
I.J. Modern Education and Computer Science, 2014, 11, 52-57
Published Online November 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2014.11.07

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 11, 52-57

Resource Allocation Policies for Fault Detection

and Removal Process

Md. Nasar
School of Computing Science and Engineering, Galgotias University, Gr. Noida, India

Email: nasar31786@gmail.com

Prashant Johri and Udayan Chanda
School of Computing Science and Engineering, Galgotias University, Gr. Noida, India

Department of Management, Birla Institute of Technology & Science (BITS) Pilani. India

Email: {johri.prashant, udayanchanda}@gmil.com

Abstract—In software testing, fault detection and

removal process is one of the key elements for quality

assurance of the software. In the last three decades,

several software reliability growth models were

developed for detection and correction of faults. These

models were developed under strictly static assumptions.

The main goal of this article is to investigate an optimal

resource allocation plan for fault detection and removal

process of software to minimize cost during testing and

operational phase under dynamic condition. For this we

develop a mathematical model for fault detection and

removal process and Pontryagain‘s Maximum principle is

applied for solving the model. Genetic algorithm is used

to find the optimal allocation of fault detection and

removal process. Numerical example is also solved for

resource allocation for fault detection and remoal process.

Index Terms—SRGM, Testing Effort Allocation,

Correction-Removal Process, Optimal Control Theory,

Genetic Algorithm.

I. INTRODUCTION

For the last few decades, it has been observed that

computer systems have been widely used for problem

solving, and there has been phenomenal increase in

complexity of a system. A fault in the software system

may produce huge loss in terms of money as well as time.

There are numerous examples of failure of computer

control system resulting in huge financial and other losses.

Hence, it is necessary for an organization to invest

resources in developing a software product that should be

error free, reliable and also suitable for market conditions.

As industries are depending more and more on

computer systems for day to day business, a reliable

software system is needed by businesses to be efficient.

Software testing comes under the software development

life-cycle, and both are multistage processes, where each

stage possesses a pre-specified activity or goal to deliver

high quality products to a client. Software testing plays a

very important role in software quality. Software testing

interacts with every phase of software development life

cycle, and the software reliability valuation is an

important component to predict and evaluate the

reliability of a software system. The model applicable to

calculate the software reliability is called software

reliability growth model (SRGM). The main goal of

SRGM is to establish the relationship between fault

observation and fault removal, and to calculate the

reliability of the software. These reliability models have

also been used for resource allocations.

Resources, such as manpower, CPU time and some

hardware, are generally used during software testing

process. Fault detection and correction process

completely depends upon the nature of fault and volume

of resources consumed for correction. Numerous SRGMs

have been proposed to minimize the amount of testing

effort consumed during testing but mostly under static

condition. [1] first considered a simple software

reliability model depending on the testing effort and

formulated a testing resource allocation problem. [2] - [6]

discussed the time-dependent behavior of testing efforts

in their work. Generally, exponential curve is used to

describe the performance of testing resources whenever

spent equally; otherwise, Rayleigh curve is used. Weibull

and Logistic type functions have also been used to

describe testing efforts. [7] discussed optimization

problem for testing resource allocations and for the

software systems having modular structure and assumed

that testing effort allocation depends upon the size and

severity of the fault. Numerous SRGMs have been

proposed in the last four decades in that mostly fault

detection models were based on the assumption that

detection and correction of faults is done concurrently.

But, in reality there is always a time gap [8] - [12].

Generally, when a fault is detected, testing team

reports it for correction, and then the development team

rectifies the faults. Hence, evidently, there must be a time

lag between fault detection and correction processes. [13]

Determined the resource allocation problem by

minimizing the mean number of remaining faults in the

software modules with a budget constraint and a

reliability aspiration. [14] Studied the optimal amount of

resources desired for software module testing using the

hyper-geometric software reliability growth model. [15]

 Resource Allocation Policies for Fault Detection and Removal Process 53

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 11, 52-57

Discussed the effort allocation in dynamic environment.

