
I.J.Modern Education and Computer Science, 2013, 7, 1-15
Published Online September 2013 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ ijmecs.2013.07.01

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 7, 1-15

Students' Understanding of Selected Aspects of
Interface Class in Java

Ilana Lavy

Department of Management Information Systems, the Max Stern Yezreel Valley College (YVC), Israel
Email: ilanal@yvc.ac.il

Rami Rashkovits

Department of Management Information Systems, the Max Stern Yezreel Valley College (YVC), Israel
Email: ramir@yvc.ac.il

Abstract—This study examines the understanding of
various aspects relating to the concept of interface class
by Management Informat ion Systems students. The
examined aspects were: definition, implementation,
class hierarchy and polymorphis m. The main
contributions of this paper are as follows: we developed
a questionnaire addressing the above aspects; we
classified and analysed the students' responses to
determine the students' understanding of the above
aspects and to highlight common faulty solutions. The
results obtained reveal that majority of the students
demonstrated understanding of definition and
implementation of interface class, however, only two-
thirds of the students demonstrated understanding of
interface class in the context of class hierarchy and only
one third of them demonstrated understanding of
polymorphis m in the context of interface class. The
students’ utterances from the interv iews shed light on
their difficulties.

Index Terms—Computer science education, software
engineering, learning ability, advanced programming
courses.

I. INTRODUCTION

Interface classes are considered to be one of the main
constituents of modern object oriented programming
languages, and are commonly used in various
fundamental and advanced software packages. Using
these packages necessitates the understanding of the
interface class concept (for simplicity we will use
'interface' when referring to interface class in the rest of
this paper). However, interface is among the most
difficult issues to understand with respect to object
oriented programming [1]. Its vague nature makes it non
intuitive for learners who do not grasp its essence and
purpose. Understanding the interface concept is based on
the prior understanding of the following: definition and
use of concrete classes, construction of class hierarchies,
abstract classes, methods overriding and polymorphism.
These concepts are complicated and difficu lt to
understand. Moreover, any misunderstanding concerning
one of them may make the understanding of interface
harder.

The interface in its most common form is a collection
(potentially empty) of related abstract methods, and may
not contain data members, except constants. The
purpose of interface is to form a public Application
Programming Interface (API) related to a certain
concept, and enforce the API on classes which apply the
concept. Furthermore, interface defines a new data type
in that each object applying it is defined as an item of
that type. The latter enables objects belonging to
unrelated class hierarchies to share a common type.

Many references in the research literature point
towards students' difficulties concerning object oriented
concepts, such as objects and classes [2,3], abstraction
and object orientation [4], and inheritance and
polymorphis m [1,5,6,7]. Despite the fact that interface is
a fundamental and essential constituent of the object
oriented paradigm, it has only received minor attention.

Many researchers concerned with the issue of the
levels of abstraction and understanding required for the
learning of scientific concepts have enriched the
research literature with useful models [8,9]. Other
researchers concerned with issues regarding the causes
underlying the difficu lties in understanding scientific
concepts have augmented the research literature with
useful insights. In a prev ious study [10] we examined
the scope of the implementation of the Java interface
among third year Management Information Systems
(MIS) students, after they had studied and applied this
issue. The results obtained revealed that the majority of
the students have difficult ies in identifying situations
where interfaces can be used to solve design problems,
as well as in applying interfaces in the program.

In light of the above, the present study focuses on
mapping the study participants' understanding
concerning various aspects of the concept of interface
class. The main contributions of this paper are as follows:
(a) we construct a written questionnaire for mapping the
students' understanding of various aspects of interface
class; (b) we discuss the students' solutions provided at
each aspect; (c) we discuss the students' reflections
concerning the questionnaire.

The remainder of this paper is organized as follows.
The theoretical background section provides background
informat ion on interface classes in Java, educational
aspects of teaching interfaces, and known difficulties.
The study section presents the study environment, the

2 Students' Understanding of Selected Aspects of Interface Class in Java

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 7, 1-15

various aspects of interface class examined, and the
questionnaire used and its expected solutions. The
results section presents the results obtained. It discusses
the provided informal defin itions of interface class, the
provided faulty solutions, and the students' reflect ions on
the questionnaire. The concluding section includes both
concluding remarks and possible implications on the
educational process concerning the teaching of
interfaces.

II. THEORETICAL BACKGROUND

In what follows we present the interface concept and
its relation with other object oriented constituents. Then
we describe the context in which the interface concept is
taught. In addition, a brief literature survey regarding
difficult ies in understanding and implementing object
oriented constructs in general and interface in particular
is presented.

A. Interface as an object oriented construct

One the main constructs that the object oriented
paradigm provides is the inheritance mechanism, which
allows the reuse of an existing class by other classes.
Using this mechanis m improves the quality of the design
by allowing common attributes and methods defined as
belonging to the super-class to be used later in sub-
classes, and to refer to various classes in the same
manner using a common reference (polymorphism). The
object oriented paradigm also allows the definition of
abstract classes which are not aimed to be instantiated,
but to serve as a base class to other classes. This
construct may include regular as well as abstract
methods. Abstract methods serve as an obligatory
contract for the classes that inherit them, namely an
implementation for these methods must be provided.
Interfaces are pure abstract classes that may only include
abstract methods and constant variables. The general use
of interface is to define common capabilities among
classes that are not necessarily derived from the same
class hierarchy. These common capabilities have to be
implemented by each derived sub-class. Interfaces are
also used for class typing and hence can be used in a
polymorphic way, taking advantage of this benefit.

We scanned various definitions of interface in text
books and other sources, and herein we present excerpts
taken from [11] describing the various aspects of the
interface construct:
"A Java interface is a collection of constants and
abstract methods. … An interface cannot be
instantiated … A class implements an interface by
providing method implementations for each of the
abstract methods defined in the interface … The
interface guarantees that the class implements certain
methods, but it does not restrict it from having others …
Multiple classes can implement the same interface,
providing alternative definitions for the methods … A
class can implement more than one interface … The
interface construct formally defines the ways in which
we can interact with a class. It also serves as a basis for

a powerful programming technique called
polymorphism".

The above excerpts include both definition and
possible uses of interface. Interface and abstract class
concepts share the following attributes: both are not
concrete, are designated for use by other classes, and
both allow the definit ion of abstract methods (with no
body) and constants. However, they differ in various
aspects, among them being: (a) abstract class can
include concrete methods and variables, while interface
cannot; (b) a class can implement more than one
interface but can only inherit from one abstract class; (c)
abstract classes have a constructor, but an interface does
not have one.

Interface class as an object oriented construct has
received only minor attention in the research literature.
Hu [12] provided a summary o f common uses of type
inheritance allowing the definition of new types based
upon existing ones. Among these uses he indicates sub-
typing by implementing interfaces. Hu [12] claims that
using interface is often better than ordinary class for
inheritance for the purpose of maintain ing behavioural
compatibility. Schmolitzky [13] refers to the difference
between hierarch ies of types (class-based) and
hierarchies of implementations (interface-based), and
states that most textbooks on object oriented
programming in Java do not make a clear d istinction
between them.

