
I.J. Modern Education and Computer Science, 2014, 12, 34-40
Published Online December 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2014.12.05

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 12, 34-40

Comparative Study of High Speed Back-

Propagation Learning Algorithms

Saduf
Dept. of computer sciences, University of Kashmir, Srinagar, j&k, India

Sadaf.afzal.123@gmail.com

Mohd.Arif Wani
Dept. of computer sciences, University of Kashmir, Srinagar, j&k, India

awani@uok.edu.in

Abstract—Back propagation is one of the well known

training algorithms for multilayer perceptron. However

the rate of convergence in back propagation learning

tends to be relatively slow, which in turn makes it

computationally excruciating. Over the last years many

modifications have been proposed to improve the

efficiency and convergence speed of the back

propagation algorithm. The main emphasis of this paper

is on investigating the performance of improved versions

of back propagation algorithm in training the neural

network. All of them are assessed on different training

sets and a comparative analysis is made. Results of

computer simulations with standard benchmark problems

such as XOR, 3 BIT PARITY, MODIFIED XOR and

IRIS are presented. The training performance of these

algorithms is evaluated in terms of percentage of

accuracy, and convergence speed.

Index Terms—ANN, gain, momentum, error saturation,

Local minima.

I. INTRODUCTION

Neural networks are information processing networks

that mimic the human nervous system. Sigmoid

activation function which models the actual behaviour of

a neuron is mainly used, even though there exist various

other functions that represent the characteristics of

neuron. A neural network can be trained to imitate any

function by using a training set that contains the input

output pairs of the desired function. The popular structure

of neural networks is multi layer perceptron (MLP) in

which the neurons are placed in some layers and signal is

transmitted in one direction. MLP consists of an input

layer, one or more hidden layer and an output layer. The

hidden layer is used to capture the non linear

relationships among input variables and the output layer

is used to obtain the predicted output. Back propagation

algorithm (BP) introduced by [1] is a supervised learning

method based on the gradient descent of the quadratic

error function and is considered as the universal function

approximator. Back propagation based MLP (BPNN)

could approximate any smooth function to an arbitrary

degree of accuracy, when the tuning parameters could be

optimized properly. Supervised learning of a neural

network can be viewed as a curve fitting process. A

training vector pairs that consist of an input vector from

the input space and a target vector as the neural response

are presented to the network. Based on the learning

algorithm, the neural network performs the weight

adjustment so that the error between the actual output

vectors and the target vector is minimized relative to

some optimization criterion. Once trained the neural

network performs the interpolation in the output vector

space which is then referred to as the generalization

capability. While as in unsupervised learning the target

output pattern is not known and the system learns of its

own by discovering the features in the input patterns.

This type of learning is based on clustering technique.

Reinforcement learning is based upon both the

supervised learning as well as unsupervised learning. In

this type of learning although a teacher is present but the

correct answer is not presented to the network. The

teacher only indicates whether the computed answer is

correct or not.

This paper is divided into two prime areas. The second

section provides a general idea of BP and presents the

brief idea of some of the improvements of BP. In the

third section a performance comparative analysis of the

results is made that are obtained by implementing some

of improved versions of BP on a number of benchmark

problems.

II. BP ALGORITHM

The MFNN is presented with a set of exemplar cases

consisting of input pattern and target pattern. The input

pattern is fed directly into the input layer. The activations

of the input nodes are multiplied by the weighted

connections and are passed through a transfer function at

each node in the first hidden layer. The activations from

the first hidden layer are then passed to the neurons in the

next layer, and this process is repeated until the output

activations are obtained from the output layer. The output

activation values and the target pattern are compared and

the error signal is calculated based on the difference

 Comparative Study of High Speed Back- Propagation Learning Algorithms 35

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 12, 34-40

between target and calculated pattern. This error signal is

then propagated backwards to adjust network weights so

that network will generate correct output for the

presented input pattern. The training patterns are

presented repeatedly until the error reaches an acceptable

value or other convergence criteria are satisfied. As this

technique involves performing computation backwards it

is named as backpropagation.

