
I.J.Modern Education and Computer Science, 2013, 2, 41-47
Published Online February 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2013.02.06

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 2, 41-47

An Assessment of Extreme Programming Based

Requirement Engineering Process

Muhammad Khalid

Department of Computing

Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST),

Islamabad, Pakistan.

successcodes2009@gmail.com

Sami ul Haq

Department of Computing
Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST),

Islamabad, Pakistan.

uomiansame007@gmail.com

Muhammad Naeem Ahmed Khan

Department of Computing

Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST),

Islamabad, Pakistan.

mnak2010@gmail.com

Abstract— Comprehensive requirement engineering (RE)
process acts as a backbone of any successful project. RE

processes are very complex because most of the

requirement engineering documentation is written in

natural languages, which are less formal and often

distract the designers and developers of the system. To

streamline different phases of the software lifecycle, first

we need to model the requirement document so that we

can analyze and integrate the software artifacts.

Designers can ensure completeness and consistency of

the system by generating models using the requirement

documents. In this paper, we have made an attempt to

analyze extreme programming based RE approach to
understand its utility in the requirement elicitation phase.

In this study, different RE process models are evaluated

and a comparison of the extreme programming technique

is drawn to highlight the merits of the latter technique

over the conventional RE techniques.

Index Terms— Requirement Engineering, Extreme

Programming, Requirement Elicitation, SDLC

I. INTRODUCTION

The field of software development is facing several

challenges due to incorporation of nonstandard models

and tools in the requirement engineering (RE) phase.

Because of this, the failure rate of software projects is

increasing rapidly. Proper emphasis on the requirement

engineering process is considered as a key to the success

of a software project. The objective of this research is to

evaluate different requirement engineering process

models and do and in-depth study of the eXtreme

Programming (XP) approaches. RE is a complex process

because most of the RE documents are written in natural
languages. The disposition of a natural language always

contains ambiguity because it is less formal and often

contains confounded information due to multiple

denotations of a single word; therefore, its connotation

highly depends on the context used. To streamline

different phases of software development lifecycle,

designers need to model the requirement document in

order to integrate the system artifacts which can be easily

analyzed. Modeling of the requirement document is

necessary to ensure completeness and consistency of the

document traceability for maintenance [1,2,3].

Extreme programming is one of the several popular

agile processes, and its history dates back to March 6,

1996 when the first extreme programming project was

launched. Extreme programming has been reported to be

very successful, particularly, in the projects undertaken

by the large-sized companies and industries worldwide.

According to Jiang [3], RE is a process that constantly

reiterates requirement definition, documentation and

development, and then it produces confirmed
requirements at the end of its process.

Extreme programming puts more emphasis on the

teamwork. All the stakeholders, particularly managers,

customers, users and developers are all equal partners of

a collaborative team. Extreme programming is much like

a jigsaw puzzle as it consists of many small pieces —

individual pieces do not make sense but when combined

together, they depict a complete picture of the project.
The amazing aspect of extreme programming is its simple

rules; the rules may seem inelegant and perhaps even

naive in the first place, but in fact, they are based on

sound standards and principles. Extreme programming

approach improves a software project in five different

42 An Assessment of Extreme Programming Based Requirement Engineering Process

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 2, 41-47

ways: communication, simplicity, feedback, respect and

courage. In addition, there are five rules for extreme

programming technique: planning, managing, coding,

designing and testing. Each of these rules is further

subdivided into small chunks of guidelines. In this paper,

we only use planning and managing rules of extreme

programming.

This paper is structured into four sections. An

introduction to extreme programming based requirements

engineering processes is provided in this section. The

next section summarizes literature review of the current

extreme programming and pair programming practices. A

critical analysis and comparison of the techniques

discussed in Sections are enunciated in Section III.

Finally, we conclude in the last section.

II. INSIGHT INTO EXTREME PROGRAMMING PRACTICES

Extreme programming is a disciplined approach to

software development According to Tchidi and He [4],

Six Sigma defines set of practices to improve processes.

