
I.J. Modern Education and Computer Science, 2014, 11, 1-10
Published Online November 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2014.11.01

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 11, 1-10

A Study and Review on the Development of

Mutation Testing Tools for Java and Aspect-J

Programs

Pradeep Kumar Singh
Department of Computer Science Engineering, Amity University, Uttar Pradesh, India

Email: pradeep_84cs@yahoo.com

Om Prakash Sangwan
School of ICT, Gautam Buddha University, Greater Noida, India

Email: sangwan_op@yahoo.co.in

Arun Sharma
Indira Gandhi Delhi Technical University for Women, New Delhi, India

Email: arunsharma2303@gmail.com

Abstract—Mutation analysis in software testing is

observed as the most effective way to validate the

software under inspection. In last decade, number of

researchers developed various methods and tools to apply

mutation testing on Aspect Oriented Programs. In this

paper, authors analyzed numerous mutation testing based

tools available to test the Java and AspectJ programs. All

effective and popular Aspect-J testing tools have been

considered and analyzed in this paper, based on essential

requirements in this context, considered to be fulfilled by

testing tools decided by testing professional and

researchers for such tools. This paper analyzed the work

progress in the field of mutation testing techniques and

tools specific to Java and AspectJ. This work considered

essential parameters on which the analysis of analyzed

tools is carried out. In case of addition parameters

considered for evaluation, some of the resultant metrics

may vary slightly under modification in basic

requirements. Based on the numeric value estimated, it is

finally suggested the merits of a mutation tool under

different circumstances. This is the extension of the work

carried by us in previous review for aspect based

mutation testing techniques.

Index Terms—Software Testing, Mutation Testing,

Aspect Oriented Programs, Mutation Testing Tool, ITDs:

Inter-type Declarations, Join Points, Pointcut Descriptors

and Mutation Analysis.

I. INTRODUCTION

The A significant proportion of the total cost of

software is attributed to testing over its lifetime [1]. One

way to reduce this cost is to increase software testability.

Testability is a measure of how easily software exposes

faults when tested [2]. By improving testability the cost

of testing is reduced. Aspect-Oriented Programming

(AOP) [3] support programmers in identification of

separation of concerns: separate a program into distinct

parts that overlap in functionality. AOP provide better

modularity in programs, which is basic prerequisite in

software engineering discipline. It can also reduce the

development effort, testing time and provide better

reusability and maintenance [35] as compare to OOP in

several aspects. The main constituents of AOP languages

are aspects, pointcuts, joinpoints, and advices. The

encapsulation of joinpoint, pointcut, and advice is called

an aspect. Pointcuts is the code that match the joinpoints,

which perform a specific action on call called advice.

Advice contains its own set of rules as to when it is to be

invoked in relation to the joinpoint that has been triggered.

Joinpoints are pre-defined locations inside the source

code where a concern will crosscut the application [1].

Joinpoints can be method calls, constructor invocations,

or some other points in the execution of a program. The

crosscutting behavior of AspectJ can be partitioned into

two major sections: in term of the behavior (advice) and

applicability of the behavior (pointcut)[1,4].

There are several testing techniques proposed by many

authors to test the program written in aspect oriented

languages like aspect-J, Hyper-J etc. In this paper major

emphasize is given on Java and Aspect-J because of the

limited scope of the research paper. Most of the

researchers worked on Aspect-J because it is having well

defined constructs of language that makes it easier to use

as compare to other AOP languages like Cease-J, Hyper-J.

We also believe that readers interested in mutation based

testing tools can use this paper as a road map to analyze

the strength of each tool and technique discussed in this

survey. This review gives an empirical evaluation based

on the various parameters considered or validated and

reveals those area that are not addressed or areas that

require further research. This paper is the extension of the

work carried by us in previous review for aspect based

mutation testing techniques and tools [52].

2 A Study and Review on the Development of Mutation Testing Tools for Java and Aspect-J Programs

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 11, 1-10

This paper is arranged as follows: Section II provides

basic research procedure used to conduct this survey.

Section III reports the detail of fault based mutation

testing in Java and AspectJ respectively. Major findings

with exhaustive literature review on mutation tools for

Java and AspectJ is presented in Section IV with

conclusion in Section V.

II. RESEARCH PROCEDURE

Defining an adequate search string is quiet difficult for

analysis. Most of times identify the string for search

relies on the experience of the involved researchers.

According to our research survey, we defined the

following string:

(Aspect-oriented programming OR aspect-oriented

application OR aspect-oriented program OR AOP OR

Java) AND (mutation testing OR fault based testing OR

testing in AOP OR mutation tools OR testing tool) AND

(Mutation Tools for Java)

The sources of primary studies vary from indexed

repositories (IEEE, ACM Digital Library, Elsevier,

Science Direct, ICST, IJCSE, ICIIP, IJCA etc) to general

purpose search engines(Google and Scirus). We have

downloaded 250 papers out of which, we have considered

eleven papers for mutation tools in Java, four paper for

mutation testing techniques and six tools for AspectJ

programs during analysis. We have limited to our

findings for mutation testing techniques and tools because

it is not feasible to analyze all the tools in one paper, so

we restrict our finding specific to Java and AspectJ

programs based on mutation testing. However, use of

mutation testing among software professionals in

software industry is rare because of unavailability of

automated tools and running cost and time of vast

numbers of mutants against the test cases. Now a day’s,

tools are gaining more popularity because of the

effectiveness and efficiency over mutation testing

techniques makes strong ground to do analysis.

In this paper we have considered most of the basic

requirements for developing the testing tool given by

various researchers in their research work. We have

assigned a weight value based on the possible

requirement fulfilled by the given testing tools for

AspectJ. Here the reference point is the information

available in research papers. Numerical values assigned

to requirements are based on empirical data reported in

the published research papers for the mutation tools in

AOP as follows:

Yes=1, Partial=0.5, No=0

III. FAULT BASED MUTATION TESTING

For Mutation testing computes how good our tests are

by injecting faults into the program under test. Mutation

testing is fault-based testing method that estimates the

effectiveness of test cases [7]. Mutants are faulty kind of

program which contains some faults. The mutants are

generated from the original program by applying changes

to its original code (e.g. k + 21→ k -21). Each

modification is examined by a mutation operator. To

detect the faults, test cases are then used to check whether

the mutants and the original program produce dissimilar

responses or not. The number of mutants identified

provides a measure of the quality of the test suite called

mutation score. However, the standard of the mutation

testing depend upon the quality of the mutation operators,

which must reveal realistic fault types [14].

