
I.J. Modern Education and Computer Science, 2014, 4, 31-37 
Published Online April 2014 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijmecs.2014.04.05 

Copyright © 2014 MECS                                                     I.J. Modern Education and Computer Science, 2014, 4, 31-37 

A Correlation Framework for different Resource 

Access Protocol in Real Time System 
 

Mrs. Leena Das 
Assistant Professor KIIT University, Bhubaneswar, India 

ldasfcs@kiit.ac.in 

 

Susmita Saha 
M.Tech Software Engg. KIIT University, Bhubaneswar, India 

susmitauit@gmail.com 

 

 

Abstract—We know various scheduling algorithm like 

EDF, RMA that are popularly used for sharing a set of 

serially reusable resources. But for share non preemptable 

resources those algorithm cannot satisfactorily be used. 

The main intent of resource access protocol is to schedule, 

and synchronizes the tasks when many tasks use same 

resources, means where resource is shared. So here in this 

paper the traditional techniques of resource access 

protocol which are used to share critical resources among 

a set of real time tasks, is discussed. This paper is mainly 

focusing on the different types of resource access 

protocols and their comparisons. 

 

Index Terms—Real-Time System, Resource Access 

Protocol, PIP, PCP, HLP, MPCP, MSRP. 

 

I.  INTRODUCTION 

A system is called Real time system, when the system 

requires computable figures of time to express its 

performance. A real time system is a structure where the 

exactness of the system performance depends not only on 

the valid results of the computations, but also on the 

concrete time when the output is produced [9, 5]. Job or 

instance is software unit which is managed or executed 

by the operating system. The task is collection of related 

jobs collaborating to execute a function is called a task. 

Three types of task are there, first, Periodic task, where 

task repeats after a certain fixed time interval. Second, 

Sporadic task, recurs at random instants and third one is 

Aperiodic task, it is similar to the sporadic task. A whole 

system resource is divided into two types: Processors and 

Resources [2, 7]. Computers, Database servers are 

example of processor. Memory, Database locker are 

example of Resource. A job may need some resources 

through the processor during make progress. Each job    
is characterized by its parameters like, execution time, 

response time, release time, deadline [2]. Execution time 

is defined as how long the time it takes to run the given 

task. Deadline is defined as, time period within which the 

task must be done executing. The Release time is the 

instant when a job becomes available for execution. The 

response time is the length of time from the release time 

of the job to the time instant when it completes. A 

resource that can be used by more tasks is called shared 

resource. In this paper in section 2, why resource access 

protocol is used and their types are discussed. In section 3 

the comparison between the resource access protocols is 

discussed. Section 4 concludes this paper and future work 

is discussed in section 5.  

 

II. DIFFERENT TYPES OF RESOURCE ACCESS PROTOCOL 

Task dependency occurs when result of one task is 

dependent on another task. Individual task is used these 

shared resource in exclusive mode. This means one task 

when it uses a resource, it cannot immediately hand over 

the resource to other task that requests the same resource 

which hold by that task at a specific time. The task 

handed over the resource only after completion its 

execution. These resources are called Non-preempted 

resources or critical section. A non-preemptable resource 

is also used in an exclusive mode. Therefore when a 

lower priority task holds the non-preemptable resource, a 

higher priority task will wait for this resource until the 

lower priority task completes using of resource. This 

situation is called Priority Inversion. And when higher 

priority task wait long time for resource, it may cause 

Deadlock. For this reason , The Scheduling algorithm as, 

EDF and RMA that are used for sharing a set of serially 

reusable resource like CPU, not used for shared non 

preemptable resource among a set of real time tasks. 

Scheduling of tasks that share critical resources lead two 

problems: Deadlock and Priority Inversion. Different 

protocols have been developed to avoid these problems [5, 

7, 9].  