The author used differential evolution for dynamic

allocation of testing resources. Differential evolution is

an improved version of genetic algorithm for faster

optimization. The author also discussed a numerical

example for allocating the testing resources.

[16] Discussed an optimal resource allocation problem

for modular software systems throughout the testing

phase. The main aim was to minimize the software

development cost when the number of remaining faults is

to be minimized, and a desired reliability objective is

given. The authors analyzed the sensitivity of parameters

of proposed software reliability growth models. In

addition, the authors also present the impact on the

resource allocation problem if some parameters are either

overestimated or underestimated. The authors have

evaluated the optimal resource allocation problems for

various conditions by examining the behavior of the

parameters with the most significant influence. For this

purpose, a numerical example is also solved.

[17] Investigated dynamic programming approach for

testing resource allocation problem when the software is

developed in modules. For this, two optimization models

are proposed for optimal allocation of testing resources

among the modules of software. In the first model,

authors maximize the total fault removal, subject to cost

constraint. In the other model, other constraints

representing aspiration levels for fault removals for each

module of the software are added. The authors solved

these models using dynamic programming technique. A

dynamic programming approach for finding the optimal

solution has also been proposed. The methods have been

illustrated through numerical examples.

[18] Studied the association between the number of

faults deleted with respect to testing effort and/or time.

The authors assumed that throughout the testing stage of

a software development life cycle (SDLC), faults are

removed in two stages: first a failure occurs and then the

fault causing that failure is corrected; hence the testing

effort will be spent on two distinct processes; failure

detection and failure alteration. In their paper, the authors

developed a software reliability growth model

incorporating time delay not only between the two phases

but also through the segregation of resources between

them and proposed two alternate methods for controlling

the testing effort for achieving the pre-specified reliability

level or error detection level.

[19] Discussed a cost model for software, that is used

to formulate whole software project cost and discussed

the optimal release policy based on cost and reliability

criteria.

[20] considered the cost factor in testing-resource

allocation problems, but they only put the cost factor into

the constraints, which means it is feasible if the total cost

is less than budget. In fact, it is a profit for a company if

the cost can be less than the budget provided that the

customers‘ requirements are still satisfied. Thus he

involved cost factor in the objective function together

with reliability, which means that he is having multiple

objectives in term of both maximizing system reliability

and minimizing testing cost.

[21] investigated an optimal resource allocation plan to

minimize the cost of software during the testing and

operational phase under dynamic condition. An elaborate

optimization policy based on the optimal control theory is

used. The authors used learning curve phenomenon under

dynamic environment for optimal allocation of testing

resources. During the analysis, Author observed that due

to the experience curve phenomenon, the effort required

to fix an error keeps on decreasing with time. At the same

time, testing effort keeps on increasing as in the later

stages of a planning period it becomes hard to detect

faults. For this purpose one numerical example is also

illustrated. The model is based on the assumption that at

any point of time the total resources allocated for

debugging and testing is fixed.

The above literature review shows that most of the

well-known SRGMs are built on static conditions but in

real time, it is not true. In this paper, we have proposed

mathematical optimization model that helps to assign

allocation of resources for fault detection and fault

correction under dynamic environment.

The paper is subdivided into the following sections.

Section two and three describe the model for fault

detection and correction processes, and the cost

optimization modeling. In section four, we discuss the

solution approach. Section five discusses the basic

parameter for genetic algorithm. A numerical problem for

fault detection and correction process Vs time using

genetic algorithm is given in section six. Finally, in

section seven, we conclude our paper with a discussion

on results and findings.

Notations Used

T : The planning period.

‗ a ‘ : Initial fault present in the

software.

1b : Fault detection rate.

2b : Fault correction rate.

w : Total resources consumed during

the software development at any

point of time ‗ t ‘.

 tw1
 : Resources consumed during the

software development for testing

purpose at any point of time ‗ t ‘.

 tw2
: Resources consumed during the

software development to fix bugs

at any point of time‗ t ‘.

 tfd
 : Identified total number of faults

till time t.

 tf r
 : Removed total number of faults

till time t.

    twtfc d 31 ,

: Cost per unit at time ‗ t ‘ for

cumulative fault detected is  tfd

with detection efforts)(3 tw .

