
I.J. Modern Education and Computer Science, 2014, 12, 41-46 

Published Online December 2014 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijmecs.2014.12.06 

Copyright © 2014 MECS                                                  I.J. Modern Education and Computer Science, 2014, 12, 41-46 

A Secure Framework for Discovering the 

Liabilities of a Network Server  
 

Ulya Sabeel 
Amity University, Amity School of Engineering and Technology, Haryana, India 

Email: ulya.sabeel4@gmail.com 

 

Saima Maqbool 
Islamic University of Science and Technology, Awantipora, Pulwama, Jammu & Kashmir, India 

Email: saimabhat02@gmail.com 

 

 

Abstract—The role of network and information systems 

is increasing in our day today infrastructures that provide 

critical services like banking and commerce applications, 

telecommunications, distribution, transportation, etc. This 

increases the levels of dependability on such applications, 

which brings about several pros and cons as well. If these 

infrastructures are damaged, it can compromise the 

availability of the critical services. Thus, it is the need of 

the hour to secure the available network and information 

systems from malicious attacks. In this paper, we have 

proposed a secure technique named as Network Liability 

Detection (NLD) and a software we named as Network 

Liability Tool (NLT), that points out the liabilities or 

vulnerabilities of your system that can be exploited to 

compromise its security. We propose a model based 

approach where the behavior of each component of the 

system is carefully monitored to find out the well known 

as well as as-yet-unknown loopholes in the system. A 

prototype of the application is built in Windows Platform 

using Java, to demonstrate the entire functioning of this 

system and helps in solving the security related loopholes 

in the network servers. The speculative results affirm that 

the proposed technique is effective in detecting the 

liabilities of the network servers. 

 

Index Terms—Information System, Liability detection, 

loopholes, Network security, Secure Framework 
 

I.  INTRODUCTION 

The increased credence on sophisticated computer 

systems is increasing day by day. Various emerging 

technologies, enhancements in network storage and 

security as well as Internet are used as flagstones for 

paving the way for the reliable use of computers for large 

organizational as well as personal level. Every business 

or organization use software development life cycle 

(SDLC) for the development of system software. At each 

level of this SDLC, certain personnel are allotted to carry 

out different tasks. The system software built may have 

some flaws/ bugs that are hidden. These hidden flaws that 

create weaknesses in the overall security of a computer or 

network as a whole are called vulnerabilities/ liabilities. 

These may also be caused by improper configurations [1]. 

Vulnerability is the intersection of three elements: a 

system susceptibility or flaw, attacker access to the flaw, 

and attacker capability to exploit the flaw [2]. These 

loopholes are exploited by the attackers/ adversaries to 

gain illegitimate access to the network which results in 

potential damage to the system and the entire network as 

a whole. 

The main aim of the proposed technique, Network 

Liability Detection (NLD) is to zealously introduce 

attacks on target server and inspecting the process of 

execution of the server to find out the flaws in the system 

that lead to failures. If the normal behavior is deviated 

from the expected behavior, it indicates the presence of 

errors in the system server. Afterwards, it is the 

responsibility of the debugging team to identify the types 

of flaws in the system and suggest procedures to rectify 

them such that the server becomes more secure. One of 

the best features of this Network Liability Tool (NLT) is 

that it just needs the protocol specifications of the target 

server to derive test cases and launch attacks on it to 

detect any liabilities. The proposed methodology supports 

three phases- Attack Generation Phase, Attack Induction 

phase and Monitoring and removal phase. The two types 

of attacks that we have used here are: Bulk Data and 

Redundancy, which if done on large scale can result in 

Denial of Service Attacks (DoS). The DoS attack 

launched by the adversaries provides illegitimate access 

to them and they consume the entire resources rendering 

the legitimate users with poor response or even no 

services. The rest of the paper has been divided as 

follows: section II consists of the related work, section III 

consists of the proposed methodology, section IV 

provides the experimental results and finally we come to 

conclusion in section V. 