There are different types of Resource Access protocol: 

a. Under Single processor system 

- Non-Preemptive Protocol (NPP)  

- Highest Locker Priority (HLP) 

- Priority Inheritance Protocol (PIP) 

- Priority Ceiling Protocol (PCP) 

- Stack Resource Policy (SRP) 

b. Under Multiprocessor system 

- Multiprocessor Priority Ceiling Protocol 

(MPCP) 

- Multiprocessor Stack Resource Policy 

(MSRP) 



32 A Correlation Framework for different Resource Access Protocol in Real Time System  

Copyright © 2014 MECS                                                     I.J. Modern Education and Computer Science, 2014, 4, 31-37 

Sharing Resource: Generally there are two classes of 

resource sharing, i.e., lock-based and lock-free 

synchronization protocols. In the lock-free approach [1,9], 

operations on simple software objects, e.g., stacks, linked 

lists, are performed by retry loops, i.e., operations are 

retried until the object is accessed successfully. The 

advantages of lock-free algorithm are that they do not 

require kernel support and as there is no need to lock, 

priority inversion does not occur. The disadvantage of 

these approaches is that it is not easy to apply them to 

hard real-time systems as the worst case number of retries 

is not easily predictable.  

Priority Inversion: In Real-time system the priority 

based model stated that only higher priority task preempts 

the lower priority tasks. But the problem occurs when a 

higher priority process (H) requires resources (R) which 

is already hold by low priority task (L). The lower 

priority task does not handed over the resource to higher 

priority task until it has completed use of resource [8, 11]. 

In this case higher priority task has blocked by lower 

priority task. 

 

 

Fig. 1. Priority Inversion. 

Unbounded Priority Inversion: It occurs when a higher 

priority task (H) needs a resource, which is hold by a 

lower priority task (L) then higher priority task waits for 

a lower priority task to release the resource. At that time 

if some intermediate (medium) priority tasks (I1, I2, I3,) 

are in ready to queue, which do not require R. In this case 

(H) would have to wait not only for L, but also for all 

intermediate priority tasks I1, I2, I3. In this case higher 

priority tasks (H) have to wait for the required resources 

for indefinite time in worst case. This situation is called 

unbounded priority inversion [8, 11].  

 

 

Fig. 2. Unbounded priority ceiling protocol 

2.1. Non Preemptive protocol: When a task enters in 

critical section, its priority is increased to maximum value. 

The simple equation of non-preemptive is represented as 

below: 

 

                  , where     is maximum priority 

value of all processor. 

Table1. Advantage and disadvantage of NPP 

Advantage Disadvantage 

It is simple and easy to 

implement. 

It causes Blocking because 

higher priority task which 

does not use shared 

resources. 
Deadlock free. 

It is good resource 

access protocol when 

critical section is short. 

 

2.2 Priority Inheritance Protocol: The priority 

Inheritance protocol by Sha et al [16] is based on two 

types of priority. 

 

 Assigned priority: Priority which is assigned to 

job according to the scheduling algorithm [15]. 

 Inherited priority: Priority in which low priority 

job inherits priority of higher priority job. 

According to this protocol, all processes hold 

resource which are requested by lower priority 

process, inherits the priority of higher priority 

process until it uses the resource. After 

completion execution, the priority of lower 

priority process reverts to their original values. 

 

In the Fig. 3, there are two jobs Ti, lower priority job 

and Tj, higher priority job. Ti the lower priority job with  

 

 

 

 

 

 

 

 

 

 

H 
L 

R 

Higher 

priority 

Lower 

Priority 

accessing 

resource 

Wait for resource R 



 A Correlation Framework for different Resource Access Protocol in Real Time System 33 

Copyright © 2014 MECS                                                     I.J. Modern Education and Computer Science, 2014, 4, 31-37 

priority 5 holds the critical section, but when higher 

priority job Tj with priority 10 comes, and requests for 

critical resource CR, the lower priority job Ti inherits the 

priority of higher priority job Tj and the priority of Ti 

becomes 10. Higher priority job, Tj waits until lower 

priority job Ti finishes its execution. After completing 

execution Ti releases critical section and inherits its 

original priority i.e. 5 and Tj holds critical section CR [3].  

Table2. Advantage and disadvantage of PIP 

Advantage Disadvantage 

PIP constrained priority 

inversion. 

 

PIP cannot avoid chain 

blocking and deadlock. It is very clear and 

simple to the user. 