54 Resource Allocation Policies for Fault Detection and Removal Process

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 11, 52-57

    twtfc r 22 ,
: Cost per unit at time ‗ t ‘ for

cumulative fault corrected is

 tf r
 debugging efforts)(2 tw

3c : Cost of testing per unit effort at

time ‗t‘.

II. MODEL DEVELOPMENT

Modeling Fault Detection and Correction Processes:

For perfect removal of faults, the predictable number

of fault corrected is the same as predictable number of

faults identified. However, in reality if a fault is

identified, it is not necessary to correct the fault instantly.

Hence, after identifying the fault, the debugging

personnel ask the programmer to correct the fault. Thus,

there must be a time gap between identification and

removal processes. In general, the expected number of

faults detected at time T is more than faults corrected at

time T. Hence, the fault detection and removal processes

are done in two stages. To begin with, let‘s assume ‗a‘ is

the total fault content in the software. Therefore, it is

necessary to assume the following equation of fault

identification and removal process;

 
 

 
 

   

1 1

2 2

()(())

()(f () ())

0 0, 0 0

d
d

r
d r

d r

df t
x t b w t a f t

dt

and

df t
y t b w t t f t

dt

where

f f

  

  

  (1)

III. COST OPTIMIZATION MODELLING

Now assume the software firm wants to minimize the

total expenditure over the finite planning horizon.

Therefore, mathematically the model can be given as;

   

 
 

 
 

   

    

    

     

      

1 2 3 1

0

1 1

2 2

1 1 3 2

2 2

1 2 3

1 2 3

min () () ()

()(())

()(f () ())

0 0 ,f 0 0 ,

c () , ,c ()

,

; ; 0

T

d
d

r
d r

d r

d

r

c t x t c t y t c w t dt

subject to

df t
x t b w t a f t

dt

df t
y t b w t t f t

dt

where

f

t c f t w t t

c f t w t and

w t w t w t w

w t w t w t

   

  

  

 





  





(2)

IV. SOLUTION PROCEDURE

To solve the problem for equation (2), Pontryagain‘s

Maximum principle is applied. The Hamiltonian function

is as follows [22]:

     

   

1 2 3

1 2 3 1

(f (), f (), (), (), (), (),)

() ()

() ()

d rH t t t w t w t w t t

c t x t c t y t c w t

t x t t y t



 



    

  (3)

 t and ()t are the adjoint variables (shadow cost of

and respectively), which satisfies the following

differential equation.

()
d

d H
t

dt f
 

 
  


 (4)

And;

()
r

d H
t

dt f



 


 (5)

Terminal condition for the differential equation (4) and

(5) are given by   0T and () 0T  respectively.

The adjoining variable  t represents per unit change

in the objective function for a small change in)(tf d
 i.e.

 t can be interpreted as marginal value of faults

detected at time ‗ t ‘. Similarly,)(t can be interpreted

as marginal value of fault removed at time ‗t‘. Thus, the

Hamiltonian is the sum of current cost)(21 ycxc  and

the future cost)(yx   . In short, H represents the

instantaneous total cost of the firm at time‘ t ‘.

The following are the necessary conditions hold for an

optimal solution:

1 1

3

1 1

1

0 () () (()

()) () 0

w w

w

H c t x t c t

t x t c

  

   (6)

1 2 2

2

2 2

2

0

() () () () (()

()) () 0

w

w w

w

H

c t x t c t y t c t

t y t

 

  

 

 (7)

Where;

1
1

1
1

()
()

()
w

c t
c t

w t





1
1

2
2

()
()

()
w

c t
c t

w t





2
2

2
2

()
()

()
w

c t
c t

w t





 Resource Allocation Policies for Fault Detection and Removal Process 55

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 11, 52-57

1
1

()
()

()
w

x t
x t

w t





2
2

()
()

()
w

y t
y t

w t



 (8)

The other optimality conditions for Hamiltonian

maximization are;