 

II.  RELATED WORK 

In this paper we have proposed a methodology and a 

tool for discovering the liabilities of a network server by 

launching attacks on it. We have chosen a network server 

because it is the entity that needs maximum protection. 

Our work has been influenced by many previous research 

works. Some of them are given below: 

In [3], the authors have proposed a methodology to 

automatically discover vulnerabilities in network servers 

using a tool called AJECT. They have conducted 58 



42 A Secure Framework for Discovering the Liabilities of a Network Server  

Copyright © 2014 MECS                                                  I.J. Modern Education and Computer Science, 2014, 12, 41-46 

attack experiments with 16 email servers running POP 

and IMAP services. In [4], the authors have designed a 

framework for discovering the router protocol 

vulnerabilities and proposed a mathematical model Two-

Stage Fuzzing Test Cases Generator (TFTCG) and 

RPFuzzer. In case of [5], the authors have proposed a 

mechanism to find out the vulnerabilities and given its 

solutions for packet sampling. A simple mechanism 

called Buttercup has been proposed in [6] to counter 

against the attacks on buffer overflows. Another method 

to detect the vulnerabilities of a server has been proposed 

using SQL Injection by prototype tool SQL InjectionGen 

[7]. Other approaches for fault removal and fault 

forecasting have been given in [8], [9]. Some of the tools 

like Xception and FTAPE have been proposed that can 

inject hardware and software faults in target system [10], 

[11]. These tools are relatively simple and it is difficult to 

apply these to more complex faults. However, our 

software Network Liability Tool (NLT) can induce 

attacks as complex as DoS to check the functioning of 

our network server thus making it more secure. 

Fuzzers inject random input sample codes to the 

software to check their vulnerabilities. In [12], the 

authors have proposed an approach to send scrambled 

command line characters and degrade the execution of an 

application. Other approaches that use fuzzers for 

detecting vulnerabilities have been given in [13], [14], 

[15].  However, there are some disadvantages of fuzzers. 

They can be too simple or too specialized to be reused 

again in different applications. Also, they do not provide 

any monitoring mechanisms. On the other hand, our tool 

NLD can be used to provide security to the target system 

which lies in any platform and can work with any 

underlying protocols. 

Some commercial vulnerability scanners have also 

being described in literature such as Nessus [16], 

SAINT[17] and QualysGuard[18]. They have a database 

with the server vulnerability possibilities and several 

attacks for detection. Certain other vulnerability analyzers 

have been proposed that find out flaws in the program 

code itself that are usually associated with buffer 

overflows [19], [20], [21]. These tools also have some 

limitations of generating false positives and missing 

certain vulnerabilities. Certain Runtime Prevention 

Mechanisms which protect from Buffer Overflows, have 

been proposed such as StackGuard [22], PointGuard[23]. 

 

III.  THE PROPOSED METHODOLOGY 

We propose a new methodology of inducing attacks on 

the target server by itself in order to discover the 

loopholes of the system under observation. It behaves like 

an adversary and launches attacks on the target server 

while monitoring its functioning. If any abnormal 

behavior is detected, it indicates the occurrence of some 

flaws that need to be removed for the security 

enhancement of the target server. A series of different 

attacks are imposed on the server and its behavior is 

monitored continuously. All these details are stored in the 

database provided with the server. This database may be 

referred later by the debugging team to find out the major 

flaws in the system and proceed with their elimination. 

In order to be highly confident about the lack of 

loopholes in our system, the attacks should be exhaustive 

and should look out for as many loopholes as possible. 

For this purpose, a large number of test cases may be 

generated. 