The purpose of the training process is to reduce the

sum squared error function (MSE) which is given as:

𝐸(𝑛) =
1

2
∑ (𝑡𝑘(𝑛) − 𝑜𝑘𝑐∈𝑁 (𝑛)2 (1)

 𝑡𝑘 and 𝑜𝑘 are the desired and actual outputs of neuron k.

The averaged squared error over the total number of

patterns N is given by:

𝐸𝑎𝑣 =
1

2
∑ 𝐸(𝑛)𝑁

𝑛=1 (2)

The output of the unit j in any layer after applying the

sigmoid function is given by:

𝑜𝑗 =
1

1 + 𝑒𝑎𝑗

And the activation 𝑎𝑗 is given by

𝑎𝑗 = ∑ 𝑤𝑖𝑗𝑜𝑖

𝑖

𝑤𝑖𝑗 refers to the weighted connection between neuron i

and neuron j. A weight change ∆𝑤𝑖𝑗 is calculated as:

∆𝑤𝑖𝑗 = −ɳ
𝜕𝐸

𝜕𝑤𝑖𝑗

ɳ is the learning rate. Once the initial weights are known

the formula for the weight updation takes the following

form:

 𝑊𝑘+1 = 𝑊𝑘 − ɳ𝐸𝑊(𝑊𝑘) (3)

Where 𝐸𝑊(𝑊𝑘) is partial derivative of E with respect

to weight vector W Updation of weights in BP can be

done in two ways: online updating and batch updating. In

batch updating the weight adjustments are made only at

the end of epoch i.e. after the presentation of the entire

training set. On the other hand in online updating the

weights are updated after every pattern presentation. In

both the schemes the learning process continues until the

sum squared error reaches a predefined value.

BP algorithm has many considerable advantages, such

as it is computationally efficient, simple and easy to

implement. However it has some disadvantages also such

as it may converge to local minima and convergence to

the global minima is not always guaranteed. Even if the

specified termination criterion is achieved it takes long

time to converge. However most of the researchers have

found that most of the limitations of BP are because of

the flat spot problem as well as due to choice of the

initial values of the network weight connections and the

parameters that are used in the algorithm such as learning

rate and momentum. The flat spot problem generally

occurs when the actual output is in the saturation areas i.e.

‘0’ or ‘1’. Flat spot problem makes it very difficult for a

neural network to learn. It results in slow learning speed

and slight weight update of the neuron network and thus

taking long time for a neural network to converge. Many

modifications have been proposed to improve the

performance of BP, many of which include 1)

momentum strategy 2) using error saturation prevention

function 3) using proper weight initialisation methods 4)

adjusting the steepness of sigmoid function. These are

summarized below.

A. Momentum Strategy

The learning strategy that is used in original BP is

gradient descent, considering the effect of learning rate

on BP reveals that smaller the learning rate, smaller will

be the changes to the synaptic weights in the network

from one iteration to the next. On the other hand if the

learning rate is made too large, it will result in large

changes to the synaptic weights and in turn makes

network unstable. A simple method of increasing the

learning rate nonetheless avoiding the risk of instability

of network is to add momentum coefficient to the weight

updation rule. The momentum strategy [2] adds a fraction

of the last weight change to the current direction of

weight change. The weight updating rule for BP with

momentum is given as:

 𝑊𝑘+1 = 𝑊𝑘 − ɳ𝐸𝑊(𝑊𝑘) + 𝛼∆𝑊𝑘−1 (4)

But it was found that a fixed momentum coefficient

accelerates the learning only when the current downhill

gradient of the error function and the last change in

weight have the similar direction. However, when the

current gradient is in an opposing direction to the

previous weight change, the momentum causes the

weight to be adjusted up the slope instead of down the

slope. In order to make the learning more effective a

number of methods have been proposed by researchers to

dynamically vary the momentum coefficient.