0
21

2211
0

11





wwH

wwHwwHandwwH

 (9)

On solving equations (6) and (7), we get;

* 1 1 3
1

1 11

(() ()) (())
()

() (()

d

w d

c t t b a f t c
w t

c t b a f t

  
 


 (10)

And;

2 2 1*
2

2 2

2

2

(() ()) (f () ()) () ()
()

() (f () ())

d r w

w d r

c t t b t f t c t x t
w t

c t b t f t

  
 


 (11)

Using the assumption that the total resource is fixed i.e;

     1 2 3w t w t w t w   . Thus,

* * *
3 1 2w w w w   (12)

Now, upon integrating equation (4) with the

transversality condition, we have the future cost of

detecting one more fault from the software;

 

 


























T

t

d

dd
dt

f

y
ttc

f

x
ttctx

f

tc

t

















)()(

)()()(
)(

)(

2

1
1

 (13)

Similarly, integrating equation (5) with the transversality

condition, we have the future cost of removing one more

fault from the software;






























T

t
dt

rf

y

t

tc
ty

rf

c
t










)(

)(2
)(2)(

 (14)

Now taking time derivative of equation (6), we have;

1 21 1 1 2 1

1 1

()

()

w w w w w f

w f w

d

r

w H w H x t H

y t H x

 



 

  
 (15)

Time derivative of equation (7) implies;

1 22 1 2 2 2 2

2

() ()w w w w w f w f

w

d r
w H w H x t H y t H

y

 



  

 

 (16)

Where;

2

2
1

1 1

()

()
w w

H t
H

w t





2

1 2
1 2

()

() ()
w w

H t
H

w t w t



 

2

2
2

2 2

()

()
w w

H t
H

w t





2 ()

() ()
w f

i r
i r

H t
H

w t f t



 

2 ()

() ()
w f

i d
i d

H t
H

w t f t



 

, for 1, 2i  .

To solve the above optimization problem, we used

Genetic Algorithm (GA). Genetic Algorithm is a

computerized search and heuristic optimization method

for solving difficult type of problem which cannot be

solved easily by general methods [23], [24] and [25].

V. GENETIC ALGORITHM

Genetic algorithm is an optimization technique that

mimics the process of natural selection. This heuristic

approach is regularly used to generate solutions for

optimization problems. Genetic algorithm belongs to

evolutionary class of algorithm which is inspired by

natural evolution, such as selection, crossover, mutation,

and inheritance. Genetic algorithm is successfully applied

in many fields such as bioinformatics, economics, physics,

chemistry, computer science, mathematics and many

others.

To solve the above problem using genetic algorithm,

following steps will follow.

Chromosome Representation: Genetic algorithm

starts with some initial population represented as

chromosome. A chromosome consists of genes and each

gene represents a specific solution for the problem.

Initial population: We will generate an initial

population for total number of faults ‗a‘ content in the

software. It will take minimum and maximum values and

it will generate initial population form this limit.

Fitness of a chromosome: Fitness of a chromosome

quantifies the optimality of a solution (chromosome) so

that particular solution may be ranked against all the

other solutions.

Selection: Selection is the process of choosing two

chromosomes from the whole population of the

chromosomes. The chromosome with highest fitness

value has high probability of selection. There are many

methods to choose the best chromosome like tournament

56 Resource Allocation Policies for Fault Detection and Removal Process

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 11, 52-57

selection, rank selection, roulette wheel selection,

Boltzman selection, steady state selection and some

others.

Crossover: It is the process in which two

chromosomes (strings) combine their genetic material

(bits) to produce a new offspring which possesses both

their characteristics. Two strings are randomly picked

from the mating pool to cross over.

Mutation: By mutation individuals are randomly

altered. These variations (mutation steps) are commonly

very small. They will be applied to the variables of the

individuals with a low probability (mutation rate or

mutation probability). Normally, offspring will be

mutated after being created by recombination.

The steps, selection, crossover and mutation, are then

repeated till the stopping criteria are reached.