We can use Six Sigma for RE process model; the design

thus evolves will be called Design for Six Sigma, or

DFSS for short. However, the paper focuses more on

quality improvement than the process improvement.

A. DFSS Methodology

DFSS focuses on process improvement to achieve
quality and customer satisfaction. In light of this, DFSS

methodology is described as follows:

 Define goals for RE that are consistent with the

customer demands.

 Measure and identify the quality characteristics. In

the realm of RE, it defines key quality goals that

decide upon whether the quality is met or not. If the

quality is not met, then it is deemed as a defect.

 Develop designs that meet the defined or required

goals and objectives; and analyze the developed

design based on the quality characteristics. The

designs that do not meet the defined quality
characteristics are discarded. If multiple designs

meet the quality characteristics, then select the best

one among them.

 Optimize the best selected design. This may require

constant evaluation of design using simulations or

dry runs. The outcome of this exercise will result in

creation of a highly optimized design solution.

 Verify the design by designing system prototype,

test runs, development and implementation of the

software product.

There remains a constant focus on quality in each of

these phases. To achieve total quality, several quality
management tools may be used. At the same time, each

phase is studied for potential requirement changes and

associated risks. The identified risks are thoroughly

studied and analyzed, and appropriate processes are

defined to eliminate them. DFSS focuses on the

following key points:

 Continuous focus on quality.

 Defining solutions that ensure adequate

transformation of customer requirements.

 Constant improvement of processes. In the realm of

RE, these processes are related to requirements’

definition.

Fruhling and McDonald [5] highlight a case study for

better understanding of extreme programming practices

and describe the potential they carry for implementing

software systems, particularly those of the government

organizations, e.g., the US Military’s ability to meet its

mission critical requirements demands for increased

agility in its IT development processes. The authors have

studied the extreme programming process to develop new

capability for USSTATCOM’s premier knowledge
management system and SKI Web, etc. The authors have

also reported several lessons learned that may assist

practitioners in future implementations of extreme

programming practices.

Specifically, the armed forces and law enforcement

agencies seek faster and reliable ways of getting critical

information and handy access to decision making tools.

This type of infrastructure is well-suited for the tasks
supporting emergent requirements, e.g., U.S. military

requires tools that allow decentralized information to be

stored and accessed by all the detachments. Service

Oriented Architecture (SOA) supports linear and plan-

driven software development methods which are

traditionally employed by the military organizations [5].

More recently, agile software development methods like

extreme programming [2] and Scrum [6] have emerged as

viable solutions to streamline the development process

and bring about significant improvements in the

processes such as timely delivery of required

functionality.

Stapel and Lubke [7] report that the extreme

programming turns the conventional software process

sideways. Rather than planning, analyzing, and designing

for the far-flung future, the practices of extreme

programming in the software design should be benefited

instead. The study emphasizes for inclusion of extreme

programming course in the curriculum for graduate

students and setting up computer laboratories equipped
with extreme programming tools.

There are twelve extreme programming practices —

planning game, small releases, metaphor, simple design,

testing, refactoring, pair programming, collective

ownership, continuous integration, 40-hour per week

working, on-site customer and coding standards (as

shown in Figure 1).

 An Assessment of Extreme Programming Based Requirement Engineering Process 43

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 2, 41-47

Figure 1. Extreme Programming Practices [7].

B. PLANNING GAME:

The game is defined as a meeting that occurs at least
once for each iteration — typically once a week. The

planning process is divided into two parts: release

planning and iteration planning. Release Planning

focuses on ascertaining what requirements are included in

which near-term releases. Both, customers and

developers are part of this process. Release planning

consists of three phases.

 Exploration Phase: In this phase, the customer
provides a short list of high-value requirements for

the system. These requirements are noted down on

user story cards.

 Commitment Phase: The commitment of customers

and developers to the functionality that needs to be

included into the system along with the date of next

release falls within the purview of this phase.

 Steering Phase: In this phase, the development plan

can be adjusted by adding new requirements or

changing/removing the existing requirements.

