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Abstract—Back propagation is one of the well known 

training algorithms for multilayer perceptron. However 

the rate of convergence in back propagation learning 

tends to be relatively slow, which in turn makes it 

computationally excruciating. Over the last years many 

modifications have been proposed to improve the 

efficiency and convergence speed of the back 

propagation algorithm. The main emphasis of this paper 

is on investigating the performance of improved versions 

of back propagation algorithm in training the neural 

network. All of them are assessed on different training 

sets and a comparative analysis is made. Results of 

computer simulations with standard benchmark problems 

such as XOR, 3 BIT PARITY, MODIFIED XOR and 

IRIS are presented. The training performance of these 

algorithms is evaluated in terms of percentage of 

accuracy, and convergence speed. 

 

Index Terms—ANN, gain, momentum, error saturation,  

Local minima. 

 

I.  INTRODUCTION 

Neural networks are information processing networks 

that mimic the human nervous system. Sigmoid 

activation function which models the actual behaviour of 

a neuron is mainly used, even though there exist various 

other functions that represent the characteristics of 

neuron. A neural network can be trained to imitate any 

function by using a training set that contains the input 

output pairs of the desired function. The popular structure 

of neural networks is multi layer perceptron (MLP) in 

which the neurons are placed in some layers and signal is 

transmitted in one direction. MLP consists of an input 

layer, one or more hidden layer and an output layer. The 

hidden layer is used to capture the non linear 

relationships among input variables and the output layer 

is used to obtain the predicted output. Back propagation 

algorithm (BP) introduced by [1] is a supervised learning 

method based on the gradient descent of the quadratic 

error function and is considered as the universal function 

approximator. Back propagation based MLP (BPNN) 

could approximate any smooth function to an arbitrary 

degree of accuracy, when the tuning parameters could be 

optimized properly. Supervised learning of a neural 

network can be viewed as a curve fitting process. A 

training vector pairs that consist of an input vector from 

the input space and a target vector as the neural response 

are presented to the network. Based on the learning 

algorithm, the neural network performs the weight 

adjustment so that the error between the actual output 

vectors and the target vector is minimized relative to 

some optimization criterion. Once trained the neural 

network performs the interpolation in the output vector 

space which is then referred to as the generalization 

capability. While as in unsupervised learning the target 

output pattern is not known and the system learns of its 

own by discovering the features in the input patterns. 

This type of learning is based on clustering technique. 

Reinforcement learning is based upon both the 

supervised learning as well as unsupervised learning. In 

this type of learning although a teacher is present but the 

correct answer is not presented to the network. The 

teacher only indicates whether the computed answer is 

correct or not. 

This paper is divided into two prime areas. The second 

section provides a general idea of BP and presents the 

brief idea of some of the improvements of BP. In the 

third section a performance comparative analysis of the 

results is made that are obtained by implementing some 

of improved versions of BP on a number of benchmark 

problems. 

 

II.  BP ALGORITHM 

The MFNN is presented with a set of exemplar cases 

consisting of input pattern and target pattern. The input 

pattern is fed directly into the input layer. The activations 

of the input nodes are multiplied by the weighted 

connections and are passed through a transfer function at 

each node in the first hidden layer. The activations from 

the first hidden layer are then passed to the neurons in the 

next layer, and this process is repeated until the output 

activations are obtained from the output layer. The output 

activation values and the target pattern are compared and 

the error signal is calculated based on the difference  
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between target and calculated pattern. This error signal is 

then propagated backwards to adjust network weights so 

that network will generate correct output for the 

presented input pattern. The training patterns are 

presented repeatedly until the error reaches an acceptable 

value or other convergence criteria are satisfied. As this 

technique involves performing computation backwards it 

is named as backpropagation. 

The purpose of the training process is to reduce the 

sum squared error function (MSE) which is given as: 

 

𝐸(𝑛) =  
1

2
∑ (𝑡𝑘(𝑛) − 𝑜𝑘𝑐∈𝑁 (𝑛)2               (1) 

 

 𝑡𝑘 and 𝑜𝑘  are the desired and actual outputs of neuron k. 