A. Mutation Testing

Mutation testing [7, 51, 52] became popular among the

testing researchers for over 25 years and is

conventionally used to measure the efficacy of test suites.

Moreover, mutation provides a comparative technique for

inspecting and upgrading multiple test suites. A number

of empirical investigations (e.g., [11, 29]) have relied on

using mutation as part of the experimental process.

Fig.1Generic Process of Mutation Analysis [36, 50]

Mutation testing finds the adequacy that tests detects

all mutant or not. Mutation testing comprises many costs,

including the possible generation of vast numbers of

mutants. Another cost of mutation testing is the

identification of equivalent mutants [1, 4]. Equivalent

mutants, by definition, are unkillable because the mutants

are semantically similar to the original program.

Recognizing such mutants in software is generally

intractable [1, 9] and historically has been done by hand

[1, 8]. Till now, significant work has not been done to

carried out the automatic detection of the equivalent

mutants and some software practitioners also suggested to

discard the equivalent mutants under few circumstances.

There are several steps which are associated while

applying mutation testing in general or on Aspect

Oriented Programming. The process of traditional

mutation testing started with constructing the mutants of

 A Study and Review on the Development of Mutation Testing Tools for Java and Aspect-J Programs 3

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 11, 1-10

a test program [9, 10]. The detailed testing process is

graphically shown in Fig. 1.

B. Mutation Testing in AOP

Amending in AOP does wide influence on dynamic

behavior of affected program, which makes testing harder

in AOP compared to OOP (Object Oriented Programs).

Fault based testing is testing technique for Aspect

Oriented programs based on the classification of fault

types and then insertion of faults in the Aspect Oriented

programs. We have taken fault based mutation testing

tools into account for analysis.

Fault based testing was introduced by Zhao and

Alexander [5] in 2007, they discussed a process for the

efficient testing of aspect oriented program on the basis

of different faults. Before the existence of this technique

Alexander et al. [6] identified faults classification for

Aspect Oriented programs. It was the first work done on

fault identification for AO programs. Author presented

the list of different faults specifically for AO programs

and then on the basis of those faults he constitutes a fault

model for AO program [6]. There are three elements in a

complete AspectJ fault model presented by Zhao et al. [5],

1) fault model for pointcuts, advice, intertype declaration

and aspects 2) fault lists for pointcuts, advice, intertype

declaration and aspects 3) java fault model which

contains the java related faults. All three elements are

necessary for the working of fault based testing technique

on AO programs [5].

In [5], for effective and efficient use of Fault Based

testing authors have explained dependence model and

interaction model for weaved base and AO code.

Complete structure of the fault model presented by [5]

has been shown in Fig. 1, which can be used for fault

based testing of AO programs. Alexander et al. [6]

recommended, a fault model for aspect-oriented

programs, which includes six categories of faults: (1)

Incorrect strength in pointcut patterns; (2) Incorrect

aspect precedence; (3) Failure to establish post conditions;

(4) Failure to preserve state invariants; (5)Incorrect focus

of control flow; (6)Incorrect changes in control

dependencies.

Ceccato et al. [35] extended the fault model derived by

Alexander et al. [6] with three new fault categories: (1)

Incorrect modifications in exceptional control flow; (2)

Failures due to inter-type declarations; (3) Incorrect

modifications in polymorphic calls. Fault based testing in

AOP demands sound knowledge of behavioural and

syntactical interactive relationships of software

programming paradigms. This helps a software tester to

identify different categories of faults which is beneficial

for the systematic testing of software and getting intended

results.

Mutation testing in AOP is a variety of fault based

testing. The mutation testing of pointcuts is performed in

two ways: (1) By creating effective mutants of a pointcut

expression; (2) Testing the mutants using the designed

test data. In [12], Prasanth et al. have introduced the

mutation testing technique for pointcuts in AO programs.

Lemos et al. [13] have used mutation testing to identify a

fault type related to pointcut descriptors (PCD)

introduced by Alexander et al. [6].

In [13], authors have first explained that while

integration it is common that unintended and intended

joinpoints are selected which causes problems in further

execution of program and for testing of programs. They

have used mutation testing to solve the problem of

unselecting intended joinpoints. Whereas, according to

Anabalagan et al. [12], during AOP software

development sometime it happens that more than required

or less than needed pointcuts are selected by software

developers. Due to the use of wildcards usually a large

number of mutants of pointcuts are selected for the

testing purposes and it is difficult to select the most

relevant mutants among a large number. In this situation

it is problematic for software testers to efficiently design

the test suite for that particular software. According to

authors with the use of their technique it is possible to

select the closely similar mutants for the mutation testing

suite [12]. Mutants can be categorized according to the

pointcut, advice and intertype declarations (ITDs).

Principally four types of mutation operators available

namely pointcut, advice, waving and base programs

related operators.

IV. LITERATURE REVIEW ON MUTATION TOOLS

In this section total 11 mutation tools for Java and 6 tools

for AspectJ programs were taken for study and analysis.

A. Literature Review on Mutation Tools for Java

There are number of testing tools available for object

oriented programs. But most work is related to the family

of C++ or Java Programs. In this study we considered

only Java related testing tools specific to mutation testing.

In this study total eleven tools were analyzed for Java and

six for AspectJ.

A.1 Jester, it can be considered as the first mutation

tool for Java programs. It is an open source tool. It builds

some modifications to the code, runs the build (run tests)

and if the tests pass Jester displays a message saying what

it modified (Mutation Testing). Its detail implementation

is available on the URL [37].