B. Interface in the curriculum

In many university and college Information Systems
(IS) programs, first year students learn OOP language in
two successive courses. The first, ‘Introduction to
Computer Science,’ teaches them basic programming
concepts using Java programming language, and
variables, arrays, classes and methods. The second
course is ‘Object Oriented Programming’ (OOP) and
includes advanced programming concepts including
class inheritance, polymorphis m, abstract classes,
interfaces, exceptions handling, input/output and
graphical user interface [14]. Examination of the
timetables of OOP courses at various universities and
colleges reveals that the OOP courses are quite intensive
and in many cases the time dedicated to teach interfaces
compared to class inheritance is rather short.
Furthermore, interfaces are often taught in the second
half o f the semester leav ing little time to practice
application.

Teaching interface immediately fo llowing class
inheritance, abstract classes, and polymorphis m, rather
than as a stand-alone issue, might also lead to a b ias in
the students’ perception of its role and importance,
including a diminution of its capabilit ies and uses [15,
16].

C. Difficulties in understanding object oriented
constructs

The Object oriented paradigm has become the
dominant programming paradigm for software
development in the last two decades. Java is one of the

 Students' Understanding of Selected Aspects of Interface Class in Java 3

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 7, 1-15

popular object oriented programming languages that is
taught in higher education. Students who study the Java
programming language often find some of its
constituents, especially those related to inheritance and
polymorphis m, d ifficult to understand due to the high
level of abstraction required [7,17]. Hadjerrouit [18]
compared object oriented with procedural programming
languages, and claimed that the former requires more
sophisticated abstraction abilit ies as well as greater
attention to analysis and design, especially when large
programs are involved [19]. Many students, either
novice or experienced with procedural programming
language, demonstrate difficult ies in understanding
certain subjects in inheritance and polymorphism,
including chain of constructor calls in object creation,
dynamic b inding, and casting issues [5, 6].

Interface, as an object o riented programming
construct, has been one of the most difficu lt concepts for
students to understand and apply properly [1]. In our
previous work [10], we engaged IS students with solving
problems using interfaces and mapped their
performances to five levels of abstraction. Only a few
students demonstrated a high level o f abstraction
concerning the design and implementation of interface,
while most of them failed to identify the need to model
common behaviours when applying interfaces.

III. THE STUDY

W e conducted a study which aimed to examine
students’ understanding of various constituents of the
interface class concept. We focused on students in order
to explore the impact of the educational process on the
students’ understanding of this concept. For this matter
we found the qualitative research methods to be the most
appropriate fo r the aims o f the p resent study, as it
enables us in-depth exp loration of the subject. We chose
the fo llowing aspects related to the interface class
concept : defin ing in terface classes , implement ing
interface classes within concrete classes, implementing
in terface classes in the context o f class h ierarchy ,
c onc ep tu a l izing in t e r fa ces in th e con t e xt o f
polymorphis m. We built an exam-like questionnaire that
includes four clusters of questions addressing the four
aspects stated above. In addition we conducted informal
interviews with a selection of the part icipants, in which
the students ' reflect ions on the quest ionnaire were
collected, analysed and categorised. In this section, data
concerning the environment and the study population are
presented followed by the data analysis tool used. We

conclude with the questionnaire and the anticipated
solutions.

A. Environment and population

The data were collected during the academic years
2011-2012. The study subjects were th ird (and final)
year students on a BA degree in Management
Information Systems (MIS) at an academic college.
Sixty-three students participated in the research, 31
graduated in 2011, 32 graduated in 2012. A ll the
participants were graduates from the fo llowing
programming courses: “Object oriented programming”,
“Data structures and algorithms”, and “System analysis
workshop”. All of these courses include references to
interfaces, and the students were provided with problems
which necessitated the use of interfaces. The
questionnaire was given to the students at the end of the
course of system analysis workshop as one of the course
duties and hence we consider the data to reflect the
students' actual understanding.

The participants were provided with a questionnaire
which included various questions requiring the
understanding of using interfaces. Whilst engaging with
the questionnaire, the students were not allowed to use
any supplementary material, and had to rely on their
knowledge in order to examine their understanding
without the mediation of IDEs which provides automatic
complet ions and suggestions. Therefore, in the process
of assessing the students' solutions we ignored syntax
errors.

B. Data analysis tool

Among the abstraction mechanisms availab le to
programmers are interface classes. Proper use of
interface classes necessitates profound understanding of
it. Hence, in order to map the students' understanding of
this concept we constructed several questions in which
the student had to apply their knowledge concerning this
concept. For that matter we made a list of properties
related to interface class as follows: (1) definit ion of
interface class; (2) implementation of interface class; (3)
implementation of interface class in the context of class-
hierarchy; (4) conceptualizing interfaces in the context
of polymorphism. It should be notified that the above list
is not necessarily complete, however we chose the above
properties since they are most in use.

In Table 1 we present detailed explanations
concerning the various aspects of interfaces as appears
in the questions. All the questions are based on a given
class hierarchy (Figure 1).

4 Students' Understanding of Selected Aspects of Interface Class in Java

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 7, 1-15

TABLE I : DISTRIBUTION OF QUESTIONS ACCORDING TO INTERFACE CLASS ASPECTS

Qu
estion
no.

Aspect Explanation

1 Definition

The student is provided with a description from which he has to construct an
interface class without any method

2 The student is provided with a description from which he has to construct an
interface class with appropriate abstract methods

3 Implementation

The student is provided with a given interface class and a list of requirements
according to which he has to implement it within a single class

4 The student is provided with several interface classes and a list of requirements
according to which he has to implement them in a single class

5 The student is provided with single interface and a list of requirements according to
which he has to implement it within several classes

6 Hierarchy The student is provided with a given interface class and a list of requirements
according to which he has to implement it within an abstract class for all its
decedent classes

7 The student is provided with a given interface class and a list of requirements
according to which he has to implement it within an abstract class for all its
decedent classes and in additional concrete c lass that belongs to another class
hierarchy

8 Polymorphis m

The student is asked to construct a method with an object parameter referred as
interface, and then to perform casting to the object's class type in order to access
methods that are included in the class but not in the interface

9 The student is asked to construct a method with an object parameter referred as a
base class, and then to perform a casting to the object's interface in order to access
methods that are included in the interface but not in the base class

Mouse

Mammal

Penguin

Bird

Shark

Fish

Animal
weight

Hawk Dog Salmon

abstract class Animal{

protected double weight = 0; // each animal has its own weight
public double getWeight() { return weight;}
public void setWeight(double w) { weight = w;}

}

abstract class Mammal extends Animal{}
abstract class Fish extends Animal{}
abstract class Bird extends Animal{}

Concrete classes:
class Mouse extends Mammal{}
class Dog extends Mammal{}
class Shark extends Fish{}
class Salmon extends Fish{}
class Hawk extends Bird{}
class Penguin extends Bird{}

Figure 1: Animal class hierarchy

C. Questionnaire

In order to assess the students' understanding
concerning various aspects of interface classes we
designed a questionnaire consisting of several clusters of
questions each addressing a certain aspect of interface
class (Table 1). Some questions included code fragments
to which the students were asked to refer to them. To
avoid difficu lties stemming from the understanding of
complex task we decided to use a simplified example in
which the student can concentrate mainly on the interface

class concept and its aspects. In addition, most of the
questions were designed independently of each other to
avoid situations in which failure in one do not influence
other.

