
I.J.Modern Education and Computer Science, 2013, 8, 1-7
Published Online October 2013 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijmecs.2013.08.01

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 8, 1-7

Evaluation of the Cost Estimation Models: Case
Study of Task Manager Application

Mohammed Mugahed Al_Qmase, M. Rizwan Jameel Qureshi

Faculty of Computing and Information Technology, King Abdulaziz University, Saudi Arabia
Qumasi@hotmail.com, anriz@hotmail.com

Abstract — The need to accurately estimate time and
cost for effective planning of software projects is
becoming crucial driven by the escalating demands of
the software market. Several models proposed in the
history of Software Engineering discipline to estimate
time, costs associated with planning and managing
software projects as Line of Code (LOC), Function
Point (FP) and Constructive Cost Model (COCOMO).
This paper focuses upon the COCOMO Model. It is
further consisted of its two sub models called
COCOMO I and COCOMO II. The primary objective
of this research is to use an appropriate case study to
evaluate the accuracy of the sub models COCOMO I
and II and ascertain the variation of the realistic
resource effort, staff and time. The findings to date
show that the Application Composition Model of
COCOMO II is more accurate in determining time and
cost for the successful conclusion of a software project
than the other two COCOMO I and II Models for a
similar application for example Task Manager.

Index Terms— COCOMO I, COCOMO II, Software
Cost Estimation, Case Study, Sizing Methods

I. Introduction

Cost estimation is one of more challenging
requirements of project management procedures.
Basically it is a prediction methodology towards fine
tuning the cost estimates for a successful conclusion of
a project. For appropriate resource allocation, the
accuracy and the efficiency in cost estimation are
extremely important imperatives for keeping the
development costs as within the budget envelope.
Several models proposed for software cost estimation
such as LOC, FP, COCOMO and Use Case estimations.
These models use sophisticated mathematical methods
towards cost evaluation convergence.

COCOMO is one of the more ubiquitous techniques
available for investigating cost, effort, deployment of
staff and ascertaining an accurate road map of precise
time lines of the entire project. COCOMO I was first
published in 1981 [1]. It is known to consist of two sub-
models structured as COCOMO I (also referred as
COCOMO'81) and of course COCOMO II. COCOMO
II was introduced in 1995, featuring such attributes as
cost estimation aimed at object oriented software
development [2]. COCOMO I, in essence is formulated

as a hierarchy of three sub-models geared towards the
Basic, Intermediate and Advanced. These three sub-
models in turn address the Organic, semi-detached and
embedded modes of precise simulation. COCOMO II
on the other hand comprises of a sequential assimilation
of four sub-models individually addressing the
Application Composition, Early Design, Reuse and
Post-Architecture [1]. This paper contains the results of
COCOMO I and COCOMO II applications a specific
case study. For this type of higher level synthetic based
simulation successive use of Java, JSP, JavaScript and
Oracle are exploited at will.

The remainder of this paper is organized as follows:
Section 2 describes the related work. Section 3 covers
the details of COCOMO I and I. Section 4 illustrates
sizing methods and cost drivers. Section 5 presents the
research setting and analyzes the requirements of the
project. Section 6 provides experiment and analysis.
Conclusion is given in the final section.

II. Related Work

Boehm et al. [1] proposed evaluation criteria for the
validity of the process models and they provided
effective results. This article also explained the
strengths and weaknesses of various cost estimation
techniques for the period of 1965 to 2005 (40 years).
COCOMO-II [2] was an excellent model up to 2005 but
it was not equipped for the new requirements and
development styles of the current software market to
estimate project costs. COCOMO-II directed the
software experts to create and designed new models
such as the Chinese government version of COCOMO
(COGOMO) and the Constructive Commercial-off-the-
Shelf Cost Model (COCOTS) etc.

Boehm [3] discussed different software cost
estimation techniques and highlighted various hot areas
and challenges of research in the field of software cost
estimation. In [3], it is emphasized that there was a need
to research more in this field to open the new horizons
for upcoming researchers. Nasir [4] discussed the
strengths and weaknesses of various software
estimation techniques to provide the basis for the
exactness of software cost estimation. Basic Project
Estimation Process was presented. The different types
of models (derived from COCOMO I&II) were also
discussed [4].