A.2 JavaMut, introduce the first prototype graphical

user interface (GUI) based tool assisting mutation

analysis of Java programs. The JavaMut tool was

developed in the framework on elucidating a test strategy

for critical avionics systems implemented in Java [38].

The prime objective was to automatically run large

campaigns of mutation analysis experiments to analyze

the strengths and weaknesses of test cases plot from UML

state diagrams. It supports a GUI that helps the tester to

customize mutation analysis. Three interfaces were

provided to tester to generate mutants, to identify

equivalent mutants, and to visualize statistics particulars.

It is used on UNIX workstations for the detailed

examination of two mid-size case studies related to

dissimilar domains: an avionics application and a banking

application.

4 A Study and Review on the Development of Mutation Testing Tools for Java and Aspect-J Programs

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 11, 1-10

A.3 MuJava is the outcome of a joint work between

Korea Advanced Institute of Science and Technology

(KAIST) in South Korea and George Mason University

in the USA. MuJava is now accessible for experimental

and educational use. Information related to the tool, and

comprehensive instructions as to how to install and use

MuJava are available at the URL [39, 40, 41]. MuJava

has three primarily roles: (a) generating mutants, (b)

analyzing mutants, and (c) running the test cases supplied

by the tester. MuJava uses the class

com.sun.tools.javac.Main included in JDK to compile

mutants [39-41].

Testers provide the test cases in form of methods that

have sequence of calls to methods in the given class. To

measure outputs of mutants with outputs of the original

class, considered test method should have no parameters

and return a string result. MuJava provides a GUI. Main

benefit of this approach is that it demands only two

compilations: compilation of the original source code and

compilation of the MSG meta mutant [39-41]. This

highly minimizes the time required for mutant creation.

Another use of the MSG/bytecode translation is

portability. The recent version of MuJava has few

usability issues. Till now, it does not display mutants in a

very suitable way.

A.4 ExMAn is an automated and flexible mutation tool

for Java programs. It support different quality assurance

techniques such as testing, model checking, and static

analysis [42]. Its prime objective is to allow automatic

mutation analysis. The ExMAn architecture is constituted

of three types of components: built-in components, plug-

in components, and external tool components. The

flexibility of ExMAn exists because of the distinct built-

in components that can be used in any mutation analysis.

Major limitations with ExMAn are: (a) Limitation in

adding semi-automatically or automatically identifying

equivalent mutants (b) Lack of automatically specify

patterns for the creation of mutation operators (c)

Expansion of the selected artifacts to allow for the

selection of multiple quality artifact sets for each type and

thus allow for statistical analysis.

A.5 MUGAMMA is technique that determines whether

user’s executions would have killed mutants and if so,

apprehends the state information about those executions

[43]. In this paper, author’s represented a novel technique

that simplifies performing mutation testing. MUGAMMA

is a specialization of the GAMMA framework—it creates

the instrumented versions of a program, and manages the

deployment of the system and describing the results.

Even with the difference in the number of mutants

generated, MUGAMMA is superior to MUJAVA in

context of the time to generate the mutants. In the

implementation of MUGAMA, the use of MSG method

improves the performance. But more analysis is required

to validate the results because number of mutants

generated by MUGAMMA was lesser as compare to

MuJava because of the limitation of the tool to

conventional mutant. There are some limitations as this

paper describes prototype implementation of

MUGAMMA. Prototype implements for MUGAMA only

the selective set of conventional mutants for Java. They

mentioned in their work that currently extending

MUGAMMA to include class mutants. Comparison of

the mutant-generation phase of MUGAMMA with the

mutant-generation phase of MUJAVA is carried out with

two examples.

A.6 MuClipse is the extension to MuJava. MuClipse

supports Eclipse plug in and integration with the

development environment, which both generates and tests

mutants in Java 1.4 [44]. In producing mutants, MuClipse

authorize the developer to select the mutant operators to

select and which classes should be mutated. With the help

of Eclipse View, it shows each mutant and its status,

organized by Java class and producing operator [44]. It

also presents the overall data for live and killed mutants,

and finally the measured mutation score. Two open

source projects were analyzed through this tool for

validating the results.

A.7 Jumble is a class level mutation testing tool that

mutates a class at the byte code level and executes its

respective unit test to measure the number of killed

mutants [45]. If all test passes, the mutant lives and result

is tabulated. Similar to MuJava, just one mutation is

possible at a time, over the source code under test. First,

the tool runs all the tests on the original, unmodified,

source file and checks whether they pass or not, recording

the time necessary for each test. Then, it mutates the file

according to different mutations operators and runs the

tests again. It returns a mutation score with details

regarding each live mutant. The process is done when all

the mutations have been tested. It supports JUnit 3 and,

recently, it was updated to work with JUnit 4.

A.8 Testooj is a testing tool, developed in Java, for

testing Java programs. It allows two main functionalities

(i) creation of test cases based on regular expressions

(R.E.) (ii) execution of test cases to perform different

types of result analysis [46]. Testooj is a useful tool,

easy-to-use. The test case generation functionality is

appropriated both for practitioners and for researchers.

A.9 Javalanche work on byte code. It evaluates the

effect of individual mutants to effectively remove

equivalent mutants. This tool has been demonstrated to

work on programs with up to 100 KLOC. It supports a

unique feature that it ranks mutations by their impact on

the behavior of program functions [47, 48]. Higher the

weight of an undetected mutation, the lower the chances

of the mutation being equivalent (i.e., a false positive)—

and the more the chances of undetected i.e. a serious

defects. It overcomes two main problems with mutation

testing: efficiency and equivalent mutant’s problem.

A.10 In [31], Madeyski et al. proposed a mutation

testing tool called Judy. It takes advantage of a novel

separation of concerns mechanism, to avoid multiple

compilations of mutants and, therefore, it help in speed

up mutation testing. An empirical investigation of Judy

with MuJava tool on 24 open-source projects have been

demonstrates. It is based on enforcement of the FAMTA

Light approach developed in Java with AspectJ

extensions. The main characteristics of Judy are as

follows (i) high performance (ii) advanced mutant

 A Study and Review on the Development of Mutation Testing Tools for Java and Aspect-J Programs 5

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 11, 1-10

generation technique (iii) integration with professional

development environment tools (iv) full automation of

mutation testing process and support for the latest version

of Java (v) Allow it to run mutation testing against the

most recent Java software systems or components.