The questionnaire consists of two successive parts: (A)
one question in which the students had to provide an
informal definition of the interface class concept and its
possible uses; (B) n ine questions in which the students'
understanding of various aspects of the interface class
concept is addressed. The question in part A of the
questionnaire is:

 Professional Courses for Computer Engineering Education 5

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 7, 1-15

Part A:

Please describe in your own words what an
interface is and specify its possible uses.

Part B:
First the students were presented with the following

hierarchy of classes both as code fragment and as a
schematic diagram (Fig. 1).

In what fo llows we present the questions of part B and
the expected solutions organized in clusters, each refers
to a certain aspect of interface class as stated in Table 1.

1) Interface class definition
The two questions in this category address the

students' ability to define an interface class according to
a list of requirements.

Question 1 addresses the ability of students to define a
simple interface. The students were asked to define an
interface that represents the concept of Endangered
species. The students were notified that this property can
be assigned to some animals. It is worth noting that the
question does not include any requirements to specify
attributes or methods concerning the endangered species
concept, and hence no such constituents are needed in
the solution.

Question 1: It is well known that some species are
declared endangered. Please provide an appropriate
interface that represents endangered species.

Expected solution to question 1:

interface Endangered {}

It should be notified that the Endangered interface
does not contain any declaration of a method, and hence
each class that implements it, does not have to
implement methods related to it.

Question 2 addresses the ability of students to define a
simple interface with several methods. The students
were asked to define an interface that represents the
concept of Vegetarian, which is a property common to
many types of animals though not to all of them. The
question specifies that for each vegetarian animal the
amount of plants eaten per day should be kept, and
should be accessible for update and retrieve operations.

Question 2: Some of the animals are vegetarians, but
not all of them eat the same amount of plants. We want
to keep the amount of plants (in kg) eaten by each
vegetarian animal per day, and be able to update and
retrieve this property. Please provide an appropriate
interface addressing these requirements.

Expected solution to question 2:

It should be mentioned that the Vegetarian interface

contains two methods one for update and one for
retrieve of the plants-per-day amount.

Addressing properly the questions in this cluster
requires one to understand how interface classes are
defined, and what methods' declarations should be
included.

2) Interface class Implementation
The three questions in th is category address the

students' ability to implement given interface classes
according to a list of requirements.

Question 3 addresses the ability of students to use a
given interface and prov ide the proper implementation
in the relevant classes according to the requirements.
The students were g iven the Licensed interface that
includes two abstract methods referring to update and
retrieve a license number. They were asked to apply it
merely on dogs.

Expected solution to question 3:

It should be notified that the given Licensed interface

contains two methods one for update and one for
retrieve o f the license number. Hence, the Dog class that
implements this interface should define a corresponding
attribute for the license number, and implement the two
methods involved.

In question 4 definit ions of two interface classes are
provided. The first represents a capability of fly ing with
two methods and the second represents a capability of
hunting with two other methods. The students were
asked to implement the above two interfaces in the
Hawk class.

Question 3 : The following interface defines the
methods referring to licensing animals:
interface Licensed {
 void setLicenseNumber(int number);
 int getLicenseNumber();
}

Given that dogs must be licensed, and each has its
own license number, what changes should be made
to address these requirements.

interface Vegetarian {
void setAmountOfPlants(double amount);
double getAmountOfPlants ();

}

class Dog extends Mammal
 implements Licensed {
 private int licenseNumber;
 public void setLicenseNumber(int n){

licenseNumber = n;
 }
 public int getLicenseNumber(){

return licenseNumber; }
}

6 Professional Courses for Computer Engineering Education

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 7, 1-15

Expected solution to question 4:

class Hawk extends Bird
 implements Flying, Hunter {
 maxFlightHeight;

Animal prey;

int getMaxFlightHeight() {
 return maxFlightHeight;
}

void setMaxFlightHeight(int h) {
 this.maxFlightHeight = h;
}

 Animal getFavoritePrey(){
 return prey;
}

void set FavoritePrey(Animal a) {
 this.prey = a;
}

}

It should be notified that the Hawk class should
declare on both interface classes and implement all of
their methods. It should also define corresponding
attributes in the class, to support the implementation of
these methods.

Question 5 addresses the ability of students to use a
given interface and provide implementations of it in two
classes, each implemented differently. The students were
asked to implement the given interface in the Mouse and
the Salmon classes, each with a specified behaviour.

Expected solution to question 5:

Class Mouse extends Mammal
 implements PharmaExperimenter {
 ArrayList<String> medicineI=List =

new ArrayList<String>();

 List<String> getMedicines() {
return medicineList;

 }

 void setMedicine(String medicine) {
 medicineList.add(medicine)} ;
 }

Class Salmon extends Fish
 implements PharmaExperimenter {
 String medicine;

List<String> getMedicines() {
 return new ArrayList().add(medicine)
}

void setMedicine(String medicine) {
 this.medicine = medicine;
}

}

It should be notified that the Salmon class should
define only one String attribute to hold the medicine it
takes, while Mouse has to define a list of String objects.
Furthermore, the Salmon has to return a List of
medicines as declared by the getMedicines() method's
signature, and therefore has to create a temporary list
with the containing the only medicine allowed, and
return it.

Question 5: It is well known that some animals are
used for scientific research in the pharmacologic
industry. The following interface class represents
experimenters who take p lace in pharmacological
experiments. For any animal that participates in a
scientific research we want to retrieve and update
the names of the medicines involved:

interface PharmaExperimenter {

List<String> getMedicines();
void setMedicines(String m);

}

Mice and salmons are used in such scientific
research as experimenters. While mice are able to
take simultaneously several medicines, salmons can
take only one at the time.

Question 4: The following interfaces refer to the
capabilit ies of flying and hunting:
interface Flying {

int getMaxFlightHeight();
void setMaxFlightHeight(int h);

}

interface Hunter {
 Animal getFavouritePrey();
 void setFavouritePrey();
}

Given that hawks are capable of flying and hunting,
what changes should be made to address these
requirements. Note that not all b irds can fly (e.g.,
penguins).

 Professional Courses for Computer Engineering Education 7

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 7, 1-15

Addressing properly the questions in this cluster
requires one to understand how to implement a given
interface within various classes. In addition he should be
able to identify, define and use properly attributes
required fo r the implementation of the interfaces'
methods. He should also be able to implement several
interfaces within a single class and be able to provide
different implementation of the same interface class at
different classes.

3) Interface class and class hierarchy
The two questions in this category address the

students' ability to implement given interface classes
within various classes along the hierarchy (abstract
classes included) according to a list of requirements.

Question 6 addresses the ability of students to use a
given interface and provide one implementation of it in
an abstract class, as all descendants of this class inherits
the same behaviour. In such case separate
implementations in each concrete class is redundant and
flew.

Expected solution to question 6:

abstract class Fish extends Animal
 implements Swimming {

int maxDepth;

 void setMaxDepth (int meters) {

this. maxDepth = meters;
 }

 int getMaxDepth () {

return maxDepth;
 }
}

It should be notified that since the Salmon and the
Shark classes are the only descendants of the abstract
class Fish, the implementation of the Swimming
interface should be located at the Fish class, as all
descendants inherit the same behaviour.

Question 7 addresses the ability of students to use a
given interface and provide two implementations of it:
one for sub-tree of classes rooted at specified abstract
class at the root, and second for another concrete class
that does not belong to that tree.