The averaged squared error over the total number of 

patterns N is given by: 

 

𝐸𝑎𝑣 =
1

2
∑ 𝐸(𝑛)𝑁

𝑛=1                            (2) 

 

The output of the unit j in any layer after applying the 

sigmoid function is given by: 

 

𝑜𝑗 =
1

1 + 𝑒𝑎𝑗
 

 

And the activation  𝑎𝑗 is given by 

 

𝑎𝑗 = ∑ 𝑤𝑖𝑗𝑜𝑖

𝑖

 

 

𝑤𝑖𝑗  refers to the weighted connection between neuron i 

and neuron j. A weight change ∆𝑤𝑖𝑗  is calculated as: 

 

∆𝑤𝑖𝑗 = −ɳ
𝜕𝐸

𝜕𝑤𝑖𝑗
 

 

ɳ is the learning rate. Once the initial weights are known 

the formula for the weight updation takes the following 

form: 

 

   𝑊𝑘+1 = 𝑊𝑘 − ɳ𝐸𝑊(𝑊𝑘)                    (3) 

 

Where 𝐸𝑊(𝑊𝑘) is partial derivative of E with respect 

to weight vector W Updation of weights in BP can be 

done in two ways: online updating and batch updating. In 

batch updating the weight adjustments are made only at 

the end of epoch i.e. after the presentation of the entire 

training set. On the other hand in online updating the 

weights are updated after every pattern presentation. In 

both the schemes the learning process continues until the 

sum squared error reaches a predefined value. 

BP algorithm has many considerable advantages, such 

as it is computationally efficient, simple and easy to 

implement. However it has some disadvantages also such 

as it may converge to local minima and convergence to 

the global minima is not always guaranteed. Even if the 

specified termination criterion is achieved it takes long 

time to converge. However most of the researchers have 

found that most of the limitations of BP are because of 

the flat spot problem as well as due to choice of the 

initial values of the network weight connections and the 

parameters that are used in the algorithm such as learning 

rate and momentum. The flat spot problem generally 

occurs when the actual output is in the saturation areas i.e. 

‘0’ or ‘1’. Flat spot problem makes it very difficult for a 

neural network to learn. It results in slow learning speed 

and slight weight update of the neuron network and thus 

taking long time for a neural network to converge. Many 

modifications have been proposed to improve the 

performance of BP, many of which include 1) 

momentum strategy 2) using error saturation prevention 

function 3) using proper weight initialisation methods 4) 

adjusting the steepness of sigmoid function. These are 

summarized below. 

A.  Momentum Strategy 

The learning strategy that is used in original BP is 

gradient descent, considering the effect of learning rate 

on BP reveals that smaller the learning rate, smaller will 

be the changes to the synaptic weights in the network 

from one iteration to the next. On the other hand if the 

learning rate is made too large, it will result in large 

changes to the synaptic weights and in turn makes 

network unstable. A simple method of increasing the 

learning rate nonetheless avoiding the risk of instability 

of network is to add momentum coefficient to the weight 

updation rule. The momentum strategy [2] adds a fraction 

of the last weight change to the current direction of 

weight change. The weight updating rule for BP with 

momentum is given as: 

 

               𝑊𝑘+1 = 𝑊𝑘 − ɳ𝐸𝑊(𝑊𝑘) + 𝛼∆𝑊𝑘−1      (4) 

 

But it was found that a fixed momentum coefficient 

accelerates the learning only when the current downhill 

gradient of the error function and the last change in 

weight have the similar direction. However, when the 

current gradient is in an opposing direction to the 

previous weight change, the momentum causes the 

weight to be adjusted up the slope instead of down the 

slope. In order to make the learning more effective a 

number of methods have been proposed by researchers to 

dynamically vary the momentum coefficient.  