2 Evaluation of the Cost Estimation Models: Case Study of Task Manager Application

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 8, 1-7

Reusability of components in Component Based
Development (CBD) is illustrated in [5]. The research in
[5] also discussed and compared different architectures
of CBD. The detailed explanation of advantages and
disadvantages of CBD is also elaborated. A comparison,
of component based development (CBD) with other
traditional software development practices, is also
provided. Succi and Baruchelli [6] highlighted the
importance of standardization of components for the
software reusability. The major finding in [5] is how
much total development cost of a software system
affected due to usage of component-based software
engineering. The main two factors those were affecting
the standardization cost of a component have been
explained. According to them, the cost of the
standardization of component(s) must be included
during the cost-benefit analysis of a software system.
Gill [7] highlighted the pertinent issues of software
reusability for component based development on the
basis of CBSE, highlighted the important issues of
software reusability and high level reusability
guidelines. Gill [7] outlined the aspects of reusability
from product reliability improvement and reduction in
software development costs.

The problem of crosscutting produced during
component development was elaborated in [8]. This
problem was solved by the extension with Aspect
oriented methodology. It was demonstrated by an
example as to how new business rules resulted in the
more adaptable and reusable components. Aspect
Component Based Software Engineering developed
with success in the CORBA Component Model domain
[9]. Dolado [10] provides the validation of component-
based method (CBM) by analyzing 46 projects. A
relationship is also established (based on the analysis of
46 projects) between Kilo Line of Code (KLOC) and
number of Component (NOC) by providing examples
[10].

III. The Details of COCOMO I & II

COCOMO I (COCOMO'81) consists of three models
[1].

1. Basic COCOMO is a static single-valued model
that computes software development effort (and
cost) as a function of program size expressed in
estimated lines of code.

2. Intermediate COCOMO computes software
development effort as a function of program size
and a set of "cost drivers" that include subjective
assessments of product, hardware, personnel, and
project attribute.

3. Detailed COCOMO incorporates all
characteristics of the intermediate version with an
assessment of the cost driver's impact on each step
(analysis, design, etc.) of the software engineering
process.

Equations

COCOMO'81 models depend on the two main
equations [9]:

Effort (MM) = a * (KDSI) ^ b (1)

Schedule (TDEV) = 2.5 * (MM) ^c (2)

Coefficients a, b and c depend upon the mode of the
development to determine the size and the complexity
of the project. Following are the three modes that are
applied to each of the models discussed previously [1].

1. Organic Mode: covers relatively small and simple

software projects and be conducted by small teams
with good application experience work for a set of
less than rigid requirements.

2. Semi-detached Mode: is applicable for software
projects must be carried out by teams with mixed
levels of experience and deal with mixed
requirements (set of rigid and less rigid
requirements.

3. Embedded projects: covers software projects to
be developed from a set of tight hardware, software
and operational constraints.

COCOMO II is composed of the following four sub-
models [2].

1. The Application Composition model
involves prototyping efforts to resolve
potential high-risk issues such as user
interfaces, software/system interaction,
performance, or technology maturity. This
model used Application Points sizing method.
It gathers application perspective consisting of
a number of screens, reports and third
generation language (GL) components.

2. The Early Design model involves exploration
of alternative software/system architectures
and concepts of operation. At this stage,
requirements are not enough to support fine-
grain cost estimation. The corresponding
COCOMO 2.0 capability involves the use of
function points and a small number of
additional cost drivers [2]. It used FP sizing
method. FP used number of inputs, outputs,
inquiries, files and interfaces.

3. The Reuse model computes the effort of
integrating reusable components. It uses how
many of LOC reused or generated.

4. The Post-Architecture model is applied once
the system architecture is designed and ample
information is available about the system. This
model works most effectively if software life-
cycle architecture has been developed. It is

 Evaluation of the Cost Estimation Models: Case Study of Task Manager Application 3

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 8, 1-7

also based on LOC reused or generated. Figure 1
presents the four sub-models.

IV. Sizing Methods, Cost Drivers and Cost
Estimations

COCOMO software cost estimation model requires
sizing information (as input of estimation cost models).
Three different sizing options are available as part of
the model hierarchy: object points, function points, and
lines of source code. The COCOMO II application
composition model used object points. The object point
is an indirect software measure computed using counts
of the number of screens (at the user interface), reports,
and 3GL components likely to be required to build the
application.