Expected solution to question 7:

abstract class Mammal extends Animal
 implements Pregnant {
 int gestationPeriod;

 void setGestationPeriod (int days) {

this.gestationPeriod = days;
 }

 int getGestationPeriod (){
 return this.gestationPeriod;
 }
 }

class Shark extends Fish
 implements Pregnant {
 int gestationPeriod;

 void setGestationPeriod (int days) {
 this.gestationPeriod = days;
 }

 int getGestationPeriod (){

 return this.gestationPeriod;
 }
 }

It should be stressed that since dogs and mice are the
only descendants of the abstract class Mammal, the
implementation of the Pregnant interface should be
located at the Mammal class. However, since sharks do
not inherit from mammals, a separate implementation of
the Pregnant interface has to be added to the Shark class,
although the implementation is identical.

Addressing properly the questions in this cluster
requires one to understand the principles of class
hierarchy in the context of interface classes. One has to
be able to decide where to implement the interface class
along the class hierarchy in a way that avoid redundant
code duplications.

4) Interface class and polymorphism
The two questions in this category address the

students' ability to exchange views of an object from its
interface type to its object type and vice versa as needed.

Question 6: The fo llowing interface refers to the
capability of Swimming

interface Swimmer {

void setMaxDepth(int meters);
int getMaxDepth();

}
In the given hierarchy it is known that sharks and
salmons can swim. What changes should be made in
the given classes in order to address these new
requirements.

Question 7: The fo llowing interface refers to
pregnancy

interface Pregnant {
void setGestationPeriod (int

d);
int getGestationPeriod ();

}

It is known that the offspring of dogs, mice and
sharks is born after a gestation period. What
changes should be made in the given classes in
order to address this new requirement.

8 Professional Courses for Computer Engineering Education

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 7, 1-15

Question 8 addresses the ability of students to use a
proper reference type to access specified methods. More
specifically, one has to be able to perform a casting
operation from a base class type to an interface type in
order to invoke the interface 's methods.

Expected solution to question 8:

void someMethod(Flying obj){

 System.out.println
(obj.getMaxFlightHeight());

 if (obj instanceof Animal)
 System.out.println
 (((Animal)obj.getWeight());
}

It should be notified that obj is accepted by its

interface type and not by its class type. Therefore only
the interface methods can be accessed via obj. Any other
method of the object that has to be invoked must be
preceded with a proper casting operation. However, it is
not safe to perform a casting operation without first
examine the type of obj. For example, one could
implement a class representing planes, and choose to
implement Flying interface within it. Obviously, Plane
do not inherit from Animal, and casting obj to Animal
without first examine its type may result in severe error.

Similarly to the previous question, question 9
addresses the ability of students to use a proper
reference type to access specified methods. In this case,
one has to be able to perform a casting operation from
an interface type to a class type to in order to invoke the
class methods.

Expected solution to question 9:

void someMethod(Animal obj){
System.out.println
 (obj.getWeight());

 if (obj instanceof Hunter)
 System.out.println

 (((Hunter)obj.getFavouritePrey());
}

It should be notified that obj is accepted by its base

class type that already includes the weight attribute and
related methods. Therefore, the weight-related methods
can be accessed directly via obj. However, not all
animals are hunters; therefore a proper casting to Hunter

interface is required in o rder to invoke the methods
related to it. As in the previous question, it is not safe to
perform a casting operation without first examines the
type of obj, and an examination if obj is a hunter
precedes the casting operation.

Proper solution to question 9 requires one to be able
to demonstrate mastery in the principle o f polymorphis m
in the context of interface classes. It requires one to be
able to properly handle an object based on its reference
type. Namely, g iven that the reference used is of an
interface type, only methods declared in the interface
can be accessed. One has to perform a p roper casting to
another type of the object if he wishes to access other
methods of it. Also, when the reference used is of a base
class type that did not implement the interface, the
methods defined in the interface cannot be accessed
through it, and unsafe casting operation will fail.

The complete solution of the questionnaire, including
all classes and interfaces involved are presented in figure
2. As shown, Endangered and Vegetarian are the
solutions for questions 1 and 2 accordingly. Licensed is
implemented by Dog class that adds one attribute to
support the implementation of the methods involved.
Fly ing and Hunter are implemented by Hawk class that
adds two attributes to support the implementation of the
methods of these two interfaces. PharmaExperimenter is
implemented by Mouse and Salmon classes. Each of
these classes defines different type of attribute to support
the implementation of the interface's methods since each
provides different implementation as required. Swimmer
is implemented by Fish class, since swimming is ability
common to all kinds of fish. For that matter Fish class
adds one attribute to support the implementation of the
methods involved. Pregnant is implemented by Mammal
class and Shark classes. Since pregnancy is ability
relevant to all mammals, it is implemented in the
Mammal class. Since Shark is not a mammal, it must
also implement the interface. Both classes add an
attribute to support the implementation of the methods
involved, and the implementation itself is identical.

IV. RESULTS AND DISCUSSION

In the following discussion we present: (a) informal
definit ions of interface class as provided by the study
participants (the students' responses to part A question);
(b) analysis of the students' solutions to the nine
questions that were classified to various aspects of
interface class (Table 1); (c) analysis of the students'
reflections from the informal interviews regarding their
perceptions of the interface class.

A. Informal definition of interface

In the first question of part A the students were asked
to provide an informal definition of an interface, and
specify its possible uses. The results obtained
concerning the informal defin ition of an interface and its
possible uses were analysed and categorised into the
following categories: correct, semi-correct and incorrect.
In this section, we elaborate on these categories:

Question 8: Please provide an implementation of a
method that takes a Flying object and displays its
max flight height. The method will also display the
animal's weight, in case object is an animal.

Question 9: Please provide an implementation of a
method that takes an Animal object as a parameter,
and displays its weight. If the animal provided is a
hunter, it also displays its favourite prey.

 Professional Courses for Computer Engineering Education 9

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 7, 1-15

1) Correct definitions
Four students provided a definition that refers to the

most significant aspects of an interface and it uses. The
following defin ition is a variat ion of the answers
provided: (1) “a special class that has no attributes
(beside constants), and may contain abstract methods
that other classes which implement this special class
must provide an implementation for those methods. A
class may apply as many interfaces as needed. Its main
purpose is to enforce unity on the classes that apply it,
and allow for them to be handled them in the same
manner".

2) Semi-correct definitions
Forty-one students provided either a partial defin ition

of the interface concept or a partial list of possible uses
of it. Some definitions did not include the exp licit

specification that a class may implement multip le
interfaces. Some others did not include the explicit
specification that multip le classes may implement the
same interface, each prov iding a different
implementation. Others did not refer to the possibility of
having constant variables as part of an interface.

As for the possible uses of interfaces, most students
did not refer to the unity enforced by the interface
method’s definitions on the classes that apply it. Many
others ignored the possibility of handling different
classes that implement an interface in the same manner
(i.e . using a reference of the interface type). While some
indicated that interface is a substitute to the multip le
inheritance that was prohibited in Java, others ignored
this aspect and did not provide any explanations
regarding the need for this kind of construct.