 

 

 

Fig. 3. Priority inheritance protocol  

2.3 Highest Locker Protocol: Highest locker Protocol 

[HLP] is an expansion of Priority Inheritance Protocol 

[PIP]. HLP is mainly used to solve the problem of 

deadlock, chain blocking and also unbounded priority 

problem in PIP. HLP is a protocol in which, when a task 

is get into critical section, gets the highest priority among 

the task in the critical section. It means:  

 

          |             
 

Where   tasks in are critical section and    is the 

highest priority among all tasks in critical section. In HLP, 

ceiling priority value is assigned in every critical resource 

[3,9].Every critical resource is assigned a ceiling priority 

value; this ceiling priority value is the maximum value of 

the priorities of those tasks which send request to hold 

this critical resource. According to HLP, when a task 

holds a resource, the priority of task is determined to the 

ceiling priority of the resource.  

If a task holds multiple resources, then it in inherits the 

highest ceiling priority of all its requested resources. As 

example, 

Table3. Example1 

Task Critical Resource Priority 

    

    

10 

   7 

   5 

       9 

   8 

From the above example, there are 5 tasks T1, T2, T3, 

T4, and T5. Tasks T1, T2, T3 request for critical resource 

CR1 and tasks T4 and T5 request for critical resource 

CR2. Now as the priority of critical section is following:  

 

          |             
 

So, the priority of critical resource    = max 

{        } = max {10, 7, 5} = 10 and the priority of 

               = max {9, 8} = 9. Therefore when 

either of            acquires    , its priority will be 

raised to 10. Another case is that if a task is holding more 

than one resource, its priority will become maximized of 

ceiling priorities of all resources it is holding. For 

example, if a task holds             , would inherit 

maximum of those that is 10. In this way HLP solves the 

problem of deadlock in PIP. 

Table4. Advantage and disadvantage of HLP 

Advantage Disadvantage 

HLP avoids Deadlock.  

Opens up possibility 

for inheritance related 

inversion. 

HLP avoids chain 

blocking. 

HLP also prevents 

unbounded priority 

problem. 

 

2.4 Priority Ceiling protocol: The priority ceiling 

protocol first proposed by Sha, Lui, Rajkumar [16]. PCP 

is extended version of PIP and HLP, which is mainly 

Ti 
Ti 

 

Ti 

 

Ti 

 

T
j
 T

j
 

T
j
 

CR 

CR CR CR 

Pri(Ti)= 5 
Pri(T

i
)=10 Pri(T

i
)= 5 

Pri(T
j
)=10 

Pri(T
j
)=10 Pri(T

j
)=10 

Pri(T
i
)=5 



34 A Correlation Framework for different Resource Access Protocol in Real Time System  

Copyright © 2014 MECS                                                     I.J. Modern Education and Computer Science, 2014, 4, 31-37 

used to resolve the problem of chain blocking, deadlock, 

and unbounded priority problem. It is also resolving the 

problem of HLP that is inheritance related inversion [14]. 

In PCP, every resources     associates with ceiling 

value         . Current System Ceiling (CSC) tracks the 

maximum ceiling value of all resources. Therefore 

 

    
                        |                               . 
 

As example below, four tasks             share two 

non- preemptable resources       . 

Table5. Example2 

Tasks Critical Resources Priority 

            10 

       12 

       15 

       20 

 

Now as per above example,          = max (        ) 

= 15 and Ceil (   ) = max (      ) = 20. Now    is 

executing after acquiring    , then CSC is set to 

         = 15. There can be two situation occurs. Firstly, 

assume    becomes ready. As    has higher priority, it 

preempts    and starts to execute. After some time    

requests to    . As Priority (  ) > CSC (15),    granted 

the resource     and CSC is set to 20. When    

completes its execution,    will get chance to execute 

[1,2]. Secondly, assume    become ready, now as priority 

(  ) >CSC (15),    is not granted the    . 

Table6. Advantage and Disadvantage of HLP 

Advantage Disadvantage 

PCP protocol is free from 

deadlock and chain 

blocking 

Suffers from context 

switches 

Lower inheritance related 

inversion than HLP. 