Reference [3] proposed an adaptive momentum

approach by considering the current negative gradient

and the last weight change. If the current weight update

vector is in a similar direction to previous update, the

momentum term is increased. However, if the current

weight update is in an opposing direction to previous

update then the momentum is reduced to zero. The

weight update vector is given as:

𝑊𝑘+1 = 𝑊𝑘 − ɳ𝐸𝑊(𝑊𝑘) + 𝛼(1 + cos 𝜃) ∆𝑊𝑘−1 (5)

Reference [4] proposed an efficient acceleration

technique BP with adaptive learning rate and momentum

term. This algorithm has faster convergence rate than

those of using a fixed parameter, but at the price of extra

computation. In this algorithm each weight has its own

36 Comparative Study of High Speed Back- Propagation Learning Algorithms

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 12, 34-40

learning rate and momentum factor, which are adapted at

each iteration. The learning rate and momentum are

adapted on the basis of the relative factor which is

defined as: 𝑒𝑘 =
E(𝑊𝐾)−𝐸(𝑊𝑘−1)

𝐸(𝑊𝑘) .

The weight update vector is given as:

 𝑊𝑘+1 = 𝑊𝑘 − ɳ𝑘𝐸𝑊(𝑊𝑘) + 𝛼𝑘∆𝑊𝑘−1 (6)

The learning term and the momentum are adjusted as

follows:

ɳ𝑘={
 ɳ𝑘−1[1 + 𝑢. 𝑒−𝑒𝑘(𝑛)] 𝑖𝑓 𝑒𝑘(𝑛) < 0

 ɳ𝑘−1[1 − 𝑢. 𝑒−𝑒𝑘(𝑛)]

 𝑖𝑓 𝑒𝑘(𝑛) ≥ 0
 𝑢 𝜀(0,1)

𝛼𝑘 = {
 𝛼𝑘−1[1 + 𝑢. 𝑒−𝑒𝑘(𝑛)] 𝑖𝑓 𝑒𝑘(𝑛) < 0

 𝛼𝑘−1[1 − 𝑢. 𝑒−𝑒𝑘(𝑛)]

 𝑖𝑓 𝑒𝑘(𝑛) ≥ 0
 𝑢 𝜀(0,1)

Reference [5] adjusted the momentum coefficient

dynamically. They adjusted the momentum coefficient

iteratively based on the inner product between the current

descent direction and the last weight increment. When

the angle between the current negative gradient and the

last weight change is less than 90
0
, the momentum is

defined as a positive value to accelerate the learning. On

the other hand when the angle between them is more than

90, the momentum coefficient is set to 0. The momentum

coefficient is changed according to:

𝛼𝑖
𝑘={

 𝛼
−ηEWi(𝑊𝑘).ΔWi

k−1

||ΔWi
k−1||2

 𝑖𝑓 EWi(𝑊𝑘)ΔWi
k−1 < 0

 𝑒𝑙𝑠𝑒 0

 (7)

B. Using Error Saturation Prevention Function

The sigmoid derivative that is used in the original BP

method can sometimes cause slow learning when the

output of a unit is near ‘0’ or ‘1’ (error saturation). As a

result of which the learning term will be very small

leading to a very little progress in the weight adjustments.

In order to avoid error saturation phenomena various

modifications to the error function has been proposed.

Reference [6] found that if the actual value of the output

node is under error saturation condition, it makes the

learning term small which in turn results in little change

to the weight adjustments. In order to avoid this problem

he proposed a modified energy function. The proposed

energy function will make the learning term quite good

no matter what is the distribution of the actual output

value. Reference [7] proposed a modified energy function

that could scale up the partial derivatives of the activation

function and proposed a new weight evolution algorithm

based on the modified energy function. Reference [8]

improved the convergence speed by proposing a new

energy function based on the cross entropy algorithm.

Reference [9] found that the error saturation condition is

the main reason for the premature saturation (PS). They

handled the PS problem by proposing an error saturation

prevention function (ESP) which is a parabolic function

to the learning term in the nodes of the output layer to

overcome the error saturation that is caused by the

gradient descent method. The error saturation prevention

function scales up the learning term when the actual

output is near the extreme value of 0 or 1.