Iteration Planning outlines plans for streamlining the

activities and tasks of developers. Customers are not
involved in this process. Iteration planning also consists

of the same three phases as described below:

 Exploration Phase: In this phase, requirements are

converted into different tasks, and these tasks are

recorded on the task cards.

 Commitment Phase: In this phase, the tasks are

assigned to the programmers and the expected time

for completion of each task is estimated.

 Steering Phase: In this phase, the tasks are

performed/executed and the end results are

harmonized with the original user requirements.

Small releases though cannot eliminate risks, but their

functionality and timely availability can result in the

following advantages:

 Customers can benefit from the system functionality

in advance without waiting for release of a final

version.

 Customers can get an additional mechanism for

influencing the future direction of the project, e.g.,

by changing priorities or by adding or removing
features.

A small release typically takes at least three to four

months. However, an extremely short release may take

only a day.

 Metaphor is a means of communication among team

members and customers. Metaphor adds

communication value to agile programming.

Metaphor serves two purposes: communication and

contributing to the team members in development of

software architecture.

 Simple design requires that programmers should
adopt the "simple is the best" approach to software

designing. Whenever a new piece of code is written,

the developers should ask themselves, 'is there a

simpler way to produce the same functionality?'

Refactoring should be used to make complex code

simpler.

 Testing: Extreme programming has got an impetus

from agile methodology that emphasizes much on
testing as it eliminates inherited risks in software

projects. Extreme programming helps developers in

producing software that is on time, under budget and

possesses a higher quality level.

Extreme programming puts the practice of software

testing in the spotlight of application development.

Testing is a highly specialized activity that came as an

afterthought when complex and code-intensive projects
rush towards completion. In today's world of escalating

quality expectations, testing is a key component of the

development process.

Extreme programming accelerates testing as it requires

the entire development team to embrace testing. In fact,

testing is so critical to the extreme programming

methodology that programmers are required to write

automated tests before they start writing the software
codes. However, there has been a distinctive deficiency

of instructions specific to testing and clear understanding

how these instructions relate to extreme programming.

 Refactoring: The continuous improvements in

design of the code make it easier to work with. This

is in total contrast to what typically happens; little

refactoring and a great deal of attention paid to

suitably adding new features. Extending and
maintaining the code becomes easier by employing

refactoring continuously.

 Pair Programming: Pair programming generally

involves switching partners for each assignment.

However, team members are often reluctant to

switch as they claim that only their contemporary

peer’s weekly schedule is compatible with them.

44 An Assessment of Extreme Programming Based Requirement Engineering Process

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 2, 41-47

 Collective code ownership: It means that all the

team members own code responsibility. Pair

programming technique is generally used in this

practice. It boosts the development speed more as if

an error occurs in the development phase then

everyone owns responsibility to correct the error.

 Continuous integration: Regular and continuous

integration ensures that all the team members have

access to the latest code.

In contrast with the independent software development,

extreme programming offers a magnitude increase in

productivity. In addition, the combined understanding of

the system by multiple people leads to improvements in
the design. Further, the maintenance of this system is

simplified to a great extent. According to Schummer and

Lukosch [8], distributed pair programming is an agile

software development methodology where two

programmers located at different geographic locations

jointly work using a collaborative real time editor. The

key difference between pair programming and distributed

pair programming is that the programmers in the latter

technique are located at different geographic locations,

and various communication means are required to be

made available for practicing this methodology. The

distributed extreme programming, especially distributed
pair programming, is destined to failure unless proper

tools are used that support social practices.

 Communication: In pair programming,

programmers work in close proximity where they

can easily interact with each other, seek quick help

and guidance from others and even can get an

impetus from each other’s body language and non-

verbal communiqué. Whereas, for a distributed pair
programming, the programmers have to entirely rely

on the verbal and written communication.

 Coordination: Coordination issue is the main

demerit of distributed pair programming. In pair

programming, one programmer (called driver) writes

code and the other programmer (known as observer

or navigator) analyses and tests the code, and

provides necessary feedback and guidance. However,
the proper coordination arrangements help produce

better code that has fewer bugs. However, in

distributed pair programming, coordination often

suffers from time delays due to detached locations of

programmers.