Each object instance (e.g., a screen or report) is
classified into one of three complexity levels (i.e.,
simple, medium, or difficult) using criteria suggested by
Boehm [2]. In essence, complexity is a function of the
number and source of the client and server data tables
that are required to generate the screen or report and the
number of views or sections presented as part of the
screen or report. Drivers are particularly helpful to the
estimator in order to understand the impact of different
factors that affect project costs COCOMO has 7 to 17
multiplicative factors that determine the effort required
to complete a software project. All cost drivers have
qualitative rating levels ('extra low' to 'extra high') that
express the impact of the driver and a corresponding set
of effort multiplier.

Fig. 1: COCOMO II Models [2]

V. Research Setting

The case study is a course project to develop a task
manager (web application) development. The
application provides facilitation to a supervisor to track
the progress of job tasks assigned to his/her team. Team
inserts the completed tasks associated with time spent
for each task. The supervisor will check these tasks and

give some notes on these tasks. This project has three
actors: administrator, supervisor and team members.
Each actor has his/her own perspective as shown in
Table 1. More than one programming Languages is
used during the case study to develop Task Manager
Application. Therefore, size for each one of the
language is required to measure as shown in the Table 4.

Table 1 : Details of Task Manager Application
Actors Job in the system
Team
Members

- At the end of day, the system allows the member to
insert the tasks that have been completed by him
association with the time spent to complete them.
- The member can receive a report from supervisor
as a feedback of these tasks.

Supervisor -The supervisor can receive the tasks completed by
his/her employees. He can reject or pass or give
some notes on any task to improve depending on
three criteria: 1) it is on or out the scope; 2) it has
any effect on the project or not; 3) it is completed on
realistic time or not.

Administrator - The system generates different types of reports for
administrator about each employee such as:
1- number of task reject and number of task pass.
2- calculate the active hours (which are the total
number of hours that spent for pass task) and present
them as chart (this chart will present active hours for
each employee that allows the administrator) to
evaluate the employee.

Users

MemberRole

Task

alter

MemberID
Name
Work Hours
Phone
Email
Nationality
Salary
Hire Date

TaskID
Title
Description
Note
Date Of Add

Active Hours
State
Date Of Check

Supervise

UserID

Username

Password

Role

Total Active Hours

Number of Tasks
Total Working Hours

Fig. 2: ERD of Task Manager Application

Table 2: Complexity Parameters

Description Low Medium High Total
Inputs 20*3 60
outputs 3*5 15
Queries 12*3 36
Files 3*7 21
Interfaces 3*5 2*7 1*10 39

Total Unadjusted Function Points 171

4 Evaluation of the Cost Estimation Models: Case Study of Task Manager Application

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 8, 1-7

Table 5: Calculate Function Point

VI. Experiment and Analysis

COCOMO I & II are applied prospectively in sub
sections 6.1 and 6.2.

6.1 COCOMO I Application

Table 6: Basic COCOMO

MODE
Effort Schedule

A B a b

Organic 2.4 1.05 2.5 0.38

Semidetached 3 1.12 2.5 0.35

Embedded 3.6 1.2 2.5 0.32

Effort (MM) = A * (KDSI) ^ B (3)
Schedule (TDEV) = a * (MM) ^ b (4)

The size of the project is small and the complexity is
simple, we categorize this project as Organic and the
number of lines of code is 6762.1 DSI (6.7621KDSI)
(See Table 4).

Table 7: Apply Equations of Basic COCOMO I model
MM(Man Month)= 2.4*6.7621^ 1.05= 17.86
TDEV(Time)= 2.5*17.86^0.38= 7.5 (~8 months)
People =MM/TDEV17.86/7.5= ~2 members

Table 8: Intermediate COCOMO

MODE
Effort Schedule

Ai Bi a b

Organic 3.2 1.05 2.5 0.38

Semidetached 3 1.12 2.5 0.35

Embedded 2.8 1.2 2.5 0.32

E = Ai(KLOC)^Bi * EAF (5)

Schedule (TDEV) = a * (MM) ^ b (6)

Table 9: Intermediate COCOMO I Cost Drivers [8]