3) Incorrect definitions

Figure 2: Class hierarchy and interfaces

<interface>
Swimmer

getMaxDepth()
setMaxDepth()

<interface>
Licensed

getNumber()
setNumber()

<interface>
Hunter

getFavoritePrey()
setFavoritePrey()

<interface>
Pregnant

getGestationPeriod)
setGestationPeriod)

<interface>
Endanger

<interface>
Vegetarian

getAmountOfPlants()
setAmountOfPlants()

<interface>
PharmaExperi menter

getMedicines()
setMedicines()

<abstract>
Animal

weight

getWeight()
setWeight()

Mouse

medicineList

getMedicines()
setMedicines()

<abstract>
Mammal

gestationPeriod

getGestationPeriod()
setGestationPeriod()

Dog

licenseNumber

getLicenseNumber()
setLicenseNumber()

Shark

gestationPeriod

getGestationPeriod()
setGestationPeriod()

<abstract>
Fish

maxDepth

getMaxDepth()
setMaxDepth()

Salmon

medicine

getMedicines()
setMedicines()

Penguin

<abstract>
Bird

Hawk

maxFlightHeight
prey

getMaxFlightHeight()
setMaxFlightHeight()

getFavoritePrey()
setFavoritePrey()

<interface>
Flying

getMaxFlightHeight()
setMaxFlightHeight()

10 Professional Courses for Computer Engineering Education

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 7, 1-15

Five students provided incorrect definitions. Some
students omitted the requirement for the method
declared within the interface to be abstract. Others
enabled the definitions of variables within the interface.
Another incorrect defin ition referred to an ext ra
restriction concerning the ability of a class to implement
one interface at most. These students did not provide any
possible uses of interface.

To conclude, the large number of semi-correct and
incorrect defin itions demonstrates only partial
understanding of the interface concept. We may state
that the above partial and incorrect defin itions stem from
several reasons: (a) confusing prior knowledge regarding
related concepts such as abstract classes with interfaces;
(b) forgetting some of the definit ion's constituents due to
the time that has passed since they were engaged with
interfaces; (c) partial understanding and assimilation of
the interface concept.

B. Students' solutions and typical mistakes

In what fo llows we present analysis of the students'
solutions according to the aspects specified in Table 1.
In Table 2 we present the percentage of correct solutions
and in the following subsections we discuss common
mistakes provided by the students according to the
examined aspects of interface class.

TABLE II: DISTRIBUTION OF CORRECT ANSWERS

Examined
aspect

Question no. No. of correct
solutions

Definition 1 50 (79%)
2 58 (92%)

Implementation 3 57 (90%)
4 52 (83%)
5 48 (76%)

Hierarchy 6 45 (71%)
7 40 (63%)

Polymorphis m 8 25 (40%)
9 26 (41%)

1) Definition
50 out of 63 (79%) provided fully correct answer to

the first question. As for the other 13 students, 2 students
did not provide any solution, 7 provided a definit ion of
the required interface class but added unnecessary
methods. The following is a variat ion of this solution:

The students who provided the latter solution were

instructed to provide an interface and did so, but they
felt obligated to add a method. They did not want to
provide an interface with nothing inside it; hence they
provided a declaration of a method that returns whether
or not the animal is endangered. Obviously, such a
method is redundant, as any class that implements

Endangered will return true. This may point towards the
students’ difficult ies in understanding that interface may
not include methods and yet may be useful for tagging
objects.

Four students ignored the explicit instruction to use
interface to represent endangered animals, and suggested
adding an abstract method to the Animal class that
returns true or false regarding whether or not the class
represents an endangered species. This method then
must be overridden in Animal concrete successors.

58 out of 63 (92%) provided fully correct answer to
the second question. As for the other 5 students, 3 of
them provided a faulty definit ion of the required
interface class including both methods and the amount
attribute which is obviously not allowed in an interface
class. Surprisingly, the methods declared remained
unimplemented in these faulty solutions. One student
provided a partial solution omitt ing the
setAmountOfPlants() method. One student provided a
definit ion of the interface and included a complete
implementation of the methods inside the interface.

Obviously, implementing methods and declaring
member variab les are not feasible within an interface.
We may infer that the above students did not understand
the concept of interface at all.

According to the above results (questions 1 and 2) it
can be concluded that most of the students were able to
provide correct answers referring to the aspect of
defining an interface class. However, minority of them
demonstrated difficu lties such as adding attributes to an
interface, implementing the methods in the interface
class, and partial declarat ion of the required methods.

2) Implementation
57 out of 63 (90%) provided fully correct answer to

the third question. As for the other 6 students, they
provided a faulty implementation of the Dog class
omitting the licenseNumber attribute. This omission did
not prevent them from using such a variable in the
implementation of the methods. Maybe if they were
using a code editor they would be notified on the
problem and correct it .

52 out of 63 (83%) provided fully correct answer to
the fourth question. As for the other 11 students, 3
students did not provide any answer, 5 students provided
a faulty solution in which the Hawk class declared on
the implementation of only one interface of the two
required as follows:

class Hawk extends Bird implements Flying
or
class Hawk extends Bird implements Hunter

These students also omitted the implementation of the
interface which was not declared, and implemented only
the methods of the declared one. Another student also
provided similar solution in which only Fly ing interface
was declared , however, he imple mented als o the
methods required by the Hunter interface, although not
declared in the class defin it ion. The other 3 students
p rov ided another fau lty so lut ion in which they set

interface Endangered {
 boolean isEndangered();
}

 Professional Courses for Computer Engineering Education 11

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 7, 1-15

Hawk's base class to be of type Flying, instead of type
Bird, and added the Hunter in the implements-clause as
follows:

class Hawk extends Flying implements
Hunter { ... }

These errors may point on the fact that these students
do not realise that a class may implement multip le
interfaces, and that an interface cannot serve as a base
class for another class. These mistakes are not only
syntactic since they require a high level of understanding
of object oriented concepts, which presumably not all
students possess. To be precise the students do not
consider the importance of the class hierarchy. Omission
of the Bird class from being Hawk's base class results in
hawks that are not part of the birds' family (or of
animals' family, implied).

48 out of 63 (76%) provided fully correct answer to
the fifth question. As for the other 15 students: 3
students did not provide any answer; 2 students
implemented the methods inside the interface class and
added "implemets PharmaExperimenter" clause in the
Mouse and Salmon classes; 10 students provided
solutions which were erroneously implemented. Namely,
they did not distinguish between the different
implementations required in the two classes. They
provided identical implementations to both.

According to the above results (questions 3-5) it can
be concluded that many of the students were able to
provide correct answer referring to the aspect of
implementing an interface class. However, part o f them
demonstrated difficult ies such as omitting required
attributes in the classes that are necessary to support the
implementation of the methods, implementing only one
interface instead of two required, implementing identical
behaviour of the same interface in two d ifferent classes
although dissimilar implementation was expected. Some
of these difficult ies can be attributed to the students'
habit of rely ing on the automatic correct ion of the
development environment and hence not paying enough
attention to these faults.

3) Hierarchy
45 out of 63 (71%) provided fully correct answer to

the sixth question. As for the other 18 students: 4
students did not provide any answer; 14 students
implemented the interface in both classes Shark and
Salmon.

40 out of 63 (63%) provided fully correct answer to
the seventh question. As for the other 23 students: 4
students did not provide any answer; 19 students
implemented the Pregnant interface only in the Mammal
class. Among them 5 students changed the hierarchy in a
way that Shark extends Mammal instead of Fish, while
the other 14 students simply ignored the part of the
question related to sharks.