A.11 MAJOR is a fault seeding and mutation

investigation tool that is integrated into the Java [49]. It

also minimize the mutant generation time and enables

efficient mutation analysis. It has already been

successfully validated on large applications with up to

373 KLOC and 406,000 mutants. Moreover, MAJOR's

domain specific language support for specifying and

adapting mutation operators also makes it extensible. Due

to its ease-of-use, efficiency, and extensibility, it is an

absolute tool for the study and application of mutation

analysis.

MAJOR is a full mutation analysis framework, which

supports strong and weak mutation. It consists of the two

main parts (a) Mutation component: integrated in the Java

compiler (b) Analysis component: integrated in Apache

Ant's JUnit task. A binary version of MAJOR for Java 6

is obtained for analysis and use. There are some

limitations such as, Implementation of new mutation

operators, comparison with related tools, and Integration

of conditional mutation into a C/C++ compiler. All

analyzed tools are reported in Table I as shown below.

Table 1. Testing Tools for Java

S.

N.

Name Authors Year Technique Ava

ilab

le

1 Jester Moore et al. 2001 General Y

2 JavaMut Chevalley et al. 2002 General Y

3 MuJava Ma et al. 2004 MSG and

Reflection

Technique

Y

4 ExMAn Bradbury et al. 2006 TXL Y

5 MUGA

MMA

Kim et al. 2006 Remote

Mutation

Testing

Technique

Y

6 MuClips

e

Smith et al. 2007 Weak Mutation,

Mutant

Schemata,

Eclipse Plug-in

Y

7 Jumble ---- 2007 General Y

8 Testooj Polo et al. 2007 Regular

Expressions

Y

9 Javalanc

he

Schuler et al. 2009 Invariant and

Impact Analysis

Y

10 Judy Madeyski et al. 2010 FAMTA Y

11 MAJOR Just et al. 2011 General N

B. Literature Review on Mutation Tools for AspectJ

Firstly, we have reviewed the literature based on

mutation testing techniques and secondly, mutation

testing tools. A brief summary of the mutation testing

tools for Java is mentioned in Table I, techniques and

tools with respect to aspect programs have been shown in

Table II and Table III respectively. Evaluation of the

different mutation testing techniques and tools for aspect

oriented programs based on various parameters

mentioned in above mentioned tables. There are several

testing techniques like unit testing, data flow based

testing and their related tools are available in AOP.

Mutation testing considered here for analysis because of

mutation technique effectiveness and its strength in

covering the most of faults in software programs.

Ferrari et al. [14] identified the AO fault type and

proposed some set of mutation operator. Here, the faults

are scattered in four sections related to:(F1) pointcut

expressions; (F2) ITDs and other declarations; (F3)

advice definitions, implementations and (F4) the base

program. They have mentioned three new fault types in

this study which were not included previously. However,

a full and refined analysis regarding all AO

implementations is out of the scope of this paper. Cost

analysis for application of the operators based on two real

world applications have been demostrated.

In [12], Anbalagan et al. recognized the automatic

generation of mutants for a pointcut expression and

identification of mutants that are similar to the original

expression. Software professionals may use the test data

for the woven classes against these mutants to apply the

mutation testing. Framework discussed, serves two

objectives; generating relevant mutants and detecting

equivalent mutants [12]. Later, the framework also

minimizes the total number of mutants from the initially

generated mutants. For classifying the mutant for

selection, original point cuts are compared with mutants

and their matched joinpoints. Identification of mutant is

based on Fault Model given by Alexander et al. [15] and

as well as AJTE (AspectJ Testing Environment)[16]. This

framework reduces software professional’s efforts in

identification and generation of equivalent mutants.

Authors demonstrate the preliminary experiments on a

few sample sets of an AspectJ benchmark called Tetris

[17]. In implementation, join points are marked based on

static analysis of the code. Currently this framework does

not support dynamic context.

Fault-based testing to aspect-oriented programs i.e.

AspectJ programs, using both coverage and mutation

techniques are proposed by Mortensen et al. [15].

Mortensen et al. proposed a set of coverage criteria as

well as guidelines for aspect structure. In this work, lack

of validation to mutation operators to see if it corresponds

to real faults or not is missing. Mutants were created in an

ad-hoc manner; automatic mutation of pointcuts needs

more investigation. Future work in this direction may

development of an integrated set of tools to analyze

AspectJ programs, gather coverage criteria, and generate

and test program mutants.

6 A Study and Review on the Development of Mutation Testing Tools for Java and Aspect-J Programs

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 11, 1-10

Singh et al. [18] surveyed various papers to identify

the classification of various fault types for Aspect

Oriented programs. Based on the analysis of considered

paper they concluded that majority of faults occurs

because of base program and aspect code. Finally they

have listed some new fault types for AspectJ. But neither

theoretical nor the empirical evaluation is given. This

classification is not even verified with any application

built in aspect language.

Table 2. Analysis of Mutation Testing Technique for Aspect Oriented Programs

As observed by Ferrari et al. [14, 28], the PCD is the

location that is the maximum fault-prone in an aspect.

Pointcut descriptors in aspects are crucial because they

specify the locations where a concern should be woven.

A test-driven approach for the development and

validation of the PCD is proposed by Delamar et al. [19].

Authors developed a tool, Advice Tracer which enriches

the JUnit API with new types of assertions that can be

used to identify the expected joinpoints. Advice Tracer

[20] allows a programmer to write test cases that focus on

checking whether or not a joinpoint has been mapped by

the PCD. Tetris and Auction applications were used as an

example with three and two aspects respectively. Authors

performed analysis to measure the effectiveness of the

test cases written using AdviceTracer in terms of their

effectiveness to detect faults bring by AjMutator in the

PCD.