Cost Drivers

Ratings

Very
L

Low Nominal High Very
Hi h

Extr

Product attributes

RELY 0.75 0.88 1.00 1.15 1.40

DATA 0.94 1.00 1.08 1.16

CPLX 0.70 0.85 1.00 1.15 1.30 1.65

Hardware attributes

TIME 1.00 1.11 1.30 1.66

STOR 1.00 1.06 1.21 1.56

VIRT 0.87 1.00 1.15 1.30

TURN 0.87 1.00 1.07 1.15

Personnel attributes

ACAP 1.46 1.19 1.00 0.86 0.71

AEXP 1.29 1.13 1.00 0.91 0.82

PCAP 1.42 1.17 1.00 0.86 0.70

VEXP 1.21 1.10 1.00 0.90

LEXP 1.14 1.07 1.00 0.95

Project attributes

MODP 1.24 1.10 1.00 0.91 0.82

TOOL 1.24 1.10 1.00 0.91 0.83

SCED 1.23 1.08 1.00 1.04 1.10

Table 10: Apply Equations of Intermediate COCOMO I model [9]

MM(Man Month) = 2.4*6.7621^ 1.05 = 17.86
MM korr = (0.88*0.94*0.85*1.13)* 17.86 = 14.2
TDEV(Time)= 2.5*14.2^0.38 = 6.9 (~7 months)
People = MM/TDEV= 14.2/6.9 = ~2 members

Table 3: Complexity Factors (14 Questions)
14 Questions Scales

Does the system require reliable backup and
recovery?

1

Are there distributed processing functions? 0
Is performance critical? 2
Will the system run in an existing heavily utilized
operational environment?

0

Does the system require online data entry? 5
Does the online data entry require the input
transactions to be built over multiple screens or
operations?

1

Are the master files updated online? 3
Are the inputs, outputs, files, and inquiries
complex?

1

Is the code designed to be reusable? 1
Are the conversion and installation included in the
design?

0

Is the system designed for multiple installations in
different organizations?

0

Is the internal processing complex? 2
Are data communications required? 1
Is the application designed to facilitate change and
ease of use by the user?

4

Project Complexity (PC) 21

Table 4: Calculate Function Point
Un-adjustable Function
Count(UFC)

171

Technical Complexity Factors
(TCF)

0.65 + 0.01 * ∑ Fi (F1 to F14)
0.65 + (0.01 * 21) = 0.86

Function Points (FP) UFC*TCF
171*0.86 = ~ 147 FPs

Un-adjustable Function
Count(UFC)

171

Technical Complexity Factors
(TCF)

0.65 + 0.01 * ∑ Fi (F1 to
F14)
0.65 + (0.01 * 21) = 0.86

Function Points (FP) UFC*TCF
171*0.86 = ~ 147 FPs

 Evaluation of the Cost Estimation Models: Case Study of Task Manager Application 5

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 8, 1-7

6.2 COCOMO II Application

Application Point

The Task manager application has five screens (three
of them are simple and two of them are medium in
terms of complexity) (See Table 11) and three report
(two of them are simple and one is medium in terms of
complexity) (see Table 10) and one 3GL component
and three data tables (User Role, Member and Task)
(See Figure 2). The project has 20% reused component
development. The developer experience and
environment maturity are low which is seven 7 (See
Table 16).

Table 11: Screens

Screen Name Data table Views
(data
items)

Complexity
(see table11)

Personal
Information

Needs (1) data table
which is (member
table see figures 2)

5 simple

Check Tasks Needs (2) data table
s which are (member
and task tables see
figures 2)

9 medium

Add task Needs (2) data table
s which are (member
and task tables see
figures2)

6 simple

My tasks
repository

Needs (2) data table
s which are (member
and task tables see
figures 2)

6 simple

Add Employee Needs (1) data table
which is (member
table see figures 2)

11 medium

Table 12: Reports

Reports Name Data table sections Complexity
(see table12)

Total time was
working for
each member

Needs (2) data table
s which are (member
and task tables see
figures 2)

3 simple

Total tasks
completed for
each member

Needs (2) data table
s which are (member
and task tables see
figures 2)

2 simple

Total time
against Total
tasks

Needs (2) data table
s which are (member
and task tables see
figures 2)

6 medium

Tabe 13: Screens [3]

Tabe 14: Reports [3]

Tabe 15: Complexity Weighting [3]

Tabe 16: Productivity Rate [3]

According to the Information above (See Tables 11,
12 and 15):
1) AP =(3*1) +(2*2)+(2*2)+(1*5)*(1*10)= 26 (7)

Where AP is Application point and NAP New
Application points

2) NAP = AP * [(100-%Reuse)/100] (8)
NOP =26 * [(100 – 20) / 100] = 20.8 OPs

3) Effort =NAP/productivity
Productivity = 7
Effort = 20.8 / 7 = 2.9 person month.