Opens up possibilities of 

high context switch 

overhead 

 

2.5 Stack Resource Policy: The SRP is similar to the 

PCP, proposed by T. Baker [6].When there are free 

resources then the task is allowed to execute. In this 

policy every resource is assigned a ceiling. The rule of 

SRP is that if pre-emption level > System ceiling, then 

higher priority job is allowed to start executing. A pre-

emption level is assigned to each task in SRP. The 

relative deadlines of the tasks are reflected by preemption 

levels. Based on the maximum preemption level 

resources are given a ceiling values of the tasks that use 

resource at run time. When a task is released it can only  

acquire the currently executing task if its absolute 

deadline is shorter and its preemption level is higher than 

the highest ceiling currently locked resources. The result 

of this protocol is almost identical to PCP; tasks suffer 

only a single block, deadlocks are prevented, and a 

simple formula is available for calculating the blocking 

time [3, 4]. The SRP assures that once a job starts 

executing process, it cannot be blocked until completion; 

and only higher priority jobs can preempt this task [5]. 

In real-time system synchronization protocols are used 

to avert the unbounded priority inversion. In the 

background of multiprocessor synchronization, 

Multiprocessor Priority Ceiling Protocol [MPCP] extends 

PCP.  

The MPCP is one and only synchronization protocol 

which worked in fixed priority scheduling in 

multiprocessor Policy [SRP] and access global resource.  

Apart from these two real-time system, another 

synchronization protocol Multiprocessor Stack Resource 

Policy [MSRP], in which tasks synchronize local 

resources using Stack Resource synchronization protocols 

there is one protocol, which is Flexible Multiprocessor 

Locking Protocol [FMLP], which can be applied to both 

global and partitioned scheduling algorithms, that is 

Partitioned-EDF and Global-EDF. However we have 

discussed here only two protocols that are Multiprocessor 

Priority ceiling Protocol [MPCP] and Multiprocessor 

Stack Resource Policy [MSRP]. 

2.6 Multiprocessor Priority Ceiling Protocol: This 

protocol is extension of Priority Ceiling Protocol. 

According to the multiprocessor priority ceiling protocol, 

the scheduler of each processor schedules the entire local 

tasks and global critical section. When a task uses a 

global resource, its global critical section executes on the 

synchronization processor of the resource. If the global 

critical section of a remote task were to have a lower 

priority than some local tasks could delay the completion 

of global critical section and prolong the blocking time of 

remote task. To prevent this, the MPCP schedules all 

global critical sections at higher priorities than all local 

tasks on every synchronization processor. MPCP reduces 

the remote blocking problem [13]. Remote blocking 

occurs when a task has to wait for the execution of 

another task of any priority assigned to another processor 

[3, 6]. The MPCP is one and only protocol in 

multiprocessor which works under fixed priority 

scheduling. According to MPCP model a job may require 

both local and remote resources. The access of each 

resource is controlled by the scheduler of the 

synchronization processor of the resource. The critical 

section is when one process is executing in this section, 

then no other process is to be allowed to execute. In 

global critical section (gcs) tasks request for global 

resources and in local critical section tasks request for 

local resources [12].  



 A Correlation Framework for different Resource Access Protocol in Real Time System 35 

Copyright © 2014 MECS                                                     I.J. Modern Education and Computer Science, 2014, 4, 31-37 

 

Fig.4. Local and Global Resource model  

As example, in fig4, there are two resources R1 and R2, 

two processors P1 and P2. Now Resource R1 resides on 

Processor P1, i.e. P1 is the synchronization processor of 

R1 and R2 resides on P2. Here are three jobs j1, j2, and j3, 

where j1 and j2 are local to P1 and j3 is local to P2. 

 

 Now j1 executes on P1or it has only a local critical 

section. 

 j3 requires only R2 ,since R2 resides on its local 

processor, this resource is local to j3. 

 Suppose during the execution j2, it requires resource 

R2. J2 resides on P1 but it requires resource R2 

which resides on processor P2 i.e., global critical 

section of j2 executes on P2. After completing 

global critical section of j2, it returns on P1 to 

execute. 

 

So, In MPCP model, both local and global resources 

are required by a job. Scheduler of synchronization 

processors of each resource controls the access of each 

resource. 

