
I.J. Modern Education and Computer Science, 2014, 6, 46-52
Published Online June 2014 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijmecs.2014.06.06

Dynamic Effort Allocation Problem Using
Genetic Algorithm Approach

Md. Nasar

School of Computing Science and Engineering, Galgotias University, Gr. Noida, India
Email: nasar31786@gmail.com

Prashant Johri and Udayan Chanda

School of Computing Science and Engineering, Galgotias University,Gr. Noida, India
Department of Management, Birla Institute of Technology & Science (BITS) Pilani, India

Email: {johri.prashant, udayanchanda}@gmil.com

Abstract—Effort distribution plays a major role in
software engineering field. Because the limited price
projects are becoming common today, the process of
effort estimation becomes crucial, to control the budget
agreed upon. In last 10 years, numerous software
reliability growth models (SRGM) have been developed
but majority of model are under static assumption. The
basic goal of this article is to explore an optimal resource
allocation plan to minimize the software cost throughout
the testing phase and operational phase under dynamic
condition using genetic algorithm technique. This article
also studies the resource allocation problems optimally
for various conditions by investigating the activities of
the model parameters and also suggests policies for the
optimal release time of the software in market place.

Index Terms—SRGM, optimal control theory, testing
effort allocation, genetic algorithm, release time problem.

I. INTRODUCTION

Software development phase is complex but it is a
major part of any Software Development Life Cycle
(SDLC). The challenge will become harder when the
process of development is considered in the dynamic
environment. To decrease uncertainty in the process,
companies often set up different kind of project/software
management tools to coordinate with the other modules
of the software project. Software will be released to the
customers after the testing phase of SDLC. With superior
development and testing efforts, superior quality software
can be guaranteed. But this may be very time consuming
and is unattractive in the dominant modest market
conditions. Distribution of financial efforts to a software
development project through the testing phase in the
dynamic environment will be a critical decision that a
software manager has to take. Throughout testing
resources such as human effort and computer time are
consumed. The error detection and removal process will
completely depend upon the behavior and quantity of
resources used. Several software reliability growth
models (SRGMs) are proposed in the last 10 years to
discuss the minimization issue of the testing effort

expenditures [1], [2]. Often these models are based on
the assumption that the testing effort consumption and
testing time follow Rayleigh and exponential distribution.
The time dependent performance of the testing effort has
been studied by many authors [3-6].

Earlier studies explored that exponential curve can be
used if the software testing resources are equally
consumed with respect to the testing time otherwise
Rayleigh curve. Weibull-type and Logistic functions will
also be used to define the testing effort. Another school of
thought assumes that the resource consumption can be
expressed as an explicit function of the total number of
faults deleted and calendar time consumed [7]. More
recently, [8] have given a SRGM based on stochastic
differential equations in order to study the active position
of the open source development assuming that the
intensity of software failure fully depends on the time,
and the software fault exposure occurrence on the bug
tracking system retain an unbalanced state. As discussed,
over the last three decades many SRGMs have been
proposed to minimize the total testing effort expenditures,
but mostly under static environment. However in this
paper we have tried to study an optimal resource
allocation plan to optimize the testing cost of software
throughout the testing phase under dynamic situation.
This paper also explores the optimal resource allocation
problems for various conditions by examining the
behavior of the model parameters and also proposes the
related release policy.

The paper uses genetic algorithm (GA) approach to
discuss dynamic allocation problem. Optimal control
theory is used for problem formulation and analysis of the
model properties. The proposed approach is helpful to
solve the dynamic nature of the problem which is difficult
to solve with ordinary optimization technique.

 The paper is subdivided into seven sections. Section
two describes the research background related to testing
effort allocation and release time problem. Section three
describe about the model and its solution. We use optimal
control theory and genetic algorithm for solving problem.
Section four describes about basic parameter for genetic
algorithm. Section five solves a numerical problem for
testing effort allocation using genetic algorithm. Section

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2014, 6, 46-52

 Dynamic Effort Allocation Problem Using Genetic Algorithm Approach 47

six describe about optimal release policy for introducing
software product in market for solving this problem we
use genetic algorithm. Finally in section seven we
conclude our results and findings.

Nomenclature

a is the initial fault content in the software.
b is the fault detection rate.
f(t) is the number of fault removed at time ‘t’.
m(t) is the cumulative number of fault detected till

 time ‘t’ due to the testing effort w1(t).
T the planning period.
C1(m(t),w2(t)) Cost per unit at time ‘t’ for cumulative
 faults removed m(t) and debugging effort w2(t).