Reference [3] proposed an adaptive momentum 

approach by considering the current negative gradient 

and the last weight change. If the current weight update 

vector is in a similar direction to previous update, the 

momentum term is increased. However, if the current 

weight update is in an opposing direction to previous 

update then the momentum is reduced to zero. The 

weight update vector is given as: 

 
𝑊𝑘+1 = 𝑊𝑘 − ɳ𝐸𝑊(𝑊𝑘) + 𝛼(1 + cos 𝜃) ∆𝑊𝑘−1      (5) 

 
Reference [4] proposed an efficient acceleration 

technique BP with adaptive learning rate and momentum 

term. This algorithm has faster convergence rate than 

those of using a fixed parameter, but at the price of extra 

computation. In this algorithm each weight has its own 
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learning rate and momentum factor, which are adapted at 

each iteration. The learning rate and momentum are 

adapted on the basis of the relative factor which is 

defined as:  𝑒𝑘 = 
E(𝑊𝐾)−𝐸(𝑊𝑘−1)

𝐸(𝑊𝑘) .  

The weight update vector is given as: 

 

       𝑊𝑘+1 = 𝑊𝑘 − ɳ𝑘𝐸𝑊(𝑊𝑘) + 𝛼𝑘∆𝑊𝑘−1        (6) 

 

The learning term and the momentum are adjusted as 

follows: 

 

ɳ𝑘={
  ɳ𝑘−1[1 + 𝑢. 𝑒−𝑒𝑘(𝑛)]     𝑖𝑓 𝑒𝑘(𝑛) < 0 

 

 ɳ𝑘−1[1 − 𝑢. 𝑒−𝑒𝑘(𝑛)]     
 

  𝑖𝑓 𝑒𝑘(𝑛) ≥ 0
       𝑢 𝜀(0,1) 

 

𝛼𝑘 = {
  𝛼𝑘−1[1 + 𝑢. 𝑒−𝑒𝑘(𝑛)]     𝑖𝑓 𝑒𝑘(𝑛) < 0 

 

 𝛼𝑘−1[1 − 𝑢. 𝑒−𝑒𝑘(𝑛)]     
 

  𝑖𝑓 𝑒𝑘(𝑛) ≥ 0
   𝑢 𝜀(0,1) 

 

Reference [5] adjusted the momentum coefficient 

dynamically. They adjusted the momentum coefficient 

iteratively based on the inner product between the current 

descent direction and the last weight increment. When 

the angle between the current negative gradient and the 

last weight change is less than 90
0
, the momentum is 

defined as a positive value to accelerate the learning. On 

the other hand when the angle between them is more than 

90, the momentum coefficient is set to 0. The momentum 

coefficient is changed according to: 

 

𝛼𝑖
𝑘={

  𝛼
−ηEWi(𝑊𝑘).ΔWi

k−1

||ΔWi
k−1||2

     𝑖𝑓 EWi(𝑊𝑘)ΔWi
k−1 < 0 

              𝑒𝑙𝑠𝑒        0  

 

                                                                                       (7) 

 

B.  Using Error Saturation Prevention Function 

The sigmoid derivative that is used in the original BP 

method can sometimes cause slow learning when the 

output of a unit is near ‘0’ or ‘1’ (error saturation). As a 

result of which the learning term will be very small 

leading to a very little progress in the weight adjustments. 

In order to avoid error saturation phenomena various 

modifications to the error function has been proposed. 

Reference [6] found that if the actual value of the output 

node is under error saturation condition, it makes the 

learning term small which in turn results in little change 

to the weight adjustments. In order to avoid this problem 

he proposed a modified energy function. The proposed 

energy function will make the learning term quite good 

no matter what is the distribution of the actual output 

value. Reference [7] proposed a modified energy function 

that could scale up the partial derivatives of the activation 

function and proposed a new weight evolution algorithm 

based on the modified energy function. Reference [8] 

improved the convergence speed by proposing a new 

energy function based on the cross entropy algorithm. 

Reference [9] found that the error saturation condition is 

the main reason for the premature saturation (PS). They 

handled the PS problem by proposing an error saturation 

prevention function (ESP) which is a parabolic function 

to the learning term in the nodes of the output layer to 

overcome the error saturation that is caused by the 

gradient descent method. The error saturation prevention 

function scales up the learning term when the actual 

output is near the extreme value of 0 or 1. 