The ESP function for the output node is given as:

ESP (𝑜𝑖) = 𝛼(𝑜𝑘 − 0.5)𝑛 (8)

Where 𝛼 is a scale term, n is an exponent value and 𝑜𝑖

is the actual output of the 𝑖𝑡ℎ node.This ESP function is

then incorporated in the learning term for output nodes.

The learning term for the output nodes after including the

ESP function is given as:

 𝛿𝑘 = (𝑡𝑘 − 𝑜𝑘)𝑜𝑘(1 − 𝑜𝑘)+ESP (𝑜𝑘) (9)

However it was found that the learning term for the

hidden layer will also be small when the actual output of

a unit arrives in the saturation area of 0 or 1. So in order

to handle the error saturation condition in the hidden

layer they used a constant factor (real value) to the ESP

function of the output layer to make the enhancement of

the learning term in the hidden layer nodes more

reasonable, as it was found that learning term in the

hidden layer nodes may be enlarged hundreds of times if

the ESP function is used directly as is done with the

output nodes. The learning term for the hidden nodes

including the ESP function is as follows:

 𝛿𝑗 = ∑ 𝑤𝑗𝑘 𝛿𝑘
𝑁
𝑘 𝑜𝑗(1 − 𝑜𝑗) +cESP (𝑜𝑘) (10)

C is the small real factor (e.g. 0.01).

C. Using Weight Initialisation Methods

BP is sensitive to the initial weight values, choosing

optimal values for the initial weights reduces the number

of training iterations and the initial error is substantially

reduced. A training period can be considerably reduced if

the initial weights chosen are close to the true minimum.

An inappropriate choice of initial weights is one of the

main reasons of getting stuck in minima. Over years

many weight initialisation techniques have been

proposed.

Reference [10] proposed a weight initialisation

technique for feed forward networks based on Cauchy’s

inequality and a linear algebraic method. This method

ensured that the outputs of the hidden neurons are in the

active region, i.e. the derivative of the activation function

has a large value. From the output of the last hidden layer

to the output layer, the optimal values of the weight are

evaluated by using a least square method. When the

optimal initial weights are determined, it takes less

number of iterations to reach the prescribed tolerance.

Reference [11] used least square method for weight

initialisation. For networks with one hidden layer, they

initialised the weights between input and hidden layer by

 Comparative Study of High Speed Back- Propagation Learning Algorithms 37

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 12, 34-40

using simulated annealing and genetic algorithm, the

output layer weights were computed using singular value

decomposition.

Reference [12] found that the weight initialisation

process is to be done in such manner that all the hidden

units are scattered uniformly in the input space which in

turn will result in substantial improvement of the learning

speed of network. This is done by distributing the initial

weights and biases in such a manner that the region of

interest is divided into small intervals. So that for each

input pattern, it is likely that the net input to one of the

hidden units will be in the range that the neuron will

learn most quickly. Each hidden unit is assigned the task

of approximating a portion of desired function at the start

of training. The steps for this initialisation technique are:

1. For each hidden unit, initialise its weight vector (from

the inputs):

𝑤𝑖𝑗 (old)=random number between -0.5 to 0.5

2.Compute

‖𝑤𝑗(𝑜𝑙𝑑)‖=√𝑤𝑖𝑗(𝑜𝑙𝑑)2 + 𝑤2𝑗(𝑜𝑙𝑑)2 + ⋯ . +𝑤𝑛𝑗(𝑜𝑙𝑑)2

Reinitialise weighs

 𝑤𝑖𝑗 =
 β𝑤𝑖𝑗(𝑜𝑙𝑑)

 ‖𝑤𝑗(𝑜𝑙𝑑)‖
 (11)

3. Set bias 𝑤𝑜𝑗 =random number between –β to +β

Where β =0.7(p)1/𝑛, n be the no. of input units, p be

the no. of hidden units, β is the scale factor and 𝑤𝑜𝑗 is

the bias for hidden neurons.