C2 is the cost of testing per unit testing efforts.
W is the total resources utilized during the SDLC
 at any point of time ‘t’.

II. RESEARCH BACKGROUND

Software reliability growth model (SRGM) provides a
measure to estimate upcoming failure behavior from
identified or presumed features of the software.
Numerous SRGMs have been given in software reliability
field under some set of conventions and testing
environment. The proposed SRGM in this article takes
into account that the time is dependent upon variation in
the testing effort. The testing efforts that direct the pace
of testing for almost all kind of software projects are [7]:

(a) Manpower which contains:
• Failure detection professionals.
• Failure rectification professionals.
(b) Computer time.
The vital role of person engaged in testing is to execute

test cases and match the test results with preferred
specifications. Upon a failure, the error affecting it is
identified and then removed by failure rectification
personnel. The influence of testing effort has been
included in few SRGMs [8-15]. In 1976, Myers planned
that software system should be constructed and tested
separately in a sequential step. [6], [5] and [16] have
recommended that system level testing happened only
after the system was fully developed. Recently, [17],
however, suggested that software development, system
debugging and software testing should be considered as
simultaneous activities. [14] Investigated the association
between the number of faults deleted with respect to
testing effort and/or time. The authors proposed that
throughout the testing phase of an SDLC, faults are
removed in two stages. First a failure happens and then
the fault causing that failure is corrected; hence the
testing effort should be spent on two separate processes;
failure detection and failure rectification. In their paper,
the authors developed an SRGM incorporating time delay
not only between the two phases but also through the
segregation of resources between them and proposed two
alternate methods for controlling the testing effort for
achieving the preferred reliability or error detection level.
[18] Discussed a development process environment in

which system integration will take place when the total
number of errors in the software will achieve a definite
threshold. [19-20] studied software release policies to
minimize total development cost while achieve a definite
reliability objective in dynamic environment. [21] Have
proposed optimal release policy for module based
software.

III. MODEL FORMULATION AND SOLUTION

We initiate our study by defining a common model
with a very little assumption. We are limiting our analysis
to the case of a firm that controls its resources for testing
and debugging under limited planning horizon. We are
also consistent with the plan that the hidden faults in the
software are exposed and removed throughout the testing
phase, and the total number of faults residual in the
software slowly decreases as the testing progresses.
Hence, it is rational to assume the following differential
equation:

)]()[()(f(t) 1 tmatbwtm
dt
d

−== (1)

Now, suppose the software firm wants to minimize the

overall expenditure over the fixed scheduling horizon T.
Then, the objective function for the company will be
specified by;

Min dttwctftc
T

∫ +
0 121)]()()([

Subject to

))(,()(f(t) 1 twbftm
dt
d

== (2)

)()()(
TdT ammTmm

a
tm

=≥≥≥

Where
m(0)=0 and w1(t)+w2(t)=W
(w1(t); w2(t))≥0 and c1(t) =c1(m(t),w2(t)).

Here, in the above optimal problem 0<mT<1, we have
considered the desired reliability level to be at least ma
(where ma is unique). The planning period is [0,T] and
the assumption m(T)≥md means that the firm aims at
reaching at least the level ma at the end of the planning
period. The planning problem is to find the allocation of
resources that minimizes the total expenditure.

To solve the above optimization problem, let w1
*(t) be

an admissible control vector which transfers (m0,t0) to a
target (m(T),T), where final state m(T) is specified but
the final time T is not specified. t0 and m0 are the initial
time and state, and are both fixed, i.e. (t0,m(0)=(0,m0)).
Assuming that m*(t) is corresponding to w1*(t), then by
Pontryagin Maximum principle, in order for w1*(t) to be

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2014, 6, 46-52

48 Dynamic Effort Allocation Problem Using Genetic Algorithm Approach

optimal, it is essential that there exists a non-zero,
continuous vector function λ*(t) and a constant scalar λ0
such that [22]:

(a) λ*(t) and m*(t) are the explanation of the
canonical system

),,,()(*
1

**
*

twmH
t

tm λ
λ∂

∂
=

∂
∂

),,,()(*
1

**
*

twm
m
H

t
t λλ

∂
∂

−=
∂

∂

Where the current value of Hamiltonian function with λ0
=1 must initially be defined, that is

H(m(t),w1(t),λ(t),t)=

)()()]()([
)()()]()()([

121

121

twctfttc
tfttwctftc

−+−
=++−

λ
λ

 (3)

