
implemented a recognition system for 2D intensity 
images of the ear using genetic search. In the experiment 
they had 660 images from 110 persons, with 6 images per 

person. They reported that the recognition rate for the 
registered persons was approximately 100%, and the 
rejection rate for unknown persons was 100%. Pun and 
Moon [15] have surveyed the comparatively small 
literature on ear biometrics. We previously looked at 
various methods of 2D and 3D ear recognition, and found 
that an approach based on 3D shape matching gave the 
best performance. The detailed description of the 
comparison of different 2D and 3D methods can be found 
in [16]. This work found that an ICP-based approach 
statistically significantly outperformed the other 
approaches considered for 3D ear recognition, and also 
statistically significantly outperformed the 2D “eigen-
ear” result. Therefore an ICP-based approach is 
extensively investigated and used as matching algorithm 
in this current study. Of the publications reviewed here, 
only two works deal with biometrics based on 3D ear 
shape. The largest dataset, in number of persons, is 110. 
And the presence or absence of earrings is not mentioned, 
except for [17], in which earrings are excluded. 
Comparing with the publications reviewed above, the 
work presented in this paper is unique in several points. 
We report results for the largest ear biometrics study to 
date, in terms of number of persons, 415. Our work is 
able to deal with the presence of earrings. Ours is the 
only work to fully automatically detect the ear from a 
profile view and segment the ear from the surroundings. 
Because we use a large experimental dataset, we are also 
able to explore how the different algorithms scale with 
number of persons in the gallery.  

 

III. TECHNICAL APPROACH 

The system block diagram is sketched in Fig. 1. The 
each term of the following block diagram are explained in 
the below. 

 

 
 

Figure1. Proposed ear recognition system 
 

A. Three Dimension (3D) Ear Keypoints Detection 
The 3D ear points are arranged in strips in (x, y) space 

with z coordinates of each point indicating its depth. At 
first, the shape indexes of the 3D ear data are computed. 
Shape index (SI) is a quantitative measure of the shape of 
a surface at a point p [18] that we can define as following:
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Where k1 and k2 are the principal curvatures of the 

surface, with k1 ≥ k2. With this definition, the range of the 
shape index is [0, 1]. As the principal curvatures are 
invariable to rotation and transformation, the shape 
indexes are rotation and transformation invariant. 
 

 
 

Figure 2. Key point’s detection 
 

B. Skin Detection and Segmentation 
Skin detection [19] is the process of finding skin 

colored pixels and regions in an image or a video. This 
process is typically used as a preprocessing step to find 
regions that potentially have human ear. Such regions 
detected are segmented and separated so that the possible 
area to find the ear can be reduced. The skin 
segmentation is done on the acquired color image of the 
side face. The output of the skin segmentation algorithm 
will be the skin segmented portion of the input image 
which acts as the input to the correlation matching. The 
most popular algorithm for skin detection is based on 
color skin information. Different color space information 
is required for the conversion of image in RGB to 
appropriate color to get a better result. The color space 
conversions like YCbCr, HSV were studied and 
compared. In this paper we convert the image from RGB 
to YCbCr, as RGB is sensitive to the variation of intensity. 
YCbCr space segments the image into a luminosity 
component and chrominance components. The main 
advantage is that influence of luminosity can be removed 
during processing an image when using YCbCr 
segmentation method [19]. 

B.1 Segmentation of the Region of Interest (ROI) 
The process following skin segmentation is grouping 

or merging the parts to form candidate face region. The 
unconnected components and noise in the obtained output 
is removed. A second step performed to reduce the search 
area and at the same time increase the possibility to find 
ear is to identify the leftmost, rightmost, top and bottom 
skin pixels and automatically crop the image with the 
estimated pixels. This helps to omit the uninterested 
region of search. This method of reducing area of search 
gives positive signs to the computational time of 
localization thereby increasing the efficiency of the 
algorithm. ROI segmentation of ear image is to 
automatically and reliably segment a small region from 

the captured earth image and ear image extraction is to 
extract the ear from a ROI. 

C. Local Feature Extraction  
For local feature extraction and representation, we use 

sparse representation based localized feature extraction 
method. The local grey-level information from the 
normalized ear images often describes the ear shape and 
the appearance of the surface texture. One possible 
approach to effectively represent the distribution of such 
local texture information is to compute their spatial 
orientation across multiple scales. Such spatial orientation 
information can be acquired using the convolution with 
the popular multi-scale and multi-orientation filters. 
However the convolution with such filters, e.g. Gabor 
filters, Ordinal filters, or second Derivative of Gaussian 
filters, is computationally expensive. Therefore our 
approach is to construct an over complete dictionary 
using a set of binarized masks which are designed to 
recover the localized orientation information from the 
normalized ear images. The elements of this dictionary M 
are defined by [m1,…….,mr]εRn*r with k ≤ n. The 
elements of dictionary M, i.e., m, are introduced to 
estimate the spatial orientation of dominant local grey-
level appearances in one of the possible directions. These 
elements are constructed from a set of points Sθ on a 
finite grid R2q, where Rq = {0, 1,.…, q-1} with q as a 
positive integer, and can be defined as in the following: 
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Where θ ε [0, π] and denotes the angle between line Sθ 

and the positive x-axis, and Sθ is the line passing through 
the center (x0, y0) of R2q. We use the sparse 
representation to model computationally efficient 
Localized Radon Transform (LRT) based dictionary 
which encodes the spatial orientation of local gray-level 
relationship that constitutes the localized ear shape and 
texture features. The sparse representation uses image 
patches which are uniformly sampled from the 
normalized (and enhanced) ear image, with adjacent 
patch centers of l * l LRT mask. The sparse 
representation, i.e. coefficients ax, y, of each of such 
vectorized patch gx, y ε Rn centered at (x, y), requires 
solution for the following l1-regularized optimization 
problem: 
 