According to the above results (questions 6 and 7) it
can be concluded that approximately two-thirds of the
students were able to provide correct answers referring

to the aspect of implementing an interface class in the
context of class hierarchy. However, approximately third
of them demonstrated difficu lties such as implementing
the interface in an identical manner at the lowest level of
the hierarchy (i.e., the concrete classes) instead of
implementing it at a more abstract level (i.e., the
common ancestor), changing the hierarchy in a way that
classes that wishes to have abilit ies already implemented
in a certain class must extends this class instead of
extending their current base class. It should be stressed
that in this case the class hierarchy was given to the
students and they had to use their knowledge to properly
implement interface class in the given context. However
it is well known that in cases they had to construct the
class hierarchy as well they encounter more difficult ies
[7].

4) Polymorphism
25 out of 63 (40%) provided fully correct answer to

the eighth question. As for the other 38 students: 10
students did not provide any answer, 15 students
invoked the getWeight() method without proper casting,
as follows:

void someMethod(Flying obj){

System.out.println
 (obj.getMaxFlightHeight());
System.out.println(obj.getWeight());

}

The obj parameter is of type Flying and therefore
cannot be used to invoke the getWeight() method.
However, the object pointed at by obj may include a
getWeight() method, and a casting of obj to type Animal
is required in order to access it. 13 students indeed
performed a proper casting to type Animal as follows:

System.out.println
 ((Animal)obj.getWeight());

However they did not precede a testing operation

using the instanceof operator to ensure that the object is
of type Animal. Without the testing a runtime error of
type ClassCastException can occur. For example, if obj
is of type Airplane which implements the Flying
interface but is not a successor of Animal, the casting
will fail. Avoiding such an error requires a deep
understanding of the polymorphis m princip le in the
context of class hierarchies and interfaces. The above
results are in line with [5] who found that students have
difficult ies in understanding polymorphis m in general
and casting between types in particular.

26 out of 63 (41%) provided fully correct answer to
the ninth question. As for the other 39 students: 10
students did not provide any answer, and the other 29
students provided solutions with errors similar to those
of question 8 concerning proper casting. 18 students
failed to perform a proper casting to the parameter
before invoking the getFavouritePrey() method, as
follows:

12 Professional Courses for Computer Engineering Education

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 7, 1-15

void someMethod(Animal obj){
 System.out.println

 (obj.getWeight());
 System.out.println

 (obj.getFavouritePrey());
}

Unlike the previous question, the method's parameter
is of type Animal, which is the base abstract class of the
given hierarchy. Since not all an imals are o f type Hunter,
the object must be checked as being of that type (using
the instanceof operator) before one can invoke the
getFavouritePrey() method. Accessing the later method
also requires a proper casting to Hunter. 11 students
performed proper casting to Hunter, however, they did
not precede a testing operation using the instanceof
operator to ensure that the object is of type Hunter. This
is in line with [6] who found that students have
difficult ies in dynamic b inding in the context of proper
casting.

According to the above results (questions 8 and 9) it
can be concluded that approximately one-third of the
students were able to provide correct answers referring
to the aspect of polymorphism in the context o f interface
class. Approximately two-thirds of them demonstrated
difficult ies such as accessing methods without
performing a proper casting to the type that enables
desired access, performing unsafe casting from interface
to class and vice versa without examining first the type
of the object at hand. This is in line with [10], and [6]
who found that students have difficulties related to class
inheritance and polymorphis m.

To summarise, most students demonstrate good
understanding concerning the definit ion and
implementation of interface classes. This understanding
is demonstrated by their ability to define interface
according to the requirements, and implement given
interfaces in one or more concrete classes. As a
profound understanding of the infrastructure of interface
and its relat ions to princip les of polymorph ism and class
hierarchy is needed, the number of students who
demonstrate such an understanding decreases.
Specifically, in case that: (a) several interfaces are
involved, or some classes need to implement an
interface; (b) casting is needed to access methods belong
to a specific type; (c) abstract classes are involved or an
interface with no methods appears, the number of the
correct solutions decreased significantly. These results
strengthen the findings resulting from in part A of the
questionnaire, in which many students failed to provide
good definitions that encompass the various aspects of
interfaces. The upshot of such misunderstandings is the
students' unsatisfactory results when using, designing
and implementing interfaces [1].

C. 19BStudents’ reflections on the questionnaire

After the students had fin ished answering the
questionnaire we conducted informal semi open
interviews with twenty six of them, in which they were
asked to provide reflections concerning their
performances on the questionnaire. Using analytic

induction [20] and content analysis [21] in reviewing the
entire corpus of data to identify themes and patterns of
the focal points of the study, the students’ reflections
were classified into the following categories: the essence
of interfaces; the complexity embedded in the interfaces
versatility; and lack of experience with interface
programming. In this section, we elaborate on the
students’ reflections regarding each of these categories.

1) The essence of interfaces
Some students provided reflections similar to the
following, concerning the essence of interfaces:

Dafna: “I do not use interfaces in my programs,
unless I'm specifically required to do so. I do not find it
useful, and to tell the truth I never understood what it is
good for. If one wants to implement some methods in a
class you may do it without employing interfaces, so why
bother?”

Gideon: “I totally misunderstand the concept of
interface. If I want something to be abstract I use
abstract classes. In what sense are interfaces better?
They do not even allow defining data members!”

Gadi: “The combination of interfaces and abstract
classes totally confused me. In one of the question I
think I was supposed to implement an interface within a
given abstract class, and I was not sure i f it was legal.
Therefore I decided to avoid doing so, and instead I
implemented the interface in each class separately.
Maybe I redundantly duplicated code, but I'm sure it
works.”

The students consider interfaces as not being useful.
They confuse them with abstract classes and cannot
understand the difference. They cannot think of a
problem in which interfaces would be their best solution,
and they avoid using it. The above excerpts point
towards the students’ misunderstanding of the essence of
interfaces. As a result of th is misunderstanding, the
students (a) do not find it useful; (b) do not use it unless
forced; (c) bypass employing interfaces by using
abstract classes instead. The students’ misunderstanding
may stem from several reasons: (a) insufficient time
dedicated to the learning of interfaces; (b) insufficient
exposure to examples that demonstrate the unique
advantages of interfaces over other object oriented
mechanis ms such as abstract classes. (c) lack of
continual exposure to interfaces in various courses. The
students’ misunderstanding concerning interfaces was
reported by [1], who found that interfaces are among the
most difficu lt concepts for students to understand when
they study object oriented programming.

2) 21BThe complexity embedded in the interfaces
versatility

Some students provided reflections similar to the
following, concerning the complexity embedded in the
versatility of interfaces:

Alex: “The use of the 'instanceof' operator is not
difficult to me in the context of a class hierarchy, but I
did not remember that it works with interfaces.”

 Professional Courses for Computer Engineering Education 13

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 7, 1-15

Ruth: “The casting operations are very difficult to me.
The rules are not intuitive. I do not understand why one
would use a reference to 'Animal' when you actually
want to treat the parameter as 'Flying', or vice versa.
The questions concerning the casting were artificial.”

David: “I couldn't solve the problem concerning the
Hawk that is both 'Flying' and 'Hunter' since I did not
recall that a class can implement more than one
interface.”