The ESP function for the output node is given as: 

 

ESP (𝑜𝑖) = 𝛼(𝑜𝑘 − 0.5)𝑛                    (8) 

 

Where 𝛼 is a scale term, n is an exponent value and 𝑜𝑖  

is the actual output of the 𝑖𝑡ℎ node.This ESP function is 

then incorporated in the learning term for output nodes. 

The learning term for the output nodes after including the 

ESP function is given as: 

 

        𝛿𝑘 = (𝑡𝑘 − 𝑜𝑘)𝑜𝑘(1 − 𝑜𝑘)+ESP (𝑜𝑘)           (9) 

 

However it was found that the learning term for the 

hidden layer will also be small when the actual output of 

a unit arrives in the saturation area of 0 or 1. So in order 

to handle the error saturation condition in the hidden 

layer they used a constant factor (real value) to the ESP 

function of the output layer to make the enhancement of 

the learning term in the hidden layer nodes more 

reasonable, as it was found that learning term in the 

hidden layer nodes may be enlarged hundreds of times if 

the ESP function is used directly as is done with the 

output nodes. The learning term for the hidden nodes 

including the ESP function is as follows: 

 

        𝛿𝑗 = ∑ 𝑤𝑗𝑘  𝛿𝑘
𝑁
𝑘 𝑜𝑗(1 − 𝑜𝑗) +cESP (𝑜𝑘)        (10) 

 
C is the small real factor (e.g. 0.01). 

C.  Using Weight Initialisation Methods 

BP is sensitive to the initial weight values, choosing 

optimal values for the initial weights reduces the number 

of training iterations and the initial error is substantially 

reduced. A training period can be considerably reduced if 

the initial weights chosen are close to the true minimum. 

An inappropriate choice of initial weights is one of the 

main reasons of getting stuck in minima. Over years 

many weight initialisation techniques have been 

proposed.  

Reference [10] proposed a weight initialisation 

technique for feed forward networks based on Cauchy’s 

inequality and a linear algebraic method. This method 

ensured that the outputs of the hidden neurons are in the 

active region, i.e. the derivative of the activation function 

has a large value. From the output of the last hidden layer 

to the output layer, the optimal values of the weight are 

evaluated by using a least square method. When the 

optimal initial weights are determined, it takes less 

number of iterations to reach the prescribed tolerance. 

Reference [11] used least square method for weight 

initialisation. For networks with one hidden layer, they 

initialised the weights between input and hidden layer by 
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using simulated annealing and genetic algorithm, the 

output layer weights were computed using singular value 

decomposition. 

Reference [12] found that the weight initialisation 

process is to be done in such manner that all the hidden 

units are scattered uniformly in the input space which in 

turn will result in substantial improvement of the learning 

speed of network. This is done by distributing the initial 

weights and biases in such a manner that the region of 

interest is divided into small intervals. So that for each 

input pattern, it is likely that the net input to one of the 

hidden units will be in the range that the neuron will 

learn most quickly. Each hidden unit is assigned the task 

of approximating a portion of desired function at the start 

of training. The steps for this initialisation technique are: 

 

1. For each hidden unit, initialise its weight vector (from 

the inputs): 

 

𝑤𝑖𝑗  (old)=random number between -0.5 to 0.5 

 

2.Compute  

 

‖𝑤𝑗(𝑜𝑙𝑑)‖=√𝑤𝑖𝑗(𝑜𝑙𝑑)2 + 𝑤2𝑗(𝑜𝑙𝑑)2 + ⋯ . +𝑤𝑛𝑗(𝑜𝑙𝑑)2 

 

Reinitialise weighs  

 

    𝑤𝑖𝑗 =
 β𝑤𝑖𝑗(𝑜𝑙𝑑)

 ‖𝑤𝑗(𝑜𝑙𝑑)‖
                             (11) 

 

3. Set bias 𝑤𝑜𝑗  =random number between –β to +β 

 

Where β =0.7(p)1/𝑛, n be the no. of input units, p be 

the no. of hidden units, β is the scale factor and  𝑤𝑜𝑗 is 

the bias for hidden neurons. 