D. Adjusting the steepness (slope) of sigmoid function

Error surfaces for MLP’s are generally quite severe.

These surfaces consist of flat and extremely steep

surfaces. When such a flat area with high error level is

encountered, the outputs of neuron get temporarily

trapped into high error level as the respective weights are

adjusted by a small amount. Hence, no significant

decrease in error occurs for some period of time, which

then decreases gradually. One solution to this problem is

to adjust the steepness of the sigmoid function i.e.

adjusting the gain parameter of sigmoid function.

Reference [13] found that local minima generally occur

because of the error saturation in the hidden layer. They

proposed a new algorithm to avoid this problem by

adjusting the sigmoid activation functions in the hidden

layer for each neuron so that the weights connecting the

hidden layer and output layer are modified cordially. The

sigmoid function is adjusted by varying the gain

parameter of the hidden neurons. The modification of the

gain parameter is done according to the degree of

approximation of the desired output of the output layer.

Usually, the activation function of a neuron with gain

parameter is given by:

1 1⁄ +𝑒−c x.

c is the gain of the activation function.

The parameter ’c’ is updated by obtaining an estimate

of the desired output of the output layer. This is done by

introducing two parameters e and H. ‘H’ which denotes

the average of the difference between teacher signals. It

is a constant for a given learning task and 𝑒=𝑚𝑎𝑥(|𝑡𝑘 −
𝑜𝑘 |). The estimation of the desired output of the output

layer A is given by A=
𝑒

𝐻

And the gain parameter is updated as

c= {
1

𝐴

 1.0 𝑒𝑙𝑠𝑒
 if A>1.0 (12)

Reference [14] proposed an improvement to the basic

BP by adjusting the slope of the activation functions of

the output layer nodes and using different learning rates

for the hidden and output layer nodes. Reference [15]

proposed an algorithm that modifies the gradient based

search direction by adaptively varying the slope

parameter (gain) of the sigmoid function. The gain

updation rule for the output and hidden nodes is given as:

The gain updation formula for output nodes is:

∆𝑐𝑘(n + 1)= ɳ((𝑡𝑘 − 𝑜𝑘)𝑜𝑘(1 − 𝑜𝑘)(∑ 𝑤𝑗𝑘𝑜𝑗 + 𝜃𝑘 (13)

The gain updation formula for hidden nodes is:

∆𝑐𝑗(n + 1) =ɳ[− ∑ 𝑐𝑘𝑤𝑗𝑘𝑜𝑘(1 − 𝑜𝑘)(𝑡𝑘 − 𝑜𝑘)𝑘]𝑜𝑗(1 −

𝑜𝑗)[(∑ 𝑤𝑖𝑗𝑜𝑖)]𝑗 (14)

Based on the updated gain parameter the weights

connecting the output nodes are updated as

∆𝑤𝑗𝑘(n + 1)= ɳ((𝑡𝑘 − 𝑜𝑘)𝑜𝑘(1 − 𝑜𝑘)𝑐𝑘𝑜𝑗 (15)

The weights connecting the hidden nodes are updated as

∆𝑤𝑖𝑗(n + 1)= ɳ[− ∑ 𝑐𝑘𝑤𝑗𝑘𝑜𝑘(1 − 𝑜𝑘)(𝑡𝑘 − 𝑜𝑘)𝑘]𝑜𝑗(1 −

𝑜𝑗)𝑐𝑗𝑜𝑖 (16)