A. Phases Involved 

There are 3 phases in this technique: Attack Generation 

Phase, Attack Induction Phase and Monitoring & 

Removal Phase. 

i) Attack Generation Phase: 

Attacks such as Redundancy and Bulk data (used to 

launch DoS) are generated using the proposed tool, 

Network Liability Tool (NLT). Redundancy, as the name 

indicates, means sending the replicated copies of data and 

Bulk data means sending large chunks of data, higher 

than the capacity of the network. Each attack represents a 

single test case that exercises some part of target system.  

ii) Attack Induction Phase: 

In this phase, both Redundancy and Bulk Data, 

generated above, are used to flood the network on a large 

scale to launch Denial of Service attacks, which render 

the legitimate hosts with poor response or no service at 

all and provide services to the adversary launching the 

attack. The NLT behaves like a superficial attacker that 

attacks the target server, while monitoring its functioning. 

This methodology can be a useful aid in the increasing 

reliance on computers because it helps in discovery of 

such ambiguities in our systems. Many test case 

definitions are used at different phases. 

 

 

Fig.1: Architectural Diagram 

iii) Monitoring and Removal Phase: 

Monitor judges the server’s performance whether it’s 

adequately handling user needs and running well. It 

identifies any deviation from the expected behavior and 

stores all the results in the server database. This 

information can be later processed by the debugging team 

to find out the areas of flaws, types of flaws, ramification 

of flaws and their remedies. 

The diagrammatic representation is depicted by the 

architectural diagram given in fig.1.Fig.2 depicts the 

sequence diagram for the entire process of NLD. 



 A Secure Framework for Discovering the Liabilities of a Network Server 43 

Copyright © 2014 MECS                                                  I.J. Modern Education and Computer Science, 2014, 12, 41-46 

 

Fig. 2: Sequence diagram for NLD 

B. Algorithms Used 

The basic algorithms used here have been proposed in 

[3]. The first algorithm is used for test case generation 

(attacks) as shown in fig.3. This algorithm is used to find 

out whether the target server can grapple with the 

abnormal data being sent to it. All states and message 

types of the protocol are traversed, maximizing the 

protocol space; then each test case is generated based on 

one message type [3].  

The second algorithm referred is meant for the 

generation of malicious strings as shown in fig.4. This 

method is used to produce illegal keywords by combining 

many tokens from two input files. The payload file is 

populated with already generated random data and strings. 

The resulting combination from both files makes the 

illegal word fields [3]. 

 

 

Fig.3: Algorithm for generating Attack test cases 

 

Fig. 4: Algorithm for generating malicious strings 

 

IV.  EXPERIMENTAL RESULTS 

This section describes the environment, hardware and 

software requirements that have been used to design our 

tool NLT and to perform the server liability experiments 

successfully. The environment that we have worked upon 

is Java (JDK 1.6). The GUI for the tool has been 

developed using Java Swings and AWT on Windows 

Platform. The database used to store the attack induction 

results and other details is Microsoft Access 2007. 

The common Intrusion Detection Applications are used 

to detect intrusions made by attackers. In contrast, our 

tool proactively finds out loopholes or liabilities in our 

server. This tool uses the attacks based upon the test cases 

generated by the facts given in protocol specifications of 

the target server. 

The basic GUI for the tool on client site is given in 

fig.5. Fig.6 shows the legitimate client sending message. 

Fig.7 depicts NLT attacker node sending redundant data. 

Fig.8 depicts how redundant data attack affects the victim 

server. Fig.9 depicts the warning message for the victim 

server. Fig.10 depicts the database at the router that stores 

all details. Fig.11 depicts NLT Attacker node sending 

bulk data, fig.12 shows database at the router that saves 

length, hop count and PID, fig.13 depicts attack packets 

blocked at victim server and fig.14 depicts NLT Victim 

node blocked for attack packets 

 Our target server was also built using Java and tested 

on Windows platform. It can be seen that the GUI of our 

tool is similar to the architecture given in figure 1 with 

three basic modules Attack Generator, Attack Inducer 

and Monitoring and Removal Phase. The empirical 

results reveal that our tool is successful in finding the 

liabilities of the target server 



44 A Secure Framework for Discovering the Liabilities of a Network Server  

Copyright © 2014 MECS                                                  I.J. Modern Education and Computer Science, 2014, 12, 41-46 

 

Fig.5: GUI for Network Liability Tool on client site 

 