4) Time = 3*Effort^(0.33+0.2*(B-1.01)) (9)
Time = 3*2.9 ^(0.33+0.2*(1.17-1.01))= 4.4
Months

5) People=Effort/time (10)
People =2.9/4.4 = 0.66 (~ one staff)

Early design Model
The case study project has 6.7621 KLOC (See Table

4), B=1.17 (B varies from 1.1 to 1.24 depending on

6 Evaluation of the Cost Estimation Models: Case Study of Task Manager Application

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 8, 1-7

novelty of the project, development flexibility, risk
management approaches and the process maturity.), A=
2.94 (A could take several values depending on the
estimation phase.) and M = PERS * RCPX * RUSE *
PDIF * PREX * FCIL * SCED which is show below.

Table 17 : Early Design Model's drivers [5]

Driver Meaning
RCPX Product reliability and complexity.
RUSE Required reuse.
PDIF Platform difficulty.
PERS Personnel capability.
PREX Personnel experience.
FCIL Facilities.
SCED Required schedule.

Table 18 : Early Design Model's drivers with their weights

Driver XLO VLO LO NOM HI VHI XHI
RCPX 0.73 0.81 0.98 1.00 1.30 1.74 2.38
RUSE xxxx xxxx 0.95 1.00 1.07 1.15 1.24
PDIF xxxx xxxx 0.87 1.00 1.29 1.81 2.61
PERS 2.12 1.62 1.26 1.00 0.83 0.63 0.50
PREX 1.59 1.33 1.12 1.00 0.87 0.71 0.62
FCIL 1.43 1.30 1.10 1.00 0.87 0.73 0.62
SCED xxx 1.43 1.14 1.00 1.00 1.00 xxxx

1) PM = A *Size^B * M (11)

M =0.98*0.95*1*1.26*1*1.12*1*1=1.31
PM (Effort)=2.94* 6.7621^1.17 *1.31=36.04

2) Time = 3*Effort^(0.33+0.2*(B-1.01)) (12)
Time = 3*36.04^ (0.33+0.2*(1.17-1.01)) = 11
Months

3) People=Effort/time
People =30.62/11= 3.27 (~ 3 staff)

Post Architecture Model

Table 19 : Post Architecture Model's drivers with their weights [5]

Drivers VLO LO NOM HI VHI EHI
RELY 0.75 0.88 1.00 1.15 1.39 xxxx
DATA xxxx 0.93 1.00 1.09 1.09 xxxx
CPLX 0.75 0.88 1.00 1.15 1.30 1.66
RUSE xxxx 0.91 1.00 1.14 1.29 1.49
DOCU 0.89 0.95 1.00 1.06 1.13 xxxx
TIME xxxx xxxx 1.00 1.11 1.31 1.67
STOR xxxx xxxx 1.00 1.06 1.12 1.57
PVOL xxxx 0.87 1.00 1.15 1.30 xxxx
ACAP 1.50 1.22 1.00 0.83 0.67 xxxx
PCAP 1.37 1.16 1.00 0.87 0.74 xxxx
PCON 1.24 1.10 1.00 0.92 0.84 xxxx
AEXP 1.22 1.10 1.00 0.89 0.81 xxxx
PEXP 1.25 1.12 1.00 0.88 0.81 xxxx
LTEX 1.22 1.10 1.00 0.91 0.84 xxxx
TOOL 1.24 1.12 1.00 0.86 0.72 xxxx
SITE 1.25 1.10 1.00 0.92 0.84 0.78
SCED 1.29 1.10 1.00 1.00 1.00 xxxx

The case study project has 6.7621 KLOC (See Table
4), B=1.17 (B varies from 1.1 to 1.24 depending on
novelty of the project, development flexibility, risk
management approaches and the process maturity.), A=
2.94 (A could take several values depending on the
estimation phase.) and M = (Multiply 17 Drivers) which
show below.