III. EXPERIMENTS AND RESULTS

In order to assess the performance of improved

versions of BP, we simulate them on several benchmark

problems XOR, 3-BIT PARITY, MODIFIED XOR and

IRIS classification problems. In our simulations we have

used the online versions of standard BP(BP), BP

algorithm with momentum(BP-M), BP with ESP

function(BP-ESP) for output nodes based on [9], BP with

ESP function for hidden as well as output nodes(BP-

ESP-H)[9], BP with gain(BP-G) based on[13], BP with

adaptive momentum(BP-AM) based on[5], BP with

adaptive gain(BP-AG) based on [15] and Ngyuen-

widrow weight initialisation technique(NG-W) based

on[12]. For all the methods, the weights and biases were

38 Comparative Study of High Speed Back- Propagation Learning Algorithms

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 12, 34-40

initialised to random values which were uniformally

distributed in the range of (-0.5, 0.5) and the gain (slope)

parameter of the sigmoid function for all the neurons is

set to 1.0. For the hidden and output neurons sigmoid

activation function is used except for the NG-W

technique where tan hyperbolic function is used for all

the neurons. The performance measure that is used to

compare different algorithms is set to MSE (mean square

error). All the algorithms are performed in 30

independent trials, each starting from random initial

weights. For trial the numbers of epochs required for the

convergence are recorded, which are then accumulated

over 30 runs and from them mean of the epochs (# of

epochs required to converge) is collected. A training run

is considered to be a success if it converges within the

specified tolerance (MSE) of 0.001. The upper limit on

the epochs is set to 10000 for all the algorithms except

for BP, where the upper limit is set to 20000 as it takes

longer time to converge.

A. XOR problem

In order to train XOR problem we have used a neural

network with 2 input, 2 hidden and 1 output node (2-2-1).

The learning rate for BP, BP-M, BP-ESP, BP-ESP-H,

NG-W, BP-G, BP-AG and BP-AM is set to 0.5. The

momentum coefficient for BP-M and BP-AM is set to 0.2.

For the algorithms with ESP functions we select α=16

and n=4 i.e. the ESP function for both the algorithms is

16(𝑜𝑖 − 0.5)4 . The values for the various learning

parameters are chosen on the basis of hit and trial method,

there was no particular reason for using the same. The

simulation results on XOR problem are given in the

Table 1.

Table 1. Performance Comparison of various algorithms on XOR

problem.

Categories Algorithms # of epochs

required to

converge

Standard BP BP 7588

Based on
Momentum

BP-M 5971

BP-AM 4996

Error saturation
prevention

BP-ESP 2220

BP-ESP-H 2256

Weight

initialisation

NG-W 1127

Based on Gain BP-G 5805

BP-AG 6885

B. 3-bit Parity problem

In this problem, the output required is 1 if the sum of

the input patterns yields an odd number and 0 otherwise.

The selected architecture for the 3 bit parity problem is 3-

4-1(3- input neurons, 4-hidden neurons and 1-output

neurons). The learning rate for BP, BP-M, BP-ESP, BP-

ESP-H, NG-W, BP-G, BP-AG and BP-AM is set to 0.5.

The momentum coefficient for BP-M and BP-AM is set

to 0.2. Besides we select α=16 and n=4 for BP-ESP and

BP-ESP-H i.e. the ESP function for both the algorithms

is 16(𝑜𝑖 − 0.5)4 . The performance comparison of

different algorithms on 3-bit parity problems is given in

the Table 2.

Table 2. Performance Comparison of various algorithms on 3 bit parity

problem

Categories Algorithms # of epochs

required to

converge

Standard BP BP 13080

Based on

Momentum
BP-M 11442

BP-AM 10519

Error saturation

prevention
BP-ESP 5615

BP-ESP-H 5082

Weight

initialisation

NG-W -

Based on Gain BP-G 9389

BP-AG 7906

C. The modified XOR problem

It’s a classical XOR problem but with one or more

introduced patterns such that a unique global minimum

[16] and several local minima exist simultaneously [17].

The truth table for the modified XOR problem is given in

the Table 3. We have used 2×2×1 architecture to solve

this problem (2input neurons, 2 hidden neurons and 1

output neuron). Besides we select α=16 and n=4 for BP-

ESP and BP-ESP-H i.e. the ESP function for both the

algorithms is 16(𝑜𝑖 − 0.5)4 .The learning rate for BP,

BP-M, BP-ESP, BP-ESP-H, NG-W, BP-G ,BP-AG and

BP-AM is set to 0.5. The momentum coefficient for BP-

M and BP-AM is set to 0.2. The performance comparison

of various algorithms on modified XOR problem is given

in the Table 4.