(b)),, ,(),,,(1

**
1

** twmHtwmH λλ ≥
(c) All boundary conditions be satisfied.

W1

*(t) maximizes

0
)()()()]()([1121

≥
∀−+− twtwctfttc λ

 (4)

We can interpret λ(t) as the marginal value of faults at

time ‘t’, which will be negative because increasing the
number of faults will increase the debugging charge. The
physical explanation of the Hamiltonian H can be given
as follows:
λ(t) stands for future cost incurred as one more fault is
introduced in the system (at time t). Thus the Hamiltonian
is the sum of testing cost c2w1(t), current cost c1(t)f(t) and
future cost λ(t)f(t). Here, H denotes the instantaneous
entire cost of the firm at time t.

The followings are two necessary conditions that hold
for an optimal solution:

0

)(0 21111
1

=

−−−−⇒=
∂
∂ cfwcfwc

w
H λ

Other optimality condition is

02

)(0

111

1111112
1

2

≤−

−−−⇒≤
∂
∂

ww

wwww

fc

fcfc
w
H λ

Where
1

1
11 w

cc w ∂
∂

= and 2
1

1
2

111 w
cc ww ∂

∂
=

From the above optimality conditions, we will get the
following results:

))(()(
))(())()((

)(

)(11

21

*
1

tmabtc
ctmabtct

tw

tw −
−−−

=⇒
λ (5)

And,

)()(*
1

*
2 twwtw −=

The value of

))](([)()(1 tmabwttmttm −Δ+=Δ+
(6)

And,

))]((
)([)()(

1

1

tc
tbwtttt

λ
λλ

−
−Δ+=Δ+

 (7)

The corresponding Hamiltonian will be given as

H(t)=
)(

))()(())()((

12

11

twc
tmatbwttc

−
−+− λ

 (8)

And the adjoint variable λ(t) can be defined as

))]()(()()(11
* tctbwtt

dt
d λλλ −−==

(9)

With the transversality condition at t=T*, H(T*)= 0 and
λ(T*)≤0 (=0 if m*(T*)>ma)

From (9) and the transversality condition of λ(T) we
have

dttctbwTt
T

))()(()()(10 1 λλλ −+= ∫

(10)

The necessary condition for optimality is Hw1=0
Now,

2

12111

)(
)()(

cmab
ccxwcH w

−−
−=−+−= λλ

 (11)

The above optimization problem is solved by genetic

algorithm approach (GA), which is categorized as a
powerful computerized exploratory search and
optimization method [23-26].

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2014, 6, 46-52

 Dynamic Effort Allocation Problem Using Genetic Algorithm Approach 49

GA is a popular computerized heuristic method based
on the Darwin’s evolutionary theory and natural genetics.
Genetic Algorithm has been effectively implemented on
diverse area of optimization problem like transportation,
assignment problems, inventory control, job scheduling
and decision-making problems based on real-life situation.
The main essential feature of Genetic Algorithm (GA) is
to mimic the genetic reproduction and natural evolution
procedure artificially. In this process populations
undertake continuous change using some genetic
operators like selection, inheritance, crossover (also
called recombination), and mutation. Genetic algorithm is
very beneficial for solving difficult type of problems
which are very hard to solve using some other
algorithmic techniques. The Genetic algorithm (GA)
evolution usually begins with a population of randomly
generated individuals to an assumed problem where each
and every individual is described using some form of
encoding (Binary encoding, permutation encoding, value
encoding) as a chromosome. We used binary encoding in
our problem. These chromosomes will evaluate their
objective function. Based on their objective functions
value, chromosomes inside the population will be chosen
for reproduction and selected individuals are manipulated
by crossover and mutation. Basically, the crossover is
used to produce offspring from two selected
chromosomes. And the mutation is use for a small
alteration to breed offspring. For every new generation of
solutions, there is some improvement over the previous
one. This method is applied iteratively until satisfies the
termination criterion.