An approach for blocking time under MPCP is 

presented by Jane W.S. Liu in [3]. The author presents 

five blocking factor and the upper bounds to factor is the 

sum of these five blocking factors.  

 

 Local Blocking Time [LBT] 

 Local Preemption Delay [LPD] 

 Remote Blocking Time [RBT] 

 Remote Preemption Delay [RPD] 

 Deferred Blocking time [DBT] 

 

The upper bounds to factor bi(rc) is sum of the all these 

five factors. 

 

 LBT occurs due to resource confliction the tasks are 

blocked on its local processor. According to priority 

ceiling protocol, after each job in Ti is released, it 

may be blocked once by a lower priority task. 

Moreover, each time when it uses a remote resource, 

it gives up the local processor. When it resumes on 

the local processor, it may be blocked again by 

some lower priority local task. 

 LPD occurs due to preemption of tasks by global 

critical section which executes in its local processor 

but resides in remote task. 

 RBT occurs due to confliction between lower 

priority tasks for acquiring remote resources. Each 

time when Task requests a global resource on a 

remote synchronization processor, its global critical 

section may be blocked once by a task that also 

requires some global resource on the processor and 

has a lower priority than task. 

 RPD occurs when a task requires remote resource at 

that time higher–priority global critical section 

preempts that task. 

 DBT occurs when execution of local higher priority 

task has been suspended. 

 

The upper bound of the factors of bi(rc) is -equal to the 

sum of all these blocking factors as said Liu [3]. 

If we assume LBT, LPD, RBT, RPD and DBT as 

respectively b1, b2, b3, b4, b5 then bi(rc) = 

b1+b2+b3+b4+b5. 

The MPCP is the only existing fixed priority 

scheduling in multiprocessor system. 

 

2.7 Multiple Stack Resource Protocol: MSRP is 

proposed by Gai. et al [10, 11]. This protocol is extension 

of Stack Resource Protocol. MSRP is a partitioned-EDF 

based synchronization protocol in multiprocessor. 

According to MSRP, the task is allowed to use the local 

critical resources under the SRP policy. If a task tries to 

access a global critical resource that is already locked by 

a task on another processor, the task performs a busy wait, 

called a spinlock [6, 12, 13]. According to MSRP, busy 

waiting (spin lock) is defined as the processor is kept 

busy without doing any work. Busy waiting is performed 

by a blocked task on global resource. Thus the span of 

spin lock means, locking a global resource should be 

minimized. To minimize the duration of busy waiting the 

blocked tasks on a global resource are added into FIFO 

queue as F. Nemati says [4, 5]. So, MSRP is called spin-

based synchronization protocol. A set of tasks sharing 

lock based resources which are classified as local or 

global resources. MSRP protocol quick fixes the problem 

of task allocation in resource sharing system. MSRP has 

similar property as MPCP such as,  

            P1 P2 R1 
R2 

J1 

J2 J3 

J1 

J
2
 

J
3
 

R
1
 

R
2
 

J1 and J2 are local jobs on P1 and J3 is 

 local job on P2. 



36 A Correlation Framework for different Resource Access Protocol in Real Time System  

Copyright © 2014 MECS                                                     I.J. Modern Education and Computer Science, 2014, 4, 31-37 

 As PCP cannot directly apply to multiprocessor so 

MPCP is the extended version of MPCP, SRP 

cannot directly apply to Multiprocessor, for this 

reason extended version of SRP is MSRP. 

 As in the MPCP algorithm the task suspended. 

 Busy waiting or spin lock property is also here for 

MSRP. 

 

III. COMPARISONS BETWEEN DIFFERENT PROTOCOLS 

Here in this section we have compared the overview,  

advantage and disadvantage of resource access protocols 

for uniprocessor and multiprocessors. Actually, the 

disadvantage of Priority Inheritance Protocol is 

eliminated in the Highest Locker Protocol and Priority 

Ceiling Protocol. PCP is also resolving the problem of 

HLP that is inheritance related inversion. From this 

comparison we can easily figure out which protocol will 

be suited for one system whether it has uniprocessor or 

multiprocessor. 