D.  Adjusting the steepness (slope) of sigmoid function 

Error surfaces for MLP’s are generally quite severe. 

These surfaces consist of flat and extremely steep 

surfaces. When such a flat area with high error level is 

encountered, the outputs of neuron get temporarily 

trapped into high error level as the respective weights are 

adjusted by a small amount. Hence, no significant 

decrease in error occurs for some period of time, which 

then decreases gradually. One solution to this problem is 

to adjust the steepness of the sigmoid function i.e. 

adjusting the gain parameter of sigmoid function. 

Reference [13] found that local minima generally occur 

because of the error saturation in the hidden layer. They 

proposed a new algorithm to avoid this problem by 

adjusting the sigmoid activation functions in the hidden 

layer for each neuron so that the weights connecting the 

hidden layer and output layer are modified cordially. The 

sigmoid function is adjusted by varying the gain 

parameter of the hidden neurons. The modification of the 

gain parameter is done according to the degree of 

approximation of the desired output of the output layer. 

Usually, the activation function of a neuron with gain 

parameter is given by:  

 

1 1⁄ +𝑒−c x. 

 

c is the gain of the activation function. 

The parameter ’c’ is updated by obtaining an estimate 

of the desired output of the output layer. This is done by 

introducing two parameters e and H. ‘H’ which denotes 

the average of the difference between teacher signals. It 

is a constant for a given learning task and 𝑒=𝑚𝑎𝑥(|𝑡𝑘 −
𝑜𝑘 |). The estimation of the desired output of the output 

layer A is given by A=
𝑒

𝐻
 

And the gain parameter is updated as 

 

c= {
1

𝐴  

              1.0        𝑒𝑙𝑠𝑒
 if A>1.0            (12) 

 

Reference [14] proposed an improvement to the basic 

BP by adjusting the slope of the activation functions of 

the output layer nodes and using different learning rates 

for the hidden and output layer nodes. Reference [15] 

proposed an algorithm that modifies the gradient based 

search direction by adaptively varying the slope 

parameter (gain) of the sigmoid function. The gain 

updation rule for the output and hidden nodes is given as: 

The gain updation formula for output nodes is: 

 

∆𝑐𝑘(n + 1)= ɳ((𝑡𝑘 − 𝑜𝑘)𝑜𝑘(1 − 𝑜𝑘)(∑ 𝑤𝑗𝑘𝑜𝑗 + 𝜃𝑘     (13) 

 

The gain updation formula for hidden nodes is: 

 

∆𝑐𝑗(n + 1) =ɳ[− ∑ 𝑐𝑘𝑤𝑗𝑘𝑜𝑘(1 − 𝑜𝑘)(𝑡𝑘 − 𝑜𝑘)𝑘 ]𝑜𝑗(1 −

𝑜𝑗)[(∑ 𝑤𝑖𝑗𝑜𝑖)]𝑗                                                            (14) 

 

Based on the updated gain parameter the weights 

connecting the output nodes are updated as  

 

∆𝑤𝑗𝑘(n + 1)= ɳ((𝑡𝑘 − 𝑜𝑘)𝑜𝑘(1 − 𝑜𝑘)𝑐𝑘𝑜𝑗          (15) 

 

The weights connecting the hidden nodes are updated as 

 

∆𝑤𝑖𝑗(n + 1)= ɳ[− ∑ 𝑐𝑘𝑤𝑗𝑘𝑜𝑘(1 − 𝑜𝑘)(𝑡𝑘 − 𝑜𝑘)𝑘 ]𝑜𝑗(1 −

𝑜𝑗)𝑐𝑗𝑜𝑖                                                                           (16) 

 