Anbalagan et al. [4] introduces an APTE (Automated

Pointcut Testing for AspectJ Program), an automated

suite that tests pointcuts in AspectJ with AJTE. This new

APTE suite recognizes joinpoints that match a pointcut

expression and a set of boundary joinpoints. In the target

classes, this suite output the list of matched joinpoints.

Authors implemented the framework for AspectJ and

Java code using the Byte Code Engineering Library

(BCEL) [21], Java reflection API [22], and AJTE. The

examined version supports an AspectJ compiler called ajc

[23] Version 1.5 and Java 5 [24]. The main components

of the suites comprises the test bench generator, pointcut

generator, candidate generator, and distance measure

component.

Cistron, is the another mutation tool reported by Singh

et al. [25] for Aspect J programs. It is based on testing

tool MuJava. It implements most of the fault types and

 Parameters Rashid et al. [14] Anbalagan et al. [12] Mortensen et al.

[15]

Singh et al. [18]

 Source IEEE IEEE Workshop on AOP IJCSE

1. Theoretical/Empirical Theoretical Empirical Theoretical Theoretical

2. No. of Mutants NA Mutants Numbers

1445(2)

NA NA

3. Mutation Score Not Considered Automatic Manual Manual

4. Future Extension/ No Future

Extension?

Yes Yes Yes(Tool Support) Yes

5. Based on OO Testing or not? No Yes No No

6. Model/Framework/Techniqu

e

Three new fault types and

cost analysis on real

world application.

Framework Technique Framework (added few

types of mutants)

7. Technique/Framework is

validated or not?

Cost Analysis for fault

type given

Preliminary experiment

is carried out.

Validation is

missing.

Not Validated

8. Major Contribution Fault Type and Propose

some set of mutation

operators

Fault Type

Identification

Coverage Criteria Fault Identification

 A Study and Review on the Development of Mutation Testing Tools for Java and Aspect-J Programs 7

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 11, 1-10

generates automatic mutants. Cistron produced mutant

code automatically on the basis of mutation operators.

Authors applied testing on selected mutants to reduce

cost of testing. It also identifies the equivalent and non

equivalent mutants from live mutants. Results for

generated mutant, initial test cases and added test cases

are shown for three AspectJ applications. This tool will

generate test data with more accuracy and more statistical

analysis are mentioned in future work.

Testability can be measured through mutation analysis.

In mutation analysis, a mutation tool generates faults for

locations in software. Testability of a location is

measured by executing tests against mutants and counting

the proportion of mutants that cause test failure. To

quantify the testability we required, mutant generation

tools. Jackson et al. [26] introduced MuAspectJ, a tool

for generating mutants for AspectJ programs. MuAspectJ

tool is evaluated in terms of the quality of mutants it

generates. The tool is evaluated in terms of how fast

mutants can be generated and executed. This does

provide some sense of the length of time that it will take

to get to a result but does not provide any indication of

the quality of generated mutants. This type of evaluation

does not however provide any sense of how the mutants

will impact on the assertions that can be made from

analyzing the results. Although speed of generation and

execution are practical issues that must be considered

when performing mutation analysis, that can be easily

addressed through parallel execution of mutants in a

distributed mutant execution approach. Two main

contributions of this tool are firstly, the provision of the

MuAspectJ that can be used to generate mutants for

AspectJ programs and secondly, the introduction of

location coverage and mutation density as a means to

measure the quality of generated mutants.

A tool, AjMutator for mutation analysis of PCDs is

presented by Delamare et al. [27]. AjMutator separate

the mutants according to the set of joinpoints found

similar compared to the set of joinpoints compared from

initial PCD. For a particular class of PCDs, automatic

grouping result to equivalent mutants. AjMutator may

also execute the set of test cases on the mutants to give a

mutation score.

AjMutator is constituted in three ways; building of

mutant source files from AspectJ source file, compilation

of the mutant source files & execution of test cases on the

mutants to evaluate the mutation score for the particular

set of test cases. It is capable of generating and compiling

large number of mutants on large systems. Manual

preference of the mutants would have been time

consuming and difficult. So the automatic classification

of mutants by this tool, offers extreme benefits.

Generating large numbers of mutant automatic

classifications seems to be better. The automatic

classification of the equivalent mutants also eliminates

the useless execution of these identified mutants and

offers a precise mutation score.

Ferrari et al. [28] presented a tool, named Proteum/AJ,

which automates the mutation testing for AspectJ

programs. Proteum/ AJ helps in primary steps of mutation

testing approach and fix number of requirements for

mutation-based testing tools such as mutant handling, test

case handling and mutant analysis. A set of mutation

operators and supports in meeting mutation testing

criteria such as program execution, mutant generation,

mutant execution and mutant analysis is provided by this

tool [7].

In this paper, basic requirement for developing

mutation testing tool based is considered for analysis [28,

30-34]. Based on literature available we have considered

most of the essential requirements of mutation based

testing tools for AspectJ programs. Considered

requirements are elaborated as follows:

1) Test Case Handling: It concerns the execution of

test cases and their activation or deactivation.

2) Mutant Handling: It deals with the creation of

mutants, selection of mutants, execution and

evaluation of mutants.

3) Adequacy Analysis: It covers the calculation of

mutation score based on equivalent mutants, dead

mutants and total used mutants.

4) Reducing Test Cost: Testing cost is reduced or not?

5) Unrestricted Program Size: It is related to the

program size considered for testing.

6) Support for Test Strategies: It analyze whether the

order of mutation operators to apply on the

selected software is allowed or not.

7) Independent Test Configuration: Recognize that

test input and output is confined by the tool.

8) Test Case Editing: It considers the changes in

existing test cases or refinement of available test

cases.

9) Automatic Program Execution: It considers the

execution of actual programs as well as mutants.

Spot that program should execute or compiles

automatically.

10) Evolution of Equivalent Mutant: This is related to

the creation of equivalent mutants and uses a

technique to record the equivalent mutants.

11) Multiple Language Programs Support: This is

related to the support various aspect programs

written in different language.