1) PM = A *Size^B * M

M =0.93 * 0.88 * 0.91 * 0.95 * 1.1 *
1.12*0.88=0.77 PM
PM (Effort) =2.94* 6.7621^1.17 *0.77=21.19

2) Time = 3*Effort^(0.33+0.2*(B-1.01))
Time = 3*21.19^(0.33+0.2*(1.17-1.01))= 9.06
Months

3) People=Effort/time
People =21.19/9.06 = 2.33 (~2 staffs

Table 20 : COCOMO I Comparing Models
Model Mode Effort

(MP)
Time
(Month)

People

Basic Organic 17.86 7.5 ~2
intermediate Organic 14.2 7 ~2

Table 21 : COCOMO II Comparing Models

Model Effort(MP) Time(Month) People
Application point 2.9 4.4 ~1
Early Design 36.04 11 ~ 3
Post-Architecture 21.19 9 ~2

Table 22 : Actual time and people after the project finish

Time(Month) People
2.5 1

0

2

4

6

8

10

12

Time needed in Months

Time needed in Months

 Fig. 3: Comparing Modules' result with Actual time needed

 Evaluation of the Cost Estimation Models: Case Study of Task Manager Application 7

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 8, 1-7

0
0.5

1
1.5

2
2.5

3
Number of People

Fig. 4: Comparing Modules' result with Actual staffs needed

Figure 3 & 4 illustrates the implementation of
COCOMO I and II on modules (of case study result)
with actual time and staff needed. It is clearly depicted
from the results that the Application Composition
Model is more accurate, for a project such as Task
Manager Application, as compared to other sub models
of COCOMO I & II.

VII. Conclusion

Converted case study on COCOMO I & II confirms
that the Application Composition Model (one of
COCOMO II sub-Models) is relatively more accurate
than the remaining COCOMO I & II sub-models as
shown in Figures 3 and 4. On the other hand, at the
constraint of some limitations related to cost and time
estimates. Such models are those included in COCOMO
must have entered in terms of KLOC. Such methods as
FP, OP, and LOC are primary sizing procedures
adopted to compute the model inputs. The accuracy of
the models depends on: 1) the accuracy and fidelity of
input data; 2) estimate the size for each programming
language incorporated in the project to achieve the
accuracy related to time and costs.

References

[1] Boehm, B. W. and R. Valerdi. Achievements and
Challenges in Cocomo-Based Software Resource
Estimation published by IEEE Computer Society.
74-83 (2008).

[2] Boehm, B. W. An Overview of the COCOMO 2.0
Software Cost Model (1999).

[3] Zaid, A., M. H. Selamat, A. A. A. Ghani, R. Atan
and K. T. Wei. Issues in Software Cost Estimation,

IJCSNS Int J of Computer Science and Network
Security, 8(11): 350-356 (2008).

[4] Nasir, M. A Survey of Software Estimation
Techniques and Project Planning Practices,
Proceedings of the Seventh ACIS Int. Conf. on
Software Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed Computing
(SNPD’06), (2006).

[5] Qureshi, M. R. J. and S. A. Hussain. A Reusable
Software Component-Based Development Process
Model Int. J of Advances in Engineering Software,
39(2): 88-94 (2008).

[6] Succi, G. and F. Baruchelli. The Cost of
Standardizing Components for Software Reuse,
Standard View 5(2) (1997).

[7] Gill, N. S. Reusability Issues in Component-Based
Development, ACM SIGSOFT Software
Engineering Notes, 28(4): 4 – 4 (2003).

[8] Clemente, P. J. and J. Hernández. Aspect
Component Based Software Engineering,
University Extremadura. 1-4 Spain (2001).

[9] Frakes, W. B. and K. Kang. Software Reuse
Research: Status and Future, IEEE Transactions on
Software Engineering, 31(7): 529-536 (2005).

[10] Dolado, J. J. A Validation of the Component-
Based Method for Software Size Estimation, IEEE
Transactions on Software Engineering, 26(10):
1006-1021 (2000).

Authors’ Profiles

M. Rizwan Jameel Qureshi: Assistant
Professor of Information Technology,
Faculty of Computing & Information
Technology, King Abdulaziz
University, major in software
engineering and database management
systems

Mohammed Mugahed Al_Qmase: Under-graduated
student of Information Technology in King Abdulaziz
University, major in software engineering

	Introduction
	Related Work
	The Details of COCOMO I & II
	Experiment and Analysis
	Table 8: Intermediate COCOMO
	Table 9: Intermediate COCOMO I Cost Drivers [8]
	Conclusion
	References
	Authors’ Profiles