To implement the above Genetic Algorithm for the
planned model, the following standard mechanisms will
be measured;
(i) Genetic algorithm parameters (size of population,

rate of mutation and rate of crossover)
(ii) Representation of chromosome
(iii) Population initialization
(iv) Evaluation of objective function
(v) Selection process
(vi) GA operators (Crossover, Mutation and elitism)

IV. GA PARAMETERS

Primarily, we have to decide the different parameters
on which the said GA depends. All these parameters
include population size (p-size), maximum number of
generation (max-gen), crossover rate (p-cros) and
mutation rate (p-mute). For choosing population size
there is no fixed rule for GA. If the size of population is
huge, keeping of records in middle steps of genetic
algorithm might raise some difficulties at execution time.
If the size of population is very small, few genetic
operators will not work appropriately. Regarding the
number of maximum generations, there is no fixed sign to
consider this value. From the natural genetics it is clear
that the crossover rate is always greater than mutation

rate. Generally, the crossover rate lies between 0.5 and
0.95 whereas mutation rate lies between 0.06 and 0.02.

Chromosome representation Genetic Algorithm always
starts with the initial population of solutions represented
as chromosomes. A chromosome comprises of genes
where each gene represents a specific feature of the
solution.

Initial population for a specified total testing effort W
and for fault detected at time t, GA produces the initial
population randomly. It will initialize random values
within the bounds of every variable. The main role of the
population is to hold likely solutions.

Selection In genetic algorithm selection operator plays
vital role because selection is the very first operator
applied to the population. The main goal of this operator
is to choose the above average chromosome based on the
fitness value of every chromosome and remove lower
average chromosome from the population for the
subsequent generation under the principle “survival of the
relatively fit”. In this Experiment, we have used
tournament selection.

However, to solve the problem dynamically, the initial
value of λ(0) and f(0) must be given first then, from
objective function we will find the optimal value of effort
and fault detected at time t.

Table 1. Parameters of the GA

Parameter Value
Population Size 20
Number of Generation 100
Selection Mode Tournament
Crossover Probability 0.8
Mutation Probability 0.2

Based on the above parameters problem is solved using

MATLAB (gatool) version 7.4.0 Global Optimization
Toolbox User’s Guide [27].

V. NUMERICAL ANALYSIS

Assume that a=100, b=0.2,
 w1(0)=0.5, λ(0)=40,
 f(0)=2, C0=1000,
 c2=5000, ma=95

The parameter values of ‘a’ and ‘b’ can be estimated
for any given dataset outside the normative model by
considering equation (1). Though these parameters are
mutually correlated with w1(t) and w2(t), due to the
interdependence between the two, one effort can be
expressed in the form of the other. In this investigation,
the main aim is to check the importance of allocation of
the testing effort (w1), we use genetic algorithm to
allocate testing effort.

Below figure shows the optimal allocation of testing
effort with respect to time.

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2014, 6, 46-52

50 Dynamic Effort Allocation Problem Using Genetic Algorithm Approach

Fig 1: Allocation of testing effort w1 versus time

VI. SOFTWARE RELEASE POLICY

In this segment we will discuss the optimal time to
handover a software product from development stage to
operational stage. The literary meaning of the term ‘to
release’ is to specify that the software has met a defined
quality level during testing and is ready for mass
distribution.

An ideal software release policy addresses the
following concerns of a release manager:

• Avoid excessive time to market due to over testing.
• Manage all product associated activities, from idea to

retirement
• Optimize product performance and plan upcoming

investments
• Manage and increase the software products reliability.
• Balance client wants for reasonable price, delivery

on time and a reliable product.
• Determine whether the software product is good

enough to release to client, minimizing the risks of
releasing software with serious problem.

For a given total fault content in software ‘a’ we

generate initial population to solve this problem. And we
used all above parameters.

Fig 2: Cumulative number of faults removed versus time.

Table 2. Parameters of the GA for cumulative fault removing

Parameter Value

Population Size 20
Number of Generations 80
Selection Mode Tournament
Crossover Probability 0.8
Mutation Probability 0.2

In this study, the main goal is to check the significance

of distribution of testing effort (w1). Hence, its value has
been supposed to be constant during the life cycle.
During this analysis the value of w1 is gradually increased
keeping the other parameters constant and the rate of fault
removal increases quickly.

The proper implementation of release decision depends
on whether or not the software will be transferred from its
development stage to operational stage. In other words, it
is a trade-off between primary release to capture the
profit of prior market introduction, and the delay of
product release to enhance functionality or to improve
quality. Testing and debugging process play a vital role in
software release policy. For given total cost of the
software, we generate initial population to solve these
problems. Figure show the optimal time to release
software.

Fig 3: w1=0.9

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2014, 6, 46-52

 Dynamic Effort Allocation Problem Using Genetic Algorithm Approach 51

Fig 4: w1=0.93

Fig 5: w1=0.95

Fig 6: w1=0.97

From the above investigation, it can be concluded that
as the value of w1 decreases, the point of interaction
between the cost of fixing and cost of detecting gets
delayed. And, at the same time, it takes longer period to
intersect them. From the above mathematical exercise it
is very clear that the better time to release software is
when the interaction point of fixing and detecting cost
lies under minimum cost criterion.