Gal: “The first question regarding the 'empty'
interface confused me. I added a method to the interface
not because they asked for it, but because I couldn't
leave the interface empty. It seems odd to do so, and I
even thought it was illegal. Isn't it?”

The above excerpts refer to the versatility of
interfaces, which makes it difficult to apply it properly
in various contexts. Alex refers to the polymorphis m
aspect of interfaces and his difficulties expressed by his
inability to t ie together the instanceof operator with the
interface type. This d ifficulty may stem from h is
misunderstanding that implementing an interface is
similar to extending a base class. Ruth refers to
difficult ies stemming from another aspect of working
with interfaces. She finds it difficu lt to perform casting
operations required to handle an object through different
views. Namely, when an object is accessed by Animal
reference she had difficulties in switching the view for
that object to Flying (via casting operation) in order to
access the getMaxHeightFlight() method. David raises
an additional difficulty referring to a third aspect of
interface which concerns the possibility of one class
implementing multip le interfaces. This difficulty may
stem from his faulty analogy to class inheritance in
which only one base class is allowed. Gal refers to
another aspect of the use of interfaces, which is
concerned with tagging objects via interfaces. Tagging is
used when one has to distinguish between objects based
on some property. A known use for tagging in Java is
the Serializable interface which does not contain any
method declarations and is aimed at being implemented
by classes which permit serialisation of their objects
to/from input/output streams. These difficu lties are in
line with [6] who found that students have difficulties in
understanding and applying various issues regarding
inheritance and polymorphis m.

3) Lack of experience with interface programming
Some students provided reflections similar to the

following, concerning their lack of experience with
interface programming:

Dorit : “Interfaces are sophisticated. I think that
professional programmers use them, but I'm just a
beginner. I cannot think of a situation I would consider
using it to solve a problem. Maybe after I gain more
experience I'll find it useful".

Boris: “I do not remember that we paid much
attention to interfaces when we learned object oriented
programming. The lecturer explained its purpose, and
we even practiced it, but we practiced the use of regular
and abstract classes a lot more.”

Ron: “I do not feel I understand interfaces. I
remember we studied it, but I do not remember much. It
is probably not so important, otherwise we would use it
more often, and I wouldn't forget how it works. I do not
remember I ever used it again in successive courses.”

From the above excerpts we can learn about possible
explanations why students face difficult ies when using
interfaces properly. Dorit attributes her difficulties to
both the complexity of interfaces and her minor
experiences as a programmer. Boris, on the other hand,
attributes his difficult ies to the small amount of time
dedicated to the learn ing and practicing of interfaces
compared to the t ime dedicated to the learn ing and
practicing of class inheritance. Ron refers to the
discontinuity of practicing interfaces in successive
courses. As a consequence he forgot how to use it
properly, and considers the issue to be less important
than other object oriented constructs. No doubt intensive
and continual practicing may raise the students'
comprehension of the concept under study. It is
desirable to practice interfaces as well as other important
programming constructs in successive courses, and in
stressing the possible interrelat ions among them. Loftus
et al. [22] reached the conclusion that most graduating
students cannot design systems properly. Therefore Hu
[12] suggests rethinking the pedagogy used to teach
object orientation. He raises the following questions: (a)
Where, when, and how can inheritance and
polymorphis m be learned in a truly problem-solving
environment? (b) Would it be advantageous for students
to learn problem solving with object aggregation before
they learn inheritance and polymorphis m? (c) Should the
interface construct be introduced before class inheritance
(thus, students would be “forced” to th ink in terms of
polymorphic implementations of an interface)?

V. CONCLUDING REMARKS AND
IMPLICATIONS TO EDUCATION

In this paper, we have presented and analysed the
understanding of college students’ concerning various
aspects of the concept of interface class. The results
obtained reveal that most of the study participants
understand how to properly define and implement
interface classes in concrete classes. Nevertheless, few
of the students demonstrated difficult ies in defin ing an
interface class with no methods; in implementing
multip le interface classes in one concrete method; and
implementing a single interface class in different
concrete classes. As to understanding of the use of
interface classes in a given class hierarchy only two-
thirds of them demonstrated a proper understanding. The
other third had difficu lties in implementing an interface
within an abstract class together with separate
implementation in additional concrete class. As for the
polymorphis m aspect, only one third of the student was
able to change views of the object from one type to
another. The other two-third were accessing methods
without performing a proper casting from its 'class' type
to its 'interface' type and vice versa. These results are

14 Professional Courses for Computer Engineering Education

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 7, 1-15

consistent with previous research regarding the object-
oriented design capabilit ies of novice programmers [6, 7,
23], and regarding the use of interfaces during object
oriented design and implementation [10].

There is no doubt that the interface concept enables
the programmer to design more flexib le and modular
computer programs. Nevertheless, the time devoted to it
in the MIS curricu lum is minor, and as a consequence
the students have difficu lties in understanding it
profoundly, and in using it properly. Usually, this topic
is studied towards the end of the second programming
course (Object Oriented programming), after learning
the concepts of class inheritance, abstract classes and
polymorphis m. Difficulties in understanding these issues
result in difficu lties in understanding the interface.
Moreover, the students are not exposed enough to
interfaces in other contexts other than the objected
oriented programming course, and hence tend to
underestimate its value. Therefore, to facilitate the
students' understanding of the issues involved we
suggest the following: (1) incorporate the issue of
interface class together with abstract class, emphasizing
the similarit ies and the difference between them; (2)
dedicate more time to teach interface classes. The extra
time will be devoted to the practice of advanced
properties of interface classes in order to raise the
students' awareness to their advantages; (3) emphasize
the contribution of interface classes to the quality of the
code in general and to modularity and flexib ility in
particular, by providing an example in which one
interface (e.g., interface List) can be implemented by
two concrete implementations (e.g., class ArrayList and
class LinkedList) and can be used interchangeably
without further modifications in other parts of the code;
and (4) add tasks involving the use of interfaces in
advanced programming courses, in order to demonstrate
its importance and relevance in other contexts (e.g.,
data-structures, algorithms, distributed systems, etc).

Furthermore, we recommend on spiral learning [24]
of the interface concept. At first, even before introducing
the class concept, the interface concept cab be
introduced as a general declaration of some capability,
including only a collection of related methods without
an implementation. Then, the course moves on to classes
and their implementation. The next t ime interfaces can
appear is when the polymorphis m concept is presented.
It can be used as a parameter type to some method, and
the students are presented again with the interface
concept and its uses. The course moves on to abstract
methods and classes, and then the interface class should
be represented with compare to the abstract class
construct. It is now the time to specify the advantages of
using interfaces, specifically their flexib ility (i.e ., any
class can implement them) and their modularity (i.e.,
any concrete implementation of it will fit in). After that,
combinations of interfaces and abstract classes should be
presented, and a discussion of the contribution of each
construct to the solution should take place. The use of an
interface to label classes can be also presented and
discussed in a separate lesson. In the following courses

(e.g., data structures, distributed systems) the educators
should use interfaces in their examples, and require the
use of them, this way the students would have a chance
to revisit the concept, and to internalize the advantages
of using it.

Finally, we believe that further research with a large
number of participants should be conducted in order to
substantiate our results.

REFERENCES

[1] Hu, C. (2006). When to use an interface? SIGCSE
Bulletin, 38(2), 86–90.