Fig.6: Legitimate client sending message 

 
Fig.7: NLT attacker node sending redundant data 

 
Fig.8: Redundant Data Attack on our victim server 

 
Fig.9: Warning message for victim server 

 
Fig.10: Database at the router that saves all details 

 

Fig.11: NLT Attacker node sending bulk data 

 

Fig.12: Database at the router that saves length, hop count and PID 

 

Fig.13: Attack packets blocked at victim server



 A Secure Framework for Discovering the Liabilities of a Network Server 45 

Copyright © 2014 MECS                                                  I.J. Modern Education and Computer Science, 2014, 12, 41-46 

 

Fig.14: NLT Victim node blocked for attack packets 

 

V.  CONCLUSION 

In this paper, we have proposed a methodology (NLD) 

and tool (NLT) for discovering the liabilities in the 

network servers.NLT launches self generated attacks such 

as bulk data and redundancy (as in case of DoS and worm 

replication ) on the target server and examine its working. 

If any abnormal behavior is detected, this indicates the 

presence of liabilities, which are saved in the database 

such that they can be used to fix the flaws in the software 

in which they have been detected. The experiments are 

done on windows environment using Java Server to 

demonstrate the entire functioning of this system and 

helps in solving the security related loopholes in the 

network servers. The speculative results affirm that the 

proposed technique is effective in detecting the liabilities 

of the network servers. In future we will focus on how to 

eradicate these detected loopholes from our target servers. 

Also, we will work upon some more sophisticated attacks 

like spoofing, sniffing, Denial of service, etc. that can be 

induced in the system. 

REFERENCES 

[1] http://in.norton.com/security_response/vulnerabilities.jsp 

[2] Joa˜o Antunes, Nuno Neves, Miguel Correia, Paulo 

Verissimo, Rui Neves, “Vulnerability Discovery with 

Attack Injection”, 2009 IEEE. 

[3] Joa˜o Antunes, Nuno Neves, Miguel Correia, Paulo 

Verissimo, Rui Neves,“Vulnerability Discovery using 

Attack Injection”, IEEE Transactions on Software 

Engineering, vol. 36, no. 3, May/June 2010. 

[4] Zhiqiang Wang, Yuqing Zhang, Qixu Liu “A Research on 

Vulnerability Discovering for Router Protocols Based on 

Fuzzing”, 2012 7th International ICST Conference on 

Communications and Networking in China 

(CHINACOM), © 2012 IEEE. 

[5] Sharon Goldberg, Jennifer Rexford, “Security 

Vulnerabilities and Solutions for Packet Sampling”, 

Sarnoff Symposium, 2007 IEEE. 

[6] [6] A. Pasupulati, J. Coit, K. Levitt. S. F. Wu, S.H. Li, J.C. 

Ku0, K.P. Fan, “Buttercup: On Network-based Detection 

of Polymorphic Buffer Overflow Vulnerabilities”, 2004 

IEEE. 

 

[7] MeiJunjin, “An approach for SQL injection vulnerability 

detection”, 2009 Sixth International Conference on 

Information Technology: New Generations, IEEE. 

[8] J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie, and D. 

Powell, “Fault Injection and Dependability Evaluation of 

Fault-Tolerant Systems,” IEEE Trans. Computers, vol. 42, 

no. 8, pp. 913-923, Aug. 1993. 

[9] M.-C. Hsueh and T.K. Tsai, “Fault Injection Techniques 

and Tools,” Computer, vol. 30, no. 4, pp. 75-82, Apr. 

1997. 

[10] J. Carreira, H. Madeira, and J.G. Silva, “Xception: 

Software Fault Injection and Monitoring in Processor 

Functional Units,” Proc. Int’l Working Conf. Dependable 

Computing for Critical Applications, pp. 135-149, 

http://citeseer.ist.psu.edu/54044.html; http:// 

dsg.dei.uc.pt/Papers/dcca95.ps.Z, Jan. 1995. 