VII. CONCLUSION

In this paper, we propose an alternative foundation for
optimal allocation of testing resources using genetic
algorithm. Using the control theoretic approach, we
recommend that software testing and debugging should
be viewed as simultaneous behaviors. During the
investigation, we have examined allocating effort in
dynamic environment using genetic algorithm. Also, we
have examined that due to the experience curve
phenomenon, the effort required to fix an error keeps on
decreasing with time. At the same time, testing effort
keeps on increasing as in the later stages of a planning
period it becomes tough to detect faults. So company
employs more efforts to detect the remaining faults.
Using the proposed methods, we can easily control the
consumption rate of testing effort expenses and discover
more and more faults in a definite time interval. This
means that the developers and testers can devote their
time and resources to complete their testing tasks based
on well controlled expenditures. This paper also studies
the optimal resource allocation problems for various
conditions by examining the behavior of the model
parameters. A detailed optimization policy based on
genetic algorithm is proposed and numerical examples
are also exemplified. The release problem is also
discussed. The software product’s success depends on the
time of its introduce time in the marketplace. In such
instance, we need to conclude the optimal stopping time
for testing. Based on theoretical and empirical study in
this paper, we observed that the optimal release time of
software is the time point where the total cost incurred
due to correction coincides with the cost of detection
maintaining the strict reliability constraint. Otherwise, the
organization will wait for perfect time.

REFERENCES

[1] Chatterjee, S., Misra, R.B., and Alam, S.S. ‘Joint Effect of
Test Effort and Learning Factor on Software Reliability
and Optimal Release Policy’, International Journal of
Systems Science, 1997, 28, 391–396.

[2] Kapur, P.K., Garg, R.B., and Kumar, S. Contributions to
Hardware and Software Reliability, Singapore: World
Scientific 1999.

[3] Basili, V.R. and Zelkowitz, M.V., ‘Analyzing Medium
Scale Software Development’, in Proceedings of the 3rd
International Conference on Software Engineering, 1979,
pp. 116–123.

[4] Kapur, P.K., and Garg, R.B. ‘Cost Reliability Optimum
Release Policy for a Software System with Testing Effort’,
OPSEARCH, 1990, 27, 109–116.

[5] Hou, R.H., Kuo, S.Y., and Chang, Y.P. ‘Optimal Release
Times for Software Systems with Scheduled Delivery
Time Based on the HGDM’, IEEE Transactions of
Computer, 1997, 46, 216–221.

[6] Yamada, S., Hishitani, J., and Osaki, S. ‘Software
Reliability Growth Model with Weibull Testing Effort: A
Model and Application’, IEEE Transactions on Reliability,
1993, R-42, 100–105.

[7] Musa, J.D., Iannino, A., and Okumoto, K., Software
Reliability: Measurement, Prediction, Applications, New
York: Mc Graw Hill. 1987.

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2014, 6, 46-52

52 Dynamic Effort Allocation Problem Using Genetic Algorithm Approach

[8] Tamura, Y., and Yamada, S. ‘Optimisation Analysis for
Reliability Assessment Based on Stochastic Differential
Equation Modelling for Open Source Software’,
International Journal of Systems Science, 2009, 40, 429–
438.

[9] Myers, G.J. Software Reliability: Principles and Practices,
New York: John Wiley & Sons. 1976.

[10] Xie, M. Software Reliability Modeling, Singapore: World
Scientific. 1991.

[11] Ichimori, T., Yamada, S. and Nishiwaki, M. ‘Optimal
Allocation Policies for Testing-resource Based on a
Software Reliability Growth Model’, in Proceedings of the
Australia–Japan Workshop on Stochastic Models in
Engineering, Technology and Management, 1993, pp. 182–
189.

[12] Huang, C.-Y., Kuo, S.-Y. and Chen, J.Y. ‘Analysis of a
Software Reliability Growth Model with Logistic Testing
Effort Function’, in Proceeding of 8th International
Symposium on Software Reliability Engineering, 1997, pp.
378–388.

[13] Pillai, K., and Nair, V.S.S. ‘A Model for Software
Development Effort and Cost Estimation’, IEEE
Transactions on Software Engineering, 1997, 23, 485–497.