Based on above mentioned requirements an analysis is

carried for evaluation of mutation testing tools for Aspect

Programs. We conduct a survey based 20 software testing

professionals from Industry and Academics, which was

not carried in our previous study reported in [52]. Priority

is assigned to requirements because each requirement is

considered dissimilar based on expert opinion.

Importance assigned to each requirement is between 0

and 1(1; considered as utmost important and 0; as less

important) to the testing tools for Aspect-J programs.

Here most of the tools reported for Aspect-J because of

the availability of data on it and contribution of research

in this context. Detail analysis is shown in Table III as

follows:

8 A Study and Review on the Development of Mutation Testing Tools for Java and Aspect-J Programs

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 11, 1-10

Table 3. Evaluation of Mutation Testing Tools for Aspect-J

*Delamaro and Maldonado[18]**Horgan and

Mathur[16]***Vincenzi et al. [20]

Interpretation on Automation Tool: Proteum/AJ

reported maximum score i.e. 5.05 out of 11 requirements

with their ranking considered for evaluation. This shows

that this tool is having higher confidence as compare to

other testing tools because it reported high score.

Maximum of requirements are full filled by Proteum/AJ

mutation testing tools proved the strength of the tools

among other considered tools for analysis. As stated in

the beginning of this paper, it can be observed that all

these six tools mentioned above in Table III, support the

most of requirements for mutation testing in Aspect

Oriented Programs. Apart from deriving test requirements

according to the automated criteria, they all support

automatic test execution. We can also notice that all tools

target AspectJ programs. Mutants are generated at the

source code level and all these tools support unit testing

test phase.

From Table III, we can observe how tools for mutation

testing of AO programs address the listed requirements.

Anbalagan et al. [4] tool is limited to the creation and

classification of mutants based on a very small set of

mutation operators. No support for test case and mutant

handling is provided. AjMutator, on the other hand

provides better support than Advice Tracer, Cistron,

Anbalagan and Xie's tool.

However it still misses some basic functionality such

as mutation operator selection and proper mutant

execution and analysis support (e.g. individual mutant

execution and manual classification of mutants).

Contrasting Proteum/AJ with the other previous tools,

authors of the tool highlight that it improves test case

handling features (e.g. importing and executing test cases

into the running test application), enables mutant

handling (e.g. individual mutant execution) and supports

testing strategies (e.g. incremental selection of mutation

operators and target aspects). Proteum/AJ allows the

tester to manage mutants in different ways. For example,

mutants can be created, recreated and individually

selected for final execution. The execution can also be

restricted to live mutants only, and these can be manually

set as equivalent and vice versa, that is, equivalent

mutants can be reset as alive. The tool also enables the

tester to import and execute new test cases within an

existing test project which is not supported by other tools.

The mutation score can be computed at any time after the

first tests have been executed. The size of the application

under test is not limited by Proteum/AJ, whereas most of

the tools restrict the program size. There are only minor

dependencies between the test execution configuration

and the tool. Proteum/AJ tool also produces mutant

analysis reports that show the current mutation score and

the mutated parts of the code for each mutant considered

for testing.

Mutation Testing Tools/Framework

Requirements Advice

Tracer[19]

Anbalagan

& Xie[4]

Cistron

[25]

Mu-AspectJ[26] Aj-Mutator

[27]

Proteum

/AJ[28]

Source ICST 2009 IEEE ICIIP 2011 ACM IEEE ACM

Model/Tool/

Framework

Rank Approach Framework Mutation Tool Mutation

 Tool

Mutation Tool Mutation

Tool

1.Test Case

Handling*

0.7 0.35 0.0 0.35 0.35 0.35 0.35

2.Mutant Handling* 0.8 0.0 0.40 0.40 0.40 0.40 1.0

3. Adequacy

Analysis*

0.7 0.35 0.35 0.35 0.35 0.35 0.35

4. Reducing Test

Costs *

0.8 NA 0.0 0.0 NA 0.0 0.0

5.Unrestricted

Program Size**

1.0 0.0 0.0 0.0 0.0 0.0 1.0

6.Support for Test

Strategies***

0.7 0.0 0.0 0.0 0.0 0.0 0.35

7.Independent Test

configuration

0.6 0.0 0.0 0.0 0.0 0.6 0.6

8.Test Cases Editing 0.7 0.0 0.0 0.0 0.0 0.0 0.0

9.Automatic Program

execution

0.9 0.0 0.9 0.9 0.9 0.9 0.9

10.Evolution of

equivalent mutant

0.6 0.0 0.0 0.30 0.6 0.6 0.6

11.Multiple

Language Support

i.e.(Aspect-J/Ceaser-

J etc.)

0.3 0.0 0.0 0.0 0.0 0.0 0.0

Overall Score 0.70 1.65 2.30 2.60 2.80 5.05

 A Study and Review on the Development of Mutation Testing Tools for Java and Aspect-J Programs 9

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 11, 1-10

V. CONCLUSION AND FUTURE SCOPE

As per analysis, it can be concluded that the

Proteum/AJ is more efficient tools, as compared to other

tools for AspectJ restricted to above mentioned

requirements or conditions. Proteum/AJ achieved the

highest numeric weighted factor in analysis of mutation

tool based on the most common requirements which are

identified by various researchers for mutation testing in

general. Purpose of the present work is not criticize any

work because each one having some strengths and its

limitation but in limited domain and with selected criteria.

Every tool supports its own technique and there is lack

of common interface which makes it difficult to handle

tool interface. There is a strong requirement of a tool,

which work on one standard technique and full-fill all the

essential requirements of mutation testing. Few of these

tools discussed above require some additional tools

support which should be eliminated and that feature

should be integrated in the tool itself. AspectJ based

system level mutation testing is not carried out, which

need to be added. Performance of tool is major

parameters while applying any testing technique either by

considering the sequence applications or object oriented

application by testing tools. Performance is not even

considered in automated mutation testing tools we have

analyzed.

ACKNOWLEDGMENT

The authors wish to acknowledge, Gautam Buddha

University, Greater Noida and Amity University Uttar

Pradesh, India. Both organizations provide research

environment, and their faculties and scholars provide

valuable suggestion during this analysis.