 Coding: Pair programming carries another

advantage of effective code writing over distributed

pair programming. In the former technique, an
observer or navigator can instantly and constantly

review the code; whereas, the lack of instant

communication inflicts a disadvantage in the latter

technique. However, this disadvantage can be

countered by employing good tools that provide real

time access to the code.

 Teaching: One of the advantages of pair

programming is the ability to learn from each other

through cross questioning and discussion.

 Testing: Pair programming allows the observer to

test the code while it is being written. For distributed

pair programming to exploit this advantage, the
editor has to provide this ability to the programmers.

According to Murphy et al. [9], extreme programming

focuses on early releases and improving quality of

software. Distance learning approach to teaching extreme

programming is, in fact, the study of different tenants of

distributed pair programming.

According to Sato et al. [10], the use of software

metrics helps software developers to access their code

and foresee any potential risk or design flaw. Over the

years, different code metrics and methodologies have

been defined that helped industry produce better quality

software. Industry experts have used different code

metrics on different types of projects to demonstrate the

effectiveness of different software development

methodologies. For example, agile projects focus on
quality and speedy releases. This methodology innately

makes software more robust and less error prone.

C. Metrics for Extreme Programming

The following metrics is used in extreme programming:

 XP Radar Chart: XP Radar charts show a

comparison of different projects. Projects that use

agile practices at the early stage exhibit better

performance rate.

 Lines of Code: Projects developed through agile

practices have less lines of code.

 Cyclomatic complexity: This metric measures the

amount of decision logic in each module. The
projects developed using agile practices exhibit

better cyclomatic complexity metric.

 Weighted methods per class: This metric measures

the complexity of classes on the basis of methods

per class. The projects that use agile practices have

lesser measurements for this metric as compared to

other methodologies.

The effective requirement engineering model is

essential for success of any software development project

[11]. The effective requirement engineering entails

different phases. These phases, when properly executed

in the projects, result in great degree of success. A brief

description of the phases is as under:

 Requirement elicitation: This phase includes

requirement gathering.

 Requirement analysis and negotiation: The gathered

raw requirements are rigorously analyzed in this

phase and are negotiated with the stakeholders.

 An Assessment of Extreme Programming Based Requirement Engineering Process 45

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 2, 41-47

 Requirement specification: In this phase, a well-

defined document is produced in light of the

analyzed requirements.

 System modeling: Based on the requirement

specification, a conceptualized model of the system

is built in this phase.

 Requirements validation: Once the requirements are

defined and documented, the stakeholders verify and

validate the requirements. This phase is also called

requirements signoff phase. Once the requirements

are validated, the system is ready to be developed.

 Requirements management: During this phase, the

requirements are tracked for any changes and

dependencies. Often the dependencies between

requirements play an important role for success of

the project. This phase is an on-going process and

keeps the project requirements on track.

III. LITERATURE REVIEW AND CRITICAL EVALUATION

Fruhling and McDonald [5] highlight a case study for

better understanding of extreme programming and

describe how much this approach has potential to be

implemented in the government organizations. Lu and Lu

et al. [1] proposed a model-based object-oriented

approach to RE by using OOP OOA, OOD concepts. Lu

and Chang [2] present a requirement editor, called MOR

editor that supports the objectization and modeling of

requirement engineering. MOR editor is a tool designed

to assist the processes and of requirement documents,

which can benefit requirement engineer to objectize
requirement artifacts, link-related requirement artifacts,

and construct a consistent and traceable formal model for

RE. Mishra and Mishra [12] present the application of

combination of RE techniques for a real life complex

project (i.e., supply chain management) with higher

requirements volatility developed in a small-scale

software development organization. Jiang [3] defines RE

process as a formal description method and proposes a

Requirements Engineering Process Meta-model (REPM).

REPM is a simple and unified method for describing
different types of processes, in which different RE tools

are applied. Stapel and Lubke [7] highlight issues to

address when designing an extreme programming course.