[14] Kapur, P.K., and Bardhan, A.K. ‘Testing Effort Control
Through Software Reliability Growth Modelling’,
International Journal of Modelling and Simulation, 2002,
22, 90–96.

[15] Kapur, P.K., Gupta, A., Shatnawi, O.R., and
Yadavalli,V.S.S. ‘Testing Effort Control Using Flexible
Software Reliability Growth Model with Change Point’,
International Journal of Performability Engineering, 2006,
2, 245–262.

[16] Pham, H., and Zhang., X. ‘A Software Cost Model with
Warranty and Risk Costs’, IEEE Transactions on
Computer, 1999, 48, 71–75.

[17] Blackburn, J.D., Scudder, G.D., and Van Wassenhove, L.N.
‘Concurrent Software Development’, Communications of
the ACM, 2000, 43, 200–214.

[18] Chiang, I.R., and Mookerjee, V.S. ‘A Fault Threshold
Policy to Manage Software Development Projects’,
Information Systems Research, 2004, 15, 3–19.

[19] Jain, M. and Priya, K,. Optimal policies for software
testing time. Journal of Computer Society of India, 2002.
32, 25-30.

[20] Zheng, S. Dynamic release policies for software systems
with a reliability constraint. IIE Transactions, 2002. 34,
253-262.

[21] Jain, M. and Gupta, R. Optimal Release Policy of Module-
Based Software. Quality Technology and Quantitative
Management 2011. Vol. 8, No. 2, pp. 147-165.

[22] Sethi, S.P., and Thompson, G.L., Optimal Control Theory
– Applications to Management Science and Economics
(2nd ed.), New York: Springer. 2005.

[23] Goldberg, D. E., Genetic Algorithms: in Search
Optimization and Machines Learning (New York:
Addison-Wesley). 1989.

[24] David, L. Handbook of Genetic Algorithms. New York:
Van Nostrand Reinhold. 1991.

[25] Deb K., Optimization for Engineering Design-Algorithms
and Examples. Prentice Hall of India,New Delhi. 1995.

[26] Lin, C., Shen, S., Yeh, Y., & Ding, J. Dynamic Optimal
Control Policy In Advertising Price and Quality.
International Journal of Systems Science, 32, 2. Business
Source Premier Database. 2001.

[27] Global Optimization Toolbox User’s Guide R2012a The
MathWorks, Inc.

[28] Chang, Y.-C. ‘A Sequential Software Release Policy’,
Annals of the Institute of Statistical Mathematics, 2004, 56,
193–204. 7720-7725.

Authors’ profiles

Md. Nasar received his BCA degree
from T. M. Bhagalpur University,
Bhagalpur in 2002, Master in Computer
Science from G. B. Pant University of
Agriculture & Technology, Pantnagar,
India in 2006. He has also received
Microsoft Certified Technology Specialist
(MCTS). At present, he is pursuing Ph.D
in Computer Science from Galgotias
University, Gr. Noida, INDIA. He is

having 8 years of experience in Teaching, and Software
Development. His research interest includes Software
Reliability and soft computing.

Dr. Prashant Johri working as a
professor in school of computing science
and Engineering, Galgotias University, Gr.
Noida. .He received his Ph.D degree in
Software Reliability from Jiwaji
University Gawalior, India. He has more
than 15 years of experience in teaching.
He has published numerous papers in the
area of software reliability in international

journals and conference proceedings His area of research is
software reliability, soft computing, parallel distribution and
information security.

Dr. Udayan Chanda is currently
working as Assistant Professor in
Department of Management, Birla
Institute of Technology & Science (BITS)
Pilani. Earlier he was associated with
Industrial Statistics Lab., Department of
Information & Industrial Engineering
Yonsei University as Post-Doctoral
Fellow and Department of Operational

Research, University of Delhi as Assistant Professor (Ad-hoc).
He received his Ph.D. degree in Marketing Models and
Optimization (Operational Research) from University of Delhi,
Delhi. He has published numerous papers in the area of
Marketing Models, Optimization, Software Reliability and
Inventory Management in international journals and conference
proceedings. His current research interests include Marketing
Models, Inventory Modeling, Software Reliability Growth
Modeling, and Dynamic Optimization Techniques.

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2014, 6, 46-52

	I. Introduction
	II. Research Background
	III. Model Formulation And Solution
	IV. GA Parameters
	V. Numerical analysis
	VI. Software Release Policy
	VII. Conclusion
	References
	Authors’ profiles