III.  EXPERIMENTS AND RESULTS 

In order to assess the performance of improved 

versions of BP, we simulate them on several benchmark 

problems XOR, 3-BIT PARITY, MODIFIED XOR and 

IRIS classification problems. In our simulations we have 

used the online versions of standard BP(BP), BP 

algorithm with momentum(BP-M), BP with ESP 

function(BP-ESP) for output nodes based on [9], BP with 

ESP function for hidden as well as output nodes(BP-

ESP-H)[9], BP with gain(BP-G) based on[13], BP with 

adaptive momentum(BP-AM) based on[5], BP with 

adaptive gain(BP-AG) based on [15] and Ngyuen-

widrow weight initialisation technique(NG-W) based 

on[12]. For all the methods, the weights and biases were 
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initialised to random values which were uniformally 

distributed in the range of (-0.5, 0.5) and the gain (slope) 

parameter of the sigmoid function for all the neurons is 

set to 1.0. For the hidden and output neurons sigmoid 

activation function is used except for the NG-W 

technique where tan hyperbolic function is used for all 

the neurons. The performance measure that is used to 

compare different algorithms is set to MSE (mean square 

error). All the algorithms are performed in 30 

independent trials, each starting from random initial 

weights. For trial the numbers of epochs required for the 

convergence are recorded, which are then accumulated 

over 30 runs and from them mean of the epochs (# of 

epochs required to converge) is collected. A training run 

is considered to be a success if it converges within the 

specified tolerance (MSE) of 0.001. The upper limit on 

the epochs is set to 10000 for all the algorithms except 

for BP, where the upper limit is set to 20000 as it takes 

longer time to converge. 

A.  XOR problem 

In order to train XOR problem we have used a neural 

network with 2 input, 2 hidden and 1 output node (2-2-1). 

The learning rate for BP, BP-M, BP-ESP, BP-ESP-H, 

NG-W, BP-G, BP-AG and BP-AM is set to 0.5. The 

momentum coefficient for BP-M and BP-AM is set to 0.2. 

For the algorithms with ESP functions we select α=16 

and n=4 i.e. the ESP function for both the algorithms is 

16(𝑜𝑖 − 0.5)4 . The values for the various learning 

parameters are chosen on the basis of hit and trial method, 

there was no particular reason for using the same. The 

simulation results on XOR problem are given in the 

Table 1. 

Table 1. Performance Comparison of various algorithms on XOR 

problem. 

Categories Algorithms # of epochs 

required to 

converge 

Standard BP BP 7588 

Based on 
Momentum 

BP-M 5971 

BP-AM 4996 

Error saturation 
prevention 

BP-ESP 2220 

BP-ESP-H 2256 

Weight 

initialisation 

NG-W 1127 

Based on Gain BP-G 5805 

BP-AG 6885 

B.  3-bit Parity problem 

In this problem, the output required is 1 if the sum of 

the input patterns yields an odd number and 0 otherwise. 

The selected architecture for the 3 bit parity problem is 3-

4-1(3- input neurons, 4-hidden neurons and 1-output 

neurons). The learning rate for BP, BP-M, BP-ESP, BP-

ESP-H, NG-W, BP-G, BP-AG and BP-AM is set to 0.5. 

The momentum coefficient for BP-M and BP-AM is set 

to 0.2. Besides we select α=16 and n=4 for BP-ESP and 

BP-ESP-H i.e. the ESP function for both the algorithms 

is  16(𝑜𝑖 − 0.5)4 . The performance comparison of 

different algorithms on 3-bit parity problems is given in 

the Table 2. 

Table 2. Performance Comparison of various algorithms on 3 bit parity 

problem 

Categories Algorithms # of epochs 

required to 

converge 

Standard BP BP 13080 

Based on 

Momentum 
BP-M 11442 

BP-AM 10519 

Error saturation 

prevention 
BP-ESP 5615 

BP-ESP-H 5082 

Weight 

initialisation 

NG-W - 

Based on Gain BP-G 9389 

BP-AG 7906 

C.  The modified XOR problem 

It’s a classical XOR problem but with one or more 

introduced patterns such that a unique global minimum 

[16] and several local minima exist simultaneously [17]. 