VI. NUMERICAL SOLUTION

Using GA approach, in this section, we discuss the

numerical solution of the problem as discussed in section

3 in order to count the number of errors detected and

corrected at time ‗t‘. To solve this problem, we have used

genetic algorithm and implemented through MATLAB

7.4.0 and C++. The parameters used to solve this problem

are:

Total number of population Size: 200

Total number of generation: 100

Method of selection: Tournament selection

Rate of crossover: 0.8

Rate of mutation: 0.1

And the base values are as follows:

100a 3.01 b 3.02 b

40.01 w 42.02 w 1w   1000 

  1000    00 df   00 rf 5003 c

10000 c 10000 b

The expected number of fault detected and corrected is

as follows:

Fig: 1a. Number of fault Vs time.

Fig: 1b. Number of fault Vs time.

Above fig. shows the fault detection and correction

process Vs time. In first figure we use W1= 0.40 and

W2=0.42, in second figure we use W1=0.42 and

W2=0.46.

VII. CONCLUSIONS

In this paper, we propose an alternative foundation for

optimal time allocation of fault detection and removal

processes using genetic algorithm. We have considered

fault detection and removal processes in two stages.

During this study we have allocated fault detection and

removal processes in dynamic environment. We describe

a method to allocate time based on number of faults

detected and corrected. This means that the tester and

developer can dedicate their time and resources to finish

off their testing and debugging tasks for well controlled

expenditure. Simulation is done using genetic algorithm,

MATLAB and C++ for the same.

REFERENCES

[1] Ohtera, H. and Yamada, S.: Optimal allocation and control

problems for software testing-resources. IEEE

Transactions on Reliability, R-39 (2), 171-176 (1990).

[2] Putnam, L (1978), 'A general empirical solution to the

macro software sizing and estimating problem', IEEE

Transactions on Software Engineering, SE-4, 345-361.

[3] Yamada, S., J. Hishitani and S. Osaki (1993), 'Software

Reliability Growth Model with Weibull testing effort: A

model and application', IEEE Trans. On Reliability, R-42,

100-105.

[4] Basili, V.R. and M.V. Zelkowitz (1979), 'Analyzing

medium scale software development', Proceedings of the

3rd International Conference on Software Engineering,

116-123.

[5] Kapur, P.K. and Garg, R.B. (1990), 'Cost Reliability

optimum release policy for a software system with testing

effort', OPSEARCH, 27, 109-116.

[6] Huang, C-Y, S-Y. Kuo and J.Y. Chen (1997), 'Analysis of

a software reliability growth model with logistic testing

effort function', Proceeding of 8th International

Symposium on software reliability engineering, 378- 388.

[7] Kapur, P.K., Bardhan A.K.and Yadavalli V.S.S. (2007),

'On allocation of resources during testing phase of a

modular software', International Journal of Systems

Science, 38 (6), 493 - 499.

 Resource Allocation Policies for Fault Detection and Removal Process 57

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 11, 52-57

[8] Ohba, M. (1984),'Software reliability analysis models',

IBM Journal of research and Development 28, 428-443.

[9] Schneidewind, N.F. (1975), 'Analysis of error processes in

computer software', Sigplan Notices 10, 337-346.

[10] Xie, M. and Zhao, M. (1992), ' The Schneidewind software

reliability model revisited.' Proceedings of the 3rd

International Symposium on Software Reliability

Engineering, 5, 184-192.

[11] Schneidewind, N.F. (1975), 'Analysis of error processes in

computer software', Sigplan Notices 10, 337-346.

[12] Gokhale, S.S., Wong, W.E., Trivedi, K.S. and Horgan,

J.R.,(1998), 'An analytic approach to architecture-based

software reliability prediction' in Proceedings of the

International Symposium on Performance and

Dependability, September, pp. 13-22.

[13] Yamada S. Ichitmori T. Nishiwaki M., "Optimal

allocation policies for testing-resource based on a software

reliability growth model", Mathematical and Computer

Modelling, 1995, 22(10-12), 295-301.