 

3.1 Comparison between PIP, PCP, HLP: 

 
 

Table7. Tabular form of comparison between Resource accesses Protocol under single processor system 

                                  PIP 

Overview: All processes hold resource which are requested by higher priority process, 

inherits the priority of higher priority process until it uses the resource. After 

completion execution, the priority of lower priority process reverts to their 

original values. 

Advantage: Effectively overcomes the unbounded priority inheritance protocol. 

Disadvantage: May suffer from Chained blocking, and also does not prevent deadlock. 

HLP 

Overview: HLP is a protocol in which, when a task is get into critical section, gets the 

highest priority among the task in the critical section. 

Advantage: Avoids chain blocking, deadlock, unbounded priority problem 

Disadvantage: Opens up new problem Inheritance related inversion 

PCP 

Overview: In PCP, every resources     associates with ceiling value         . 

Current System Ceiling (CSC) tracks the maximum ceiling value of all 

resources. 

Advantage: It removes deadlock and chained block. 

Disadvantage: Suffers from context switches and 

High context switch overhead and therefore cause to miss the deadlines. 

 

3.2 Comparison between MPCP and MSRP: When the 

time span of global critical sections (gcs) are increased 

then MPCP works better, but MSRP works better when 

critical section becomes shorter as discussed by Gai et al. 

[10, 11]. Author has compared between MPCP and 

MSRP with two case studies. Another point is that MSRP 

works better than MPCP where resources accessed by 

many resources or vice versa. 

 

 

 

 

 

 

 

 

Table8. Tabular form of comparison between Resource accesses 

Protocol under Multiprocessor System 

Subject MSRP MPCP 

Deadline 

miss ratio 

More missed 

deadline caused 

more additional 

blocking. 

Less missed 

deadline 

caused less 

blocking 

Priority 

Scheduling 

ratio 

MSRP’s 

overhead is 

highest. 

Overhead is 

lowest than 

MSRP. 

Context switch 

ratio 

Has lowest 

number of 

context switches 

Context 

switches are 

higher than 

MSRP 

 



 A Correlation Framework for different Resource Access Protocol in Real Time System 37 

Copyright © 2014 MECS                                                     I.J. Modern Education and Computer Science, 2014, 4, 31-37 

IV. CONCLUSION AND FUTURE WORK : 

This paper explores the co-relation among the resource 

access protocol for uniprocessor and multiprocessor real-

time system. The resource access protocols for single 

processor are Priority Inheritance protocol, Higher 

Locker Priority, Priority Ceiling Protocol, and for 

multiprocessor are Multiprocessor Priority Ceiling 

Protocol and Multiprocessor Stack Resource Protocol. 

From the above discussion we can conclude that which 

resource access protocol can be more appropriate to 

schedule the tasks in different shared resource 

environment. Though it is a basic survey work as well as 

comparison among the different protocols, we can get a 

clear idea about the strength and weakness of different 

resource access protocols, which are easily applicable at 

what point of time. 

Another point is MPCP is a new topic for research area. 

A new algorithm named Reduce Blocking under 

Multiprocessor Priority Ceiling Protocol [RBMPCP] can 

be introduced to reduce the blocking time by partitioning 

tasks into segments and put them together in different 

processors in the near future and can be proved our 

algorithm is better than the existing one. 

ACKNOWLEDGEMENT 

We wish to thank who directly or indirectly supported 

our work. We thank our own affiliated organization KIIT 

University for providing us the right eco system to carry 

out our research work and all those who helped us to 

carry out our research. Due to which we are able to come 

out with this result. We thank our family members and 

one and all whose well wishes made us to reach our goal. 

REFERENCES 

[1] Jian-Jun Han, Dakai Zhu, Xiaodong Wu, L.T.Yang, Hai 

Jin, ―Multiprocessor Real-Time System with Shared 

Resources: Utilization Bound and Mapping‖, IEEE 

Transaction on Parallel and Distributed System, Vol. XXX, 

No. XXX, Jan, 2013. 

[2] Sara Afshar, Farhang Nemati, Thomas Nolte, ―Towards 

Resource Sharing under Multiprocessor Semi-pPartitioned 

Scheduling,‖ 978-1-4678-2684-1/12, IEEE, 2012. 

