
I.J. Modern Education and Computer Science, 2014, 6, 58-70
Published Online June 2014 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijmecs.2014.06.08

A Harmony Search Algorithm with Multi-pitch
Adjustment Rate for Symbolic Time Series Data

Representation

Almahdi M. Ahmed1, 2·
1University Kebangsaan Malaysia /Center for Artificial Intelligence Technology,

 Bangi Selangor, 43600, Malaysia
2Sebha University /Faculty of Education / Department of computer science, Traqan, 18785, Libya

Email: sheriftsm@gmail.com

Azuraliza Abu