[2] Eckerdal, A. & Thune, M. (2005) Novice Java
Programmers’ Conceptions of “Object” and
“Class”, and Variat ion Theory. In Proceedings of
the 10th annual SIGCSE conference on Innovation
and technology in computer science
education (ITiCSE '05). pp 89-93.

[3] Sanders, K., Boustedt, J., Eckerdal, A., McCartney,
R., Moström J.E., Thomas, L. and Zander, C. (2008)
Student understanding of object-oriented
programming as expressed in concept maps. In
Proceedings of the 39th SIGCSE technical
symposium on Computer science
education (SIGCSE '08), pp 332-336.

[4] Eckerdal, A. (2009) Novice Programming Students'
Learn ing of Concepts and Practise. PhD thesis,
Uppsala University, Sweden.

[5] Benaya, T. & Zur, E. (2008). Understanding object
oriented programming concepts in an advanced
programming course. In R.T. Mittermeir and M.M.
Sysło (Eds.), ISSEP 2008, LNCS 5090 (pp. 161–
170). Berlin/Heidelberg: Springer-Verlag.

[6] Liberman, N., Beeri, C. & Ben-David Kolikant, Y.
(2011). Difficulties in learning inheritance and
polymorphis m. ACM Transactions on Computing
Education (TOCE), 11(1), pp. 1–23.

[7] Or-Bach, R. & Lavy, I. (2004). Cognitive activit ies
of abstraction in object-orientation: An empirical
study. The SIGCSE bulletin, 36(2), 82–85.

[8] Bloom, B. S. (ed.) (1956). Taxonomy of
Educational Object ives, the classificat ion of
educational goals – Handbook I: Cognitive Domain.
New York: McKay.

[9] Biggs, J.B. and Collis, K.F. (1982). Evaluating the
quality of learning: The SOLO taxonomy
(Structure of the Observed Learning Outcome).
New York: Academic Press.

[10] Lavy, I., Rashkovits, R., & Kouris, R. (2009).
Coping with abstraction in object orientation with
special focus on interface. The Journal of
Computer Science Education, 19(3), 155–177.

[11] Lewis, J., Loftus, W., Struble, C., & Cocking, C.
(2003). Java software solutions. Boston: Addison-
Wesley Longman.

[12] Hu, C. (2011). When to inherit a type: What we do
know and what we might not. ACM Inroads, 2(2),
52–58.

 Professional Courses for Computer Engineering Education 15

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 7, 1-15

[13] Schmolitzky, A. (2006). Teaching inheritance
concepts in Java. In Proceedings of the 4th
International Symposium on Princip les and
Practice of Programming in Java (PPPJ’06) (pp.
203–207).

[14] Topi, H., Valacich, J.S., Wright, R.T., Kaiser, K.,
Nunamaker, J.F., Sipior, J.C., & De Vreeda, G.J.
(2010). IS 2010: Curriculum guidelines for
undergraduate degree programs in Information
Systems. Communications of AIS, 26, 359–428.

[15] Schmolitzky, A. (2004). Objects first, interfaces
next or interfaces before inheritance. Conference
on Object Oriented Programming Systems
Languages and Applications: 19th Annual ACM
SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and
Applications (pp. 64–67).

[16] Cornelius, B. (2000). Teaching a course on
understanding Java. Proceedings of the 4th Java in
the Computing Curriculum Conference (JICC 4).

[17] Détienne, F. (2001). Software design – Cognitive
aspects. F. Bott (Ed.), Berlin: Springer.

[18] Hadjerrouit, S. (1998). A constructivist framework
for integrating the Java paradigm into the
undergraduate curriculum. SIGCSE Bull, 30(2),
43–47.

[19] Wiedenbeck, S., Ramalingam, V., Sarasamma, S.,
& Corritore, C.L. (1999). A comparison of the
comprehension of object-oriented and procedural
programs by novice programmers. Interacting with
Computers, 11(3), 255–282.

[20] Goetz, J. P. & LeCompte, M. D. (1984).
Ethnography and qualitative design in educational
research. New York: Academic Press.

[21] Neuendorf, K. (2002). The Content Analysis
Guidebook, Thousand Oaks, CA: Sage
Publications.

[22] Loftus, C., Thomas, L., & Zander, C. (2011). Can
graduating students design: Elaborated. In
Proceedings of the 42th SIGCSE Technical
Symposium on Computer Science Education,
Dallas, TX (pp 105-110).

[23] Sim, E.R., and Wright, G. (2001). The difficult ies
of learning object-oriented analysis and design: An
exploratory study. Journal o f Computer
Information Systems, 42(4), 95–100.

[24] Harden, R.M. & Stamper, N. (1999). What is a
spiral curricu lum? Medical Teacher, 21, 2. 141-143.

Prof. Ilana Lavy is an Associate Professor with tenure
at the Academic College of Yezreel Valley and is the
department head of Management Informat ion Systems
since October 2012. Her PhD dissertation (in the
Technion) focused on the understanding of basic
concepts in elementary number theory. After fin ishing
doctorate, she was a post-Doctoral research fellow at the
Education faculty of Haifa University. Her research
interests are in the field of pre service and mathemat ics
teachers' professional development as well as the

acquisition and understanding of mathematical and
computer science concepts. She has published over
seventy papers and research reports (part of them is in
Hebrew).

Dr. Rami Rashkovits is a Lecturer at the Academic
College of Yezreel Valley since 2000 in the department
of Management Information Systems. His PhD
dissertation (in the Technion) focused on content
management in wide-area networks using profiles
concerning users' expectations for the t ime they are
willing to wait, and the level of obsolescence they are
willing to tolerate. His research interests are in the fields
of distributed systems as well as computer sciences
education.

http://www.citeulike.org/user/elainefarrow/author/Topi:H�
http://www.citeulike.org/user/elainefarrow/author/Valacich:JS�
http://www.citeulike.org/user/elainefarrow/author/Wright:RT�
http://www.citeulike.org/user/elainefarrow/author/Kaiser:K�
http://www.citeulike.org/user/elainefarrow/author/Nunamaker:JF�
http://www.citeulike.org/user/elainefarrow/author/Nunamaker:JF�
http://www.citeulike.org/user/elainefarrow/author/Nunamaker:JF�
http://www.citeulike.org/user/elainefarrow/author/Sipior:JC�
http://www.citeulike.org/user/elainefarrow/author/De+Vreeda:G�

	I. INTRODUCTION
	II. THEORETICAL BACKGROUND
	A. Interface as an object oriented construct
	B. Interface in the curriculum
	C. Difficulties in understanding object oriented constructs
	III. THE STUDY

	A. Environment and population
	B. Data analysis tool
	C. Questionnaire
	1) Interface class definition
	2) Interface class Implementation
	3) Interface class and class hierarchy
	4) Interface class and polymorphism
	IV. RESULTS AND DISCUSSION

	A. Informal definition of interface
	1) Correct definitions
	2) Semi-correct definitions
	3) Incorrect definitions
	B. Students' solutions and typical mistakes
	1) Definition
	2) Implementation
	3) Hierarchy
	4) Polymorphism
	C. Students’ reflections on the questionnaire
	1) The essence of interfaces
	2) The complexity embedded in the interfaces versatility
	3) Lack of experience with interface programming
	V. CONCLUDING REMARKS AND IMPLICATIONS TO EDUCATION
	REFERENCES