Conboy [6] highlights developer characteristics for

effective agile method. Min and Cheng [13] highlight

extreme programming practices and time scheduling

interface method.

Solemon and Sahibuddin [14] propose RE process
improvement model using Capability Maturity Model

Integration (CMMI). Pavanasam and Subramaniam [15]

proposed a membrane computing model for software

requirement. Tchidi and He [4] used Six Sigma technique

and proposed a RE process model based on DFSS.

Pandey et al. [11] proposed RE process model to produce

quality requirements for software development.

Schummer and Lukosch [8] discussed distributed extreme

programming especially distributed pair programming

and argue that project may be destined to failure unless

proper tools are used that support social practices.

Murphy [9] highlights extreme programming approach
and challenges. Sato et al. [10] highlight agile software

development practices. The summary of the critical

analysis of the literature reviewed during the course of

this study is provided in Table-I.

Table I. Critical Analysis

Ref# Technique Used Key Points Advantages Limitations

[1] UML, Model based

Object oriented

approach,

XML based unified

model.

A Model-based object-oriented

approach to requirement

engineering.

Requirements integration with the

artifacts of other phases can be

effectively improved.

Identification of the

relationships between MOORM

and MORE elements to XUM

models is not clear.

[2] Model driven

architecture, OOA, OOD,

XUM, UML, XUMM,

XUM.

MOR Editor, which supports the

objectization and modeling of

requirement engineering.

MOR Editor, which supports the

objectization and modeling of

requirement engineering.

Extended prototype is required

to support software

development process.

[3] UML, ODL, OOA, RE

Process Meta-model,

XML-based REPM

description.

A formal description method of

requirements engineering process.

REPM is a unified method for

describing different types of

processes.

Model does not use RE process

Maturity model.

[4] DFSS, QFD, FMEA. Requirement engineering process

model based on DFSS.

Prioritization through high event

interaction coverage

It focuses more on quality

improvement than the process

improvement.

[5] Agile development,

SOA.

A survey of extreme programming. Extreme programming approach is

best for mission critical system.

The study results cannot be

generalized.

[6] Agile Method, OOP,

Extreme Programming.

Highlights developer

characteristics for effective agile

method.

Developer characteristics for

Effective Agile Method.

-

[7] Extreme Programming. Highlight properties to tune when

designing an extreme programming

course.

Best for learning extreme

programming technique.

A small release never takes

longer than four months.

[8] Design patterns for

computer-mediated

interaction. Pair

programming.

Social practices for distributed pair

programming.

A comprehensive understanding of

the impact of plug-ins.

Distributed pair programming

has caveat that programmers are

not co-located.

46 An Assessment of Extreme Programming Based Requirement Engineering Process

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 2, 41-47

[9] Columbia Video

Network, Extreme

programming, EJB,

CORBA, COM.

Distance learning approach to

teaching extreme programming.

Useful for educational purposes. Virtual presence is the key

limitation as participants are not

co-located physically.

[10] Agile Methods, Object-

Oriented Metrics.

Agile software development

practices.

Suitable for small size projects. Cost and time factor is not

studied.

[11] Requirement

Engineering.

A novel requirement engineering

process.

An effective requirement

engineering process model for

software development.

-

[12] Mock-up driven fast-

prototyping

methodology.

Combination of RE techniques to

carry out for real life complex

project.

Best for complex large-scale

software development projects.

Costly for small software

projects.

[13] Dynamic time

scheduling, Extreme

Programming, Agile

method, ERP.

Extreme programming practices

and time scheduling interface.

Suitable for small and medium

enterprises ERP projects.

-

[14] Software Capability

Maturity Model, CMMI.

RE process improvement model

using CMMI.

Smooth transition for practitioners

familiar with CMM techniques.

Validation is not applied on R-

CMMi Model.

[15] GORE, SORE, Aspect

Oriented RE.

Membrane computing model for

SRE activities.

Resultant model determines the

number of functional and non

functional entities.