[3] Jane. W. S. Liu ―Real Time Systems‖ Pearson Education, 

thirteenth impression, 2012, P. 49-55. 

[4] Farahang Nemati, ―Resource Sharing in Real Time 

Multiprocessor‖, Malardalen University, Sweden, 2012. 

[5] Farhang Nemati, Moris Behnam and Thomas Nolte, 

―Imdependently-developed Real-Time Systems on Multi-

cores with Shared Resources‖, 23rd Euromicro Conference 

on Real-Time Systems, 1068-3070/11, IEEE, 2011. 

[6] Andrew Carminati, Oliveira, ―Intelligent priority ceiling 

protocol for scheduling‖, LINDI 2011, 3rd IEEE 

International Symposium on Logistics and Industrial 

Informatics August 25–27, 2011, Budapest, Hungary. 

[7] Apurva Shah, Ketan Kotecha, Adaptive Scheduling 

Algorithm for Real-Time Multiprocessor System, 2009 

IEEE International Advance Computing Conference 

(IACC 2009), Patiala, India, 6-7 March, 2009. 

[8] Jim Ras and Albert M. K. Cheng ―An Evaluation of the 

Dynamic and Static Multiprocessor Priority Ceiling 

Protocol and the Multiprocessor Stack Resource Policy in 

an SMP System‖, 15th IEEE Real-Time and Embedded 

Technology and Applications Symposium, 2007. 

[9] Rajib Mall, ―Real-Time Systems, Theory and Practice‖, 

Dorling Kindersley (India) Pvt. Ltd., licensees of Pearson 

Education in South Asia, 2007. 

[10] Paola Gai, Natale, Giuseppe Lipari, ―A comparison of 

MPCP and MSRP when sharing resources in the Janus 

multiple-processor on a chip platform‖, Proceedings of the 

9th IEEE Real-Time and Embedded Technology and 

Application Symposium (RTAS’03), 2003, IEEE. 

[11] P.Gai, G.Lipari, M.D. Natale, ―Stack based minimization 

for embedded real time systems on a chip‖, Kluwer 

Academic Publishers, Boston, pp. 53-47, 2002. 

[12] Tei- Wei Kuo, Jan Wu, Hsin- Chia Hsih, ―Real-Time 

Concurrency Control in a Multiprocessor Environment‖, 

IEEE Transaction on parallel and distributed system, Vol 

13, No. 6, June 2002. 

[13] Chen, Tripathy and Blackmore, ―A Resource 

Synchronization Protocol for Multiprocessor Real-Time 

Systems‖, International conference on parallel processing, 

1994. 

[14] Chia-Mei Chen and Satish K. Tripathi, ―Multiprocessor 

Priority Ceiling Based Protocols‖, Thesis work, University 

of Maryland, April 7, 1994. 

[15] R. Rajkumar. ―Synchronization in Real-Time Systems: A 

Priority Inheritance Approach‖. Kluwer Academic 

Publishers, 1991. 

[16] Lui Sha, R. Rajkumar, ―Priority Inheritance Protocols: An 

Approach to Real-Time Synchronization‖, IEEE 

Transaction on Computers, Vol. 39, No. 9, September 

1990. 

 

 

 

Authors’ Profiles 
 

Mrs. Leena Das is an Asst. Professor in School Of Computer 

Engineering at KIIT University, Odisha.  In teaching she has 

been focusing on software engineering concepts and Object 

Oriented concepts. In research, her current interests include real 

time scheduling, fault tolerance in multiprocessor real time 

system and testing on real time system. She has received her 

MS degree in System Software from BITS, Pilani, India. 

Currently she is pursuing her PhD under KIIT University. She is 

a life member in ISTE. 

 

Miss Susmita Saha has degrees BE in Computer Science 

Engineering from Burdwan University, W.B. She is currently 

pursuing M.Tech from the Department of Computer Science 

Engineering, KIIT University, Odisha. 

 

Manuscript received 23rd Feb, 2014; revised 6th march, 2014; 

accepted 2nd april, 2014. 

 