[11] T.K. Tsai and R.K. Iyer, “Measuring Fault Tolerance with 

the FTAPE Fault Injection Tool,” Proc. Int’l Conf. 

Modeling Techniques and Tools for Computer 

Performance Evaluation, pp. 26-40, http:// 

portal.acm.org/citation.cfm?id=746851&dl=ACM&coll= 

&CFID=15151515&CFTOKEN=6184618, Sept. 1995. 

[12] B.P. Miller, L. Fredriksen, and B. So, “An Empirical 

Study of the Reliability of UNIX Utilities,” Comm. ACM, 

vol. 33, no. 12, pp. 32- 44, 1990. 

[13] Univ. of Oulu, “PROTOS—Security Testing of Protocol 

Implementations,” 

http://www.ee.oulu.fi/research/ouspg/protos/,1999-2003. 

[14] M. Sutton, “FileFuzz,” http://labs.idefense.com/labs-

software.php?show=3, Sept. 2005. 

[15] M. Sutton, A. Greene, and P. Amini, “Fuzzing: Brute 

Force Vulnerability Discovery”, Addison-Wesley, 2007. 

[16] Tenable Network Security, “Nessus Vulnerability 

Scanner,” http://www.nessus.org, 2008. 

[17] Saint Corp., “SAINT Network Vulnerability Scanner,” 

http:// www.saintcorporation.com, 2008. 

[18] Qualys, Inc., “QualysGuard Enterprise,” 

http://www.qualys.com, 2008. 

[19] D. Wagner, J.S. Foster, E.A. Brewer, and A. Aiken, “A 

First Step Towards Automated Detection of Buffer 

Overrun Vulnerabilities,” Proc. Network and Distributed 

System Security Symp., Feb. 2000. 

[20] E. Haugh and M. Bishop, “Testing C Programs for Buffer 

Overflow Vulnerabilities,” Proc. Symp. Networked and 

Distributed System Security, pp. 123-130, Feb. 2003. 

[21] J. Dura˜es and H. Madeira, “A Methodology for the 

Automated Identification of Buffer Overflow 

Vulnerabilities in Executable Software without Source-

Code,” Proc. Second Latin-Am. Symp. Dependable 

Computing, Oct. 2005. 

[22] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. 

Beattie, A. Grier, P. Wagle, Q. Zhang, and H. Hinton, 

“StackGuard: Automatic Adaptive Detection and 

Prevention of Buffer-Overflow Attacks,” Proc. USENIX 

Security Conf., pp. 63-78, https:// 

db.usenix.org/publications/library/proceedings/sec98/cow

an.html, Jan. 1998. 

[23] C. Cowan, S. Beattie, J. Johansen, and P. Wagle, 

“PointGuard: Protecting Pointers from Buffer Overflow 

Vulnerabilities,” Proc. USENIX Security Symp., pp. 91-

104,http://www.usenix.org/publications/library/proceedin

gs/sec03/tech/cowan.html, Aug. 2003.  

 

 

 



46 A Secure Framework for Discovering the Liabilities of a Network Server  

Copyright © 2014 MECS                                                  I.J. Modern Education and Computer Science, 2014, 12, 41-46 

Authors’ Profiles 

 

Ulya Sabeel holds degrees M.Tech 

(Computer science and engineering) 

from Amity University, Noida, India, 

B.Tech (Information Technology) from 

Bharath University, Chennai. Currently 

she is working as an Assistant Professor 

at Amity University, Haryana, India. 

The areas that interest her are Network 

security, Adhoc and sensor networks 

and Ubiquitous Computing. 

 

 

Saima Maqbool has completed M.Tech 

(Computer science and engineering) 

from Amity University, Noida, India, 

B.E. (Computer Engineering) from 

Kashmir University, Jammu & Kashmir. 

Currently she is working as an Assistant 

Professor at Islamic University of 

Science and Technology, Awantipora, 

Pulwama, Jammu & Kashmir, India. Her 

areas of interest are Network security and Wireless sensor 

networks. 