-

IV. CONCLUSION AND FUTURE WORK

In this study, we have made an attempt to enlighten the

understanding of extreme programming approaches and

techniques followed by analyzing it with other
requirement engineering models. This study may be

helpful for software engineers to comprehend the utility

of extreme programming approach and understanding the

usefulness of requirement engineering. The effectiveness

of the requirement engineering process model based on

extreme programming is also highlighted in this study.

An extreme programming based requirement engineering

model that caters for both the pair programming and

distributed pair programming along with the performance

evaluation metrics of the models is envisaged to be the

prospective future direction.

REFERENCES

[1] Chih-Wei Lu, William C. Chu and Chih-Hung

Chang, ―A Model-based Object-oriented Approach

to Requirement Engineering (MORE)‖, 31st Annual

International Computer Software and Applications

Conference (COMPSAC). IEEE. (2007).

[2] Chih-Wei Lu and Chih-Hung Chang, ―A

Requirement Tool to Support Model-based

Requirement Engineering‖, International Computer

Software and Applications Conference. IEEE. (2007).

[3] Jiang and Xuping, ―Modeling and Application of

Requirements Engineering Process Meta-model‖,

IEEE. (2008).

[4] Megan Florent Tchidi and Zhen He, ―The

Requirements Engineering Process Model Based on

Design for Six Sigma‖, IEEE. (2010).

[5] Ann Fruhling and Patrick McDonald, ―Case Study:
Introducing eXtreme Programming in a US

Government System Development Project‖,

Proceedings of the 41st Hawaii International

Conference on System Sciences (2008).

[6] Kieran Conboy, ―Method and Developer

Characteristics for Effective Agile Method Tailoring:

A Study of XP Expert Opinion‖. Transaction of

Software Engineering Methodology, 20, 1, Article 2,

ACM. (2010).

[7] Kai Stapel and Daniel Lubke, ―Best Practices in

eXtreme Programming Course Design‖. ACM.

(2008).

[8] Till Schummer and Stephan Lukosch, ―Supporting

the Social Practices of Distributed Pair

Programming‖, CRIWG, LNCS 5411, pp. 83–98,

Springer-Verlag Berlin Heidelberg. (2008).

[9] Murphy, ―A Distance Learning Approach to

Teaching eXtreme Programming‖. ACM. (2008).

[10] Danilo Sato, Alfredo Goldman, and Fabio Kon,

―Tracking the Evolution of Object-Oriented Quality
Metrics on Agile Projects‖. Springer. (2007).

[11] Dhirendra Pandey, U. Suman and A. K. Ramani, ―An

Effective Requirement Engineering Process Model

for Software Development and Requirements

Management‖. DOI:10.1109/ARTCom.2010.24.

IEEE. (2010).

[12] Deepti Mishra and Alok Mishra, ―Successful

Requirement Elicitation by Combining Requirement

Engineering Techniques‖. IEEE. (2008).

[13] Zeng Min and Wang Cheng, ―Practices of Extreme

Programming for ERP Based On Two-dimensional

Dynamic Time Scheduling Interface Method‖. IEEE.
(2009).

[14] Badariah Solemon and Shamsul Sahibuddin, ―Re-

defining the Requirements Engineering Process

Improvement Model‖. IEEE. (2009).

[15] Velayutham Pavanasam and Chandrasekaran

Subramaniam, ―Membrane Computing Model for

Software Requirement Engineering‖, 2nd

International Conference on Computer and Network

Technology. IEEE. (2010).

 An Assessment of Extreme Programming Based Requirement Engineering Process 47

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 2, 41-47

AUTHORS

Muhammad Khalid is presently pursuing his MS in

Computing from SZABIST, Islamabad. He has been

serving in the field of Information Technology for the last

five years. His research interests include software

engineering and requirement engineering.

Sami Ulhaq is a student of Masters in Software

Engineering at SZABIST, Islamabad, Pakistan. His

focused research areas are software requirement

engineering, software quality engineering and global

software development.

Muhammad Naeem Ahmed Khan obtained degree in

Computer System Engineering from the University of

Sussex, UK. His research interests are in the fields of

software engineering, cyber administration, digital

forensic analysis and machine learning techniques.