REFERENCES

[1] Tassey G., ―The economic impacts of inadequate

infrastructure for software testing‖, Technical Planning

Report 02-3, National Institute of Standards and

Technology, Program Office Strategic Planning and

Economic Analysis Group, May 2002.

[2] Zuhoor A. K., Woodward M., and Ramadhan H.A.,

―Critical analysis of the pie testability technique‖, Software

Quality Control, 10(4):331-354, 2002.

[3] Filman R., Elrad T., Clarke S., ―Aspect Oriented Software

Development‖, Addison-Wesley Publishing Company,

2004.

[4] Anbalagan P. and Tao X., ―Automated Generation of

Pointcut Mutants for Testing Pointcuts in AspectJ

Programs‖, in Proceedings of the 19th International

Symposium on Software Reliability Engineering

(ISSRE’08), IEEE Computer Society, pp. 239–248, 11-14

November 2008.

[5] Zhao C. and Alexander R.T.,―Testing AspectJ Programs

using Fault-Based Testing‖, Workshop on Testing Aspect

Oriented Programs (WTAOP’07), Vancouver, British

Columbia, Canada, ACM, 2007.

[6] Alexander R.T., Bieman J.M. and Andrews A. A.,

―Towards the Systematic Testing of Aspect-Oriented

Programs‖, Technical Report CS-4-105, Colorado State

University, 2004.

[7] DeMillo R.A., Lipton R.J., Sayward F.G., ―Hints on test

data selection: help for the practicing programmer‖, IEEE

Computer, 11 (4), pp. 34–41, 1978.

[8] Offutt A. J. and Untch R. H., "Mutation 2000: Uniting the

Orthogonal", In Mutation 2000: Mutation Testing in the

Twentieth and the Twenty First Centuries, pp. 45-55, 2000.

[9] DeMillo R. A. and Offutt A. J., ―Constraint-based

automatic test data generation‖, IEEE Trans. Softw. Eng.,

17(9), pp. 900– 910, 1991.

[10] Offutt A.J., ―A Practical System for Mutation Testing:

Help for the Common Programmer‖, Twelfth International

Conference on Testing Computer Software, pp. 99-109,

1995.

[11] Andrews J.H., Briand L.C., Labiche Y., ―Is mutation an

appropriate tool for testing experiments?‖, In Proc. of 27th

International Conference on Software Engineering (ICSE

2005), pp. 402–411, 2005.

[12] Anbalagan P. and Tao X., ―Efficient Mutant Generation for

Mutation Testing of Pointcuts in Aspect-Oriented

Programs‖, Mutation 2006 - ISSRE Workshops, 2006.

[13] Lemos O. A. L., Ferrari F. C., Lopes C. V. and Maseiro P.

C., ―Testing Aspect Oriented Programming Pointcut

Descriptors‖, In Proceedings of the 2nd workshop on

Testing aspect-oriented programs(WTAOP '06), Portland,

ACM, 2006.

[14] Ferrari F.C., Maldonado J.C., Rashid A., ―Mutation

Testing for Aspect-Oriented Programs‖, International

Conference on Software Testing, Verification, and

Validation, pp. 52-61, IEEE 2008.

[15] Mortensen M. and Alexander R. T., ―An approach for

adequate testing of AspectJ programs‖, In Proc. 1st

Workshop on Testing Aspect-Oriented Programs, 2005.

[16] Yamazaki Y., Sakurai K., Matsuura S., Masuhara H.,

Hashiura H., and Komiya S., ―A unit testing framework for

aspects without weaving‖, In Proc. 1st Workshop on

Testing Aspect-Oriented Programs, 2005.

[17] AspectJ benchmark, 2004, available at

http://www.sable.mcgill.ca/benchmarks/.

[18] Singh M., Mishra S., ―Mutant generation for Aspect

oriented Programs‖, International Journal of Computer

Science and Engineering, Vol.1, pages 409-415, 2010.

[19] Delamare R., Baudry B. , Ghosh S., and Le T.Y., ―A Test-

Driven Approach to Developing Pointcut Descriptors in

AspectJ‖, in Proceedings of the 2nd International

Conference on Software Testing Verification and

Validation (ICST’09), pp. 376–38, 2009.

[20] Delamare R., Advicetracer. Available at:

www.irisa.fr/triskell/Softwares/protos/advicetracer.

[21] Dahm M. and Zyl J. Van, Byte Code Engineering Library,

April 2003. Available at: http://jakarta.apache.org/bcel/.

[22] Sun Microsystems. Java Reflection API. Online manual,

2001.

[23] Eclipse, AspectJ compiler 1.5, May 2005. Available at:

http://eclipse.org/aspectj/.

[24] Arnold K., Gosling J., and Holmes D., ―The Java

Programming Language‖, Addison-Wesley Longman, 2000.

[25] Singh M, Gupta P.K., Mishra S., ―Automated Test Data

Generation for Mutation Using AspectJ Programs‖, In

Proceedings of ICIIP-2011, IEEE, 2011.

[26] Jackson A. and Clarke S., ―MuAspectJ: Mutant Generation

to Support Measuring the Testability of AspectJ Programs‖,

Technical report, ACM, 2009.

[27] Delamare R., Baudry B., and Le T. Y., ―AjMutator: A Tool

for The Mutation Analysis of AspectJ Pointcut

10 A Study and Review on the Development of Mutation Testing Tools for Java and Aspect-J Programs

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 11, 1-10

Descriptors‖, in Proceedings of the 4th International

Workshop on Mutation Analysis (MUTATION’09), pp.

200–204, 2009.

[28] Ferrari F.C., Nakagawa E.Y., Maldonado J.C., Rashid A.,

―Proteum/AJ: a mutation system for AspectJ programs‖, in

Proceedings of AOSD-11, ACM, 2010.

[29] Do H. and Rothermel H., ―A controlled experiment

assessing test case prioritization techniques via mutation

faults‖, In Proc. of the 21st IEEE International Conference

on Software Maintenance (ICSM 2005), pp. 411–420,

2005.