Table 3. Truth Table for Modified XOR problem

Pattern no Feature1 Feature2 Desired

output

1 0 0 0

2 0 1 1

3 1 0 1

4 1 1 0

5 0.5 0.5 1

Table 4. Performance Comparison of various algorithms on modified

XOR problem

Categories Algorithms # of epochs required

to converge

Standard BP BP 7742

Based on

Momentum
BP-M 6621

BP-AM 5100

Error saturation

prevention

BP-ESP 2718

BP-ESP-H 2269

Weight

initialisation

NG-W 1143

Based on Gain BP-G 5960

BP-AG 2389

 Comparative Study of High Speed Back- Propagation Learning Algorithms 39

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 12, 34-40

D. IRIS classification

Fisher Iris data is the fourth training database that is

used for the purpose of comparison. This dataset consists

of 150 samples of Iris flowers (Iris Setosa, Iris Virginica,

and Iris Versicolor). Each species, in the dataset is

represented by four attributes: length of sepal, width of

sepal, length of petal and width of petal. In order to

develop a network to solve this problem, we have used

4×5×3 neural network (4 neurons in the input layer, 5 in

the hidden layer and 3 in the output layer as there are 3

different classes).we have used 75 instances as a training

set and the rest are used as testing set to check the

generalisation ability of the trained network. For the iris

classification problem the learning rate for BP, BP-M,

BP-ESP, BP-ESP-H, NG-W, BP-G, BP-AG and BP-AM

is set to 0.9. The momentum coefficient for BP-M and

BP-AM is set to 0.2. For BP-ESP and BP-ESP-H we set

α=4 and n=2 i.e. the ESP function for both the algorithms

is4(𝑜𝑖 − 0.5)2 . The performance of various algorithms

for the iris classification is given in the Table 5:

Table 5. Performance Comparison of various algorithms on IRIS
classification problem

Categories Algorithms # of epochs

required to

converge

Accuracy

(%)

Standard BP BP 9715 93.3

Based on

Momentum
BP-M 8472 94.5

BP-AM 8109 95.1

Error

saturation
prevention

BP-ESP 720 96.4

BP-ESP-H 492 96.8

Weight
initialisation

NG-W - -

Based on Gain BP-G 7210 96.3

BP-AG 210 97.3

The results clearly demonstrate that all the improved

versions perform better than the standard BP with better

acceleration speed and generalisation ability. However

the performance of these algorithms depends on the data

set used. In case of XOR and modified XOR, NG-W

weight initialisation technique gives better results.

However, when the same technique is used in 3 bit parity

and Iris classification problem it shows divergence.

Although BP-G and BP-AM shows better results for

small data set problems and perform better than the

standard BP and BP-M but when these are used with

other data sets of higher dimensionality they show slow

convergence speed. BP-ESP, BP-ESP-H and BP-AG

outperform all the other improved versions. They show

good convergence speed as well as the generalisation

ability.

CONCLUSION

In this paper we have compared the performance of

standard BP with its improved versions in order to

investigate the potentials of these algorithms. The

improved versions are simulated on modified XOR, XOR,

Parity and iris classification problem. The training

performance of these algorithms is evaluated in terms of

percentage of accuracy and convergence speed. The

comparative analysis done on the various algorithms

proves that most of the algorithms are superior to the

standard BP ,with error saturation prevention function

and the adaptive gain methods showing better

performance than the rest. Further research can be done

in this field by simulating these algorithms on other data

sets.

REFERENCES

[1] D.E. Rumelhart, G.E. Hinton, and R.J. Williams,

“Learning internal representations by error propagation,”

Parallel Distributed Processing: Explorations in the

Microstructure of Cognition (D. Rumelhart and J.

McClelland, editors), pp 318-362, 1986.

[2] D.E. Rumelhart, G.E. Hinton and R.J.Williams,“Learning

representations by back-propagating errors”,Nature,vol

323,pp 533-536,1986.