The truth table for the modified XOR problem is given in 

the Table 3. We have used 2×2×1 architecture to solve 

this problem (2input neurons, 2 hidden neurons and 1 

output neuron). Besides we select α=16 and n=4 for BP-

ESP and BP-ESP-H i.e. the ESP function for both the 

algorithms is 16(𝑜𝑖 − 0.5)4  .The learning rate for BP, 

BP-M, BP-ESP, BP-ESP-H, NG-W, BP-G ,BP-AG and 

BP-AM is set to 0.5. The momentum coefficient for BP-

M and BP-AM is set to 0.2. The performance comparison 

of various algorithms on modified XOR problem is given 

in the Table 4. 

Table 3. Truth Table for Modified XOR problem 

Pattern no Feature1 Feature2 Desired 

output 

1 0 0 0 

2 0 1 1 

3 1 0 1 

4 1 1 0 

5 0.5 0.5 1 

Table 4. Performance Comparison of various algorithms on modified 

XOR problem 

Categories Algorithms # of epochs required 

to converge 

Standard BP BP 7742 

Based on 

Momentum 
BP-M 6621 

BP-AM 5100 

Error saturation 

prevention 

BP-ESP 2718 

BP-ESP-H 2269 

Weight 

initialisation 

NG-W 1143 

Based on Gain BP-G 5960 

BP-AG 2389 
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D.  IRIS classification 

Fisher Iris data is the fourth training database that is 

used for the purpose of comparison. This dataset consists 

of 150 samples of Iris flowers (Iris Setosa, Iris Virginica, 

and Iris Versicolor). Each species, in the dataset is 

represented by four attributes: length of sepal, width of 

sepal, length of petal and width of petal. In order to 

develop a network to solve this problem, we have used 

4×5×3 neural network (4 neurons in the input layer, 5 in 

the hidden layer and 3 in the output layer as there are 3 

different classes).we have used 75 instances as a training 

set and the rest are used as testing set to check the 

generalisation ability of the trained network. For the iris 

classification problem the learning rate for BP, BP-M, 

BP-ESP, BP-ESP-H, NG-W, BP-G, BP-AG and BP-AM 

is set to 0.9. The momentum coefficient for BP-M and 

BP-AM is set to 0.2. For BP-ESP and BP-ESP-H we set 

α=4 and n=2 i.e. the ESP function for both the algorithms 

is4(𝑜𝑖 − 0.5)2 . The performance of various algorithms 

for the iris classification is given in the Table 5: 

Table 5. Performance Comparison of various algorithms on IRIS 
classification problem 

Categories Algorithms # of epochs 

required to 

converge 

Accuracy 

(%) 

Standard BP BP 9715 93.3 

Based on 

Momentum 
BP-M 8472 94.5 

BP-AM 8109 95.1 

Error 

saturation 
prevention 

BP-ESP 720 96.4 

BP-ESP-H 492 96.8 

Weight 
initialisation 

NG-W - - 

Based on Gain BP-G 7210 96.3 

BP-AG 210 97.3 

 

The results clearly demonstrate that all the improved 

versions perform better than the standard BP with better 

acceleration speed and generalisation ability. However 

the performance of these algorithms depends on the data 

set used. In case of XOR and modified XOR, NG-W 

weight initialisation technique gives better results. 

However, when the same technique is used in 3 bit parity 

and Iris classification problem it shows divergence. 

Although BP-G and BP-AM shows better results for 

small data set problems and perform better than the 

standard BP and BP-M but when these are used with 

other data sets of higher dimensionality they show slow 

convergence speed. BP-ESP, BP-ESP-H and BP-AG 

outperform all the other improved versions. They show 

good convergence speed as well as the generalisation 

ability. 

CONCLUSION 

In this paper we have compared the performance of 

standard BP with its improved versions in order to 

investigate the potentials of these algorithms. The 

improved versions are simulated on modified XOR, XOR, 

Parity and iris classification problem. The training 

performance of these algorithms is evaluated in terms of 

percentage of accuracy and convergence speed. The 

comparative analysis done on the various algorithms 

proves that most of the algorithms are superior to the 

standard BP ,with error saturation prevention function  

and the adaptive gain methods showing  better 

performance than the rest. Further research can be done 

in this field by simulating these algorithms on other data 

sets. 
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