,
2

, , ,2 1min || || || ||x ya x y x y xDa g aλ− + y          [3] 
 

D. Local Feature Representation 
The sparse representation of the local orientation 

features for each of the normalized ear image patch is 
achieved by solving the regularized optimization problem 
as depicted in above equation using FISTA [20] and then 
clipping all negative ai, j’s to zeros. Therefore all the 
negative coefficients are effectively removed in such 

Copyright © 2013 MECS                                                  I.J. Modern Education and Computer Science, 2013, 11, 36-41 



 A Biometric Based: 3-D Ear Recognition System Combining Local and Holistic Features 39 

formulation. The four HIS descriptors are then 
concatenated to form a 64-dimensional feature vector. 
The shape index value of the keypoint is appended to the 
feature vector to increase its discriminative potential and 
reduce the probability that keypoints exhibiting different 
shape types are matched in the feature matching stage. 

E. Local Feature Matching 
In the local feature representation, a 3-D ear surface is 

described by a sparse set of keypoints, and associated 
with each keypoint is a descriptive SPHIS feature 
descriptor that encodes the local surface information in an 
object-centered coordinate system. The objective of the 
local feature matching is to match these individual 
keypoints in order to match the entire surface. To allow 
for efficient matching between gallery and probe models, 
all gallery images are first processed. The extracted 
keypoints and their respective local features are stored in 
the gallery. Each feature represents the local surface 
information in a manner that is invariant to surface 
transformation. A typical 3-D ear image will produce 
approximately hundred overlapping features at a wide 
range of positions that form a redundant representation of 
the original surface. In the local feature matching stage, 
given a probe image, a set of keypoints and their 
respective SPHIS descriptors are extracted using the same 
parameters as those used in the feature extraction of the 
gallery images. 

F. Holistic Feature Extraction 
For a gallery model, the ear surface output from the 

detection component is normalized to a standard pose. 
The centroid of the surface is firstly mapped to the origin 
of the coordinate system. Then, the principal components 
corresponding to the two largest Eigen values of the 
surface are calculated. The surface is then rotated such 
that the two principal components are aligned with the x 
and y axes of the coordinate system. The probe model is 
then registered onto the gallery model by applying the 
transformation obtained by the local matching stage for 
each point on the probe model. 

G. Holistic Feature Representation 
The holistic representation employed in this work is a 

voxelization of the surface. A voxelization is defined as a 
process of approximating a continuous surface in a 3-D 
discrete domain [21]. It is represented by a structured 
array of volume elements (voxels) in a 3-D space. A 
voxel is analogous to a pixel, which represents 2-D image 
data in a bitmap. The representation employed in this 
work is the binary voxelization. This representation 
simply encodes the presence of a point within a voxel. A 
voxel that has a point enclosed within it is assigned a 
value of “1”, and “0” otherwise.  

 
 

Figure 3. Curve of the experimental results. 
 

H. Holistic Feature Matching 
The transformation used to register a probe-gallery 

model pair in the local matching stage is applied to the 
bounding box of the probe model. The joint spatial extent 
of the registered probe and gallery model bounding boxes 
is computed. The voxel grid used to voxelize the gallery 
model is extended. This extended voxel grid is then used 
to voxelize. Additionally, the voxelization representation 
of the gallery model is zero padded to account for this 
extension. Both models have been voxelized utilizing a 
common voxel grid. The output of the local matching 
stage and the voxel grid are used to do the global 
matching.  

I. Combination 
We combine the local and holistic match scores using 

the weighted sum technique. This approach is in the 
category of transform-based techniques (i.e., based on the 
classification. In multimatcher biometric systems, a 
common fusion method is to directly combine the match 
scores provided by different matchers without converting 
them into posteriori probabilities. The combination of the 
match scores is meaningful only when the scores of the 
individual matchers are comparable. This requires a 
change of the location and scale parameters of the match 
score distributions at the outputs of the individual 
matchers.  The sigmoid function score normalization [22] 
is used to transform the match scores obtained from the 
different matchers into a common domain that can be 
defined as following: 
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Where sj and sj

n are the scores before normalization 
and after normalization, τ is the reference operating point 
and α1 and α2 denote the left and right edges of the region 
in which the function is linear. The double sigmoid 
normalization scheme transforms the scores into the 
interval of [0 1], in which the scores outside the two 
edges are nonlinearly transformed to reduce the influence 
of the scores at the tails of the distribution.
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The weighted sum of the normalized scores is then 
used to generate a final matching score. 
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Where sj

n and wj are the normalized match score and 
weight of the jth modality, respectively, with the condition 
Σj

2
=1 wj =1. The weights can be assigned to each matcher 

by exhaustive search or based on their individual 
performance [23]. We simply choose equal weights for 
our local and holistic matchers. 
 

 
 

Figure 4. Recognized ear 
 

IV. CONCLUSIONS 

A complete and fully automatic approach for human 
ear recognition system from 3D images is developed. 
This is done by matching three dimensional key points 
and combining local and holistic features. The efforts 
detailed in this research to exploit the sparse 
representation of local ear shape descriptors have 
illustrated superior performance for the automated ear 
recognition problem. 
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