[3] D.J. Swanston, J.M. Bishop and R.J. Mitchell, “Simple

adaptive momentum, new algorithm for training

multilayer perceptrons,” Electronics Letters, 30(18), pp

1498 -1500, 1994.

[4] C. Yu and B. Liu, “A backpropagation algorithm with

adaptive learning rate and momentum coefficient,” Proc.

Int. Conf. on Neural Networks (IJCNN’02), vol 2, pp

1218-1223, 2002.

[5] H.M. Shao, G.F. Zheng, “A new BP algorithm with

adaptive momentum for FNNs training,” Proc. WRI

Global Congress on Intelligent Systems (GCIS’09), vol. 4,

pp. 16–20, 2009.

[6] S.H. Oh, “Improving the error back-propagation

algorithm with a modified error functions,”IEEE Trans.

Neural Networks 8 (3), pp 799-803, 1997.

[7] S.C. Ng, S.H. Leung, A. Luk, “Fast and global convergent

weight evolution algorithm based on the modified back-

propagation,”IEEE International Conference on Neural

Networks Proceedings,pp. 3004-3008, 1995.

[8] A.V. Ooyen, B. Nienhuis, “Improving the learning

convergence of the back propagation algorithm,” Neural

Networks, vol 5, pp 465-471, 1992.

[9] H.M.Lee, C.M.Chen, T.C.Huang, “Learning efficiency

improvement of back-propagation algorithm by error

saturation prevention method,”Neurocomputing, vol 41,

pp. 125-143, 2001.

[10] Yam, J.Y. and Chow, T.W., “A Weight initialization

method for improving training speed in Feedforward

neural network,” Neurocomputing, Vol. 30, pp. 219-232,

2000.

[11] T. Masters, Practical Neural Network Recipes in C + +

(Academic Press, Boston, 1993).

[12] Nguyen and B. Widrow, “Improving the learning speed of

2-layer neural networks by choosing initial values of the

adaptive weights,” Proc. Internat. Joint Conf on Neural

Networks, San Diego Vol. 3, pp 21-26, 1990.

[13] X.G. Wang, Z. Tang, H. Tamura, M. Ishii, W.D. Sun, “An

improved backpropagation algorithm to avoid the local

minima problem,”Neurocomputing,vol 56,pp 455 – 460,

2004.

[14] Y. Bai, H. Zhang, Y.Hao, “The performance of the back

propagation algorithm with varying slope of the activation

function,” Chaos, Solitons and Fractals, vol 40, pp 69–77,

2009.

40 Comparative Study of High Speed Back- Propagation Learning Algorithms

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 12, 34-40

[15] N. M. Nawi, R. S. Ransing and M. R. Ransing, “A new

method to improve the gradient based search direction to

enhance the computational efficiency of back propagation

based Neural Network algorithms,” Proc.IEEE Second

Asia International Conference on Modelling & Simulation,

pp.546-551 DOI 10.1109/AMS.2008.70,2008.

[16] M. Gori and A. Tesi, “On the problem of local minima in

backpropagation,” IEEE Trans. Pattern Anal. Mach.Intell.

14 (1) pp 76–86, 1992.

[17] H. Ishibuchi, R. Fujioka, H. Tanaka, Neural networks

that learn from fuzzy if-then rules, IEEE Trans. Fuzzy

Syst. 1 (2), pp 85-97,1993.

[18] Saduf, M. Arif Wani, “Comparative study of adaptive

learning rate with momentum and resilient back

propagation algorithms for neural net classifier

optimization,” International Journal of Distributed and

Cloud Computing, vol 2, pp. 1-6, 2014.

Short bio data of authors

Saduf has done MCA from university of

Kashmir, India. She is currently pursuing

research in the field of neural networks.

Mohd.Arif Wani he is currently working

as a professor in the department of

computer sciences, University of Kashmir,

India. He has more than 50 publications in

the journals of international repute. His

area of interest are Data mining and

machine learning.