[14] Huo R.H., Kuo S.K., Chang Y.P., "Needed resources for

software module test, using the hyper-geometric software

reliability growth model", IEEE Trans. on Reliability, 1996,

45(4), 541-549.

[15] Md. Nasar, Prashant Johri and Udayan Chanda, "A

Differential Evolution Approach for Software Testing

Effort Allocation," Journal of Industrial and Intelligent

Information, Vol. 1, No. 2, pp. 111-115, June 2013.

[16] C. Y. Huang, J. H. Lo, S. Y. Kuo and M. R, "Optimal

Allocation of Testing-Resource Considering Cost,

Reliability, and Testing-Effort," Dependable Computing,

2004. Proceedings. 10th IEEE Paci?c Rim International

Symposium on 3-5 March 2004, pp. 103-112.

[17] Dohi, T., Nishio, Y., and Osaki, S. (1999), 'Optimal

Software Release Scheduling Based on Artificial Neural

Networks', Annals of Software Engineering, 8, 167-185.

[18] P. K. Kapur and A. K. Bardhan, ―Testing effort control

through software reliability growth modelling‖,

International Journal of Modelling and Simulation, vol. 22,

pp. 90–96.2002.

[19] C.-Y. Huang, (2005), ―Cost-reliability-optimal release

policy for software reliability models incorporating

improvements in testing efficiency,‖ Journal of Systems

and Software, vol. 77, pp. 139–155.

[20] Coit, D.W., Smith, A.E., 1996. Reliability optimization of

series–parallel systems using a genetic algorithm. IEEE

Trans. Reliab. 45 (2), 254–266.

[21] P.K. Kapur, Hoang Pham, Udayan Chanda & Vijay Kumar

(2012): Optimal allocation of testing effort during testing

and debugging phases: a control theoretic approach,

International Journal of Systems Science, 2012, 1–12,

iFirst, Taylor & Francis Publication.

[22] Sethi, S.P., and Thompson, G.L. (2005), Optimal Control

Theory - Applications to Management Science and

Economics (2nd ed.), New York: Springer.

[23] Goldberg, D. E., (1989), Genetic Algorithms: in Search

Optimization and Machines Learning (New York:

Addison-Wesley).

[24] David, L. Handbook of Genetic Algorithms. New York :

Van Nostrand Reinhold. (1991).

[25] Deb K. (1995) Optimization for Engineering Design-

Algorithms and Examples. Prentice Hall of India, New

Delhi.

Authors’ Profiles

Md. Nasar received his BCA degree

from T. M. Bhagalpur University,

Bhagalpur in 2002, Master in

Computer Science from G. B. Pant

University of Agriculture &

Technology, Pantnagar, India in 2006.

He has also received Microsoft

Certified Technology Specialist

(MCTS). At present, he is pursuing

Ph.D in Computer Science from Galgotias University, Gr.

Noida, INDIA. He is having 8 years of experience in Teaching,

and Software Development. His research interest includes

Software Reliability and soft computing.

Dr. Prashant Johri working as a

professor in school of computing

science and Engineering, Galgotias

University, Gr. Noida. .He received his

Ph.D degree in Software Reliability

from Jiwaji University Gawalior, India.

He has more than 15 years of

experience in teaching. He has

published numerous papers in the area

of software reliability in international journals and conference

proceedings His area of research is software reliability, soft

computing, parallel distribution and information security.

Dr. Udayan Chanda is currently

working as Assistant Professor in

Department of Management, Birla

Institute of Technology & Science

(BITS) Pilani. Earlier he was

associated with Industrial Statistics

Lab., Department of Information &

Industrial Engineering Yonsei

University as Post-Doctoral Fellow and

Department of Operational Research, University of Delhi as

Assistant Professor (Ad-hoc). He received his Ph.D. degree in

Marketing Models and Optimization (Operational Research)

from University of Delhi, Delhi. He has published numerous

papers in the area of Marketing Models, Optimization, Software

Reliability and Inventory Management in international journals

and conference proceedings. His current research interests

include Marketing Models, Inventory Modeling, Software

Reliability Growth Modeling, and Dynamic Optimization

Techniques.