[30] Horgan J.R., Mathur A., ―Assessing testing tools in

research and education‖, IEEE Software, 9(3), pp.61–69,

1992.

[31] Madeyski L., Radyk N., ―Judy – a mutation testing tool for

Java‖, Published in IET Softw., Vol. 4, Issue 1, pp. 32–42,

2010.

[32] Delamaro, M. E.; Maldonado, J. C., ―Proteum: A tool for

the assessment of test adequacy for C programs‖, In:

Conference on Performability in Computing Systems (PCS),

USA, pp. 79-95, 1996.

[33] Singh M., Mishra S. and Mall R., ―Accessing and

Evaluating AspectJ based Mutation Testing Tools‖,

published in Iinternational Journal of Computer

Application, pp. 33-38, 2011.

[34] Vincenzi A. M. R., Simao, A. S., Delamaro, M.

E.,Maldonado, J. C., ―Muta-Pro: Towards the definition of

a mutation testing process‖, Journal of the Brazilian

Computer Society, Vol.12, No.2, pp. 49-61, 2006.

[35] Ceccato, M., Tonella, P., Ricca, F., ―Is AOP code easier or

harder to test than OOP code?‖ In Proceedings of the First

Workshop on Testing Aspect-Oriented Programs (WTAOP

2005). Chicago, Illinois, 2005.

[36] Scholivé, M., Beroulle, V., Robach, C., Flottes, M.L.,

Rouzeyre, B., ―Mutation Sampling Technique for the

Generation of Structural Test Data‖, published in

proceedings of Design, Automation and Test in Europe

(DATE’05), 2005.

[37] Moore I., ―Jester and Pester,‖ http://jester.sourceforge.net/,

2001.

[38] Chevalley P. and The v́enod-Fosse P., ―A Mutation

Analysis Tool for Java Programs‖, International Journal of

Software Tools for Technology Transfer, Vol. 5, No. 1, pp.

90-103, Nov. 2002.

[39] Ma Y.S., Offutt J., and Kwon Y.R., ―MuJava: An

Automated Class Mutation System,‖ Software Testing,

Verification, and Reliability, Vol. 15, No. 2, pp. 97-133,

2005.

[40] Ma Y.S., Offutt J., and Kwon Y.R., ―MuJava: A Mutation

System for Java,‖ Proc. 28th International Conference on

Software Engg., pp. 827-830, 2006.

[41] Offutt J., Ma Y.S., Kwon Y.R., ―An Experimental

Mutation System for Java‖, ACM SIGSOFT Software Eng.

Notes, Vol. 29, No. 5, pp. 1-4, 2004.

[42] Bradbury J.S., Cordy J.R., and Dingel J., ―ExMAn: A

Generic and Customizable Framework for Experimental

Mutation Analysis‖, Proc. Second Workshop Mutation

Analysis, pp. 57-62, 2006.

[43] Kim S.W., Harrold M.J., and Kwon Y.R., ―MUGAMMA:

Mutation Analysis of Deployed Software to Increase

Confidence Assist Evolution‖, Proc. Second Workshop

Mutation Analysis, pp. 10, 2006.

[44] Smith B.H., Williams L., ―An Empirical Evaluation of the

MuJava Mutation Operators‖, Proc. Third Workshop

Mutation Analysis, pp. 193-202, Sept. 2007.

[45] Source Forge, ―Jumble,‖ http://jumble.sourceforge.net/,

2007.

[46] Polo M., Tendero S., and Piattini M., ―Integrating

Techniques and Tools for Testing Automation‖, Software

Testing, Verification, and Reliability, Vol. 17, No. 1, pp. 3-

39, 2007.

[47] Grun B.J., Schuler D., Zeller A., ―The Impact of

Equivalent Mutants‖, Proc. Fourth International Workshop

Mutation Analysis, pp. 192-199, Apr. 2009.

[48] Tanaka A., ―Equivalence Testing for Fortran Mutation

System Using Data Flow Analysis‖, Master’s Thesis,

Georgia Inst. of Technology, 1981.

[49] Just R., Schweiggert F., Kapfhammer G.M., ―MAJOR: An

efficient and extensible tool for mutation analysis in a Java

compiler‖, published with Proceedings 26th IEEE/ACM

International Conference on Automated Software

Engineering, pp. 612-615, 2011.

[50] Offutt A.J. and Untch R.H., ―Mutation 2000: Uniting the

Orthogonal‖, Proc. First Workshop Mutation Analysis, pp.

34-44, 2000.

[51] Hamlet R.G., ―Testing programs with the aid of a

compiler‖, IEEE Trans. on Soft. Engg., pp. 279-290, Vol.

(4), Jul. 1977.

[52] Singh, P.K, Sangwan O.P. and Sharma A., ―A Systematic

Review on Fault Based Mutation Testing Techniques and

Tools for Aspect-J Programs‖, published in proceedings of

3rd IEEE International Advance Computing Conference,

IACC-2013, India, 22-23 Feb. 2013.

Mr. Pradeep Kumar Singh is an Assistant Professor in

Computer Engineering at the Amity School of Engineering and

Technology, Amity University, Uttar Pradesh, India. He is

member of ACM, CSI and many professional bodies. He has

published 10 papers in International Conferences and Journals

of repute.

Dr. Om Prakash Sangwan is working as Assistant Professor in

Department of Computer Science and Engineering of Gautam

Buddha University, Greater Noida. Uttar Pradesh, India. He is

Senior Member of ACM, CSI, IEEE and many professional

bodies. He has filled two Patents and published 40 papers in

International Conferences and Journals of repute. His major

area of Interest includes Software Engineering, Object Oriented

Software Engineering, Aspect Oriented Software Engineering,

Soft Computing.

Dr. Arun Sharma is working as Associate Professor in Indira

Gandhi Delhi Technical University for Women (IGDTUW),

New Delhi, India. He is Senior Member of CSI, IEEE and many

professional bodies. He has published 50 papers in International

Conferences and Journals of repute. His major area of Interest

includes Software Engineering, Object Oriented and

Component Based Software Engineering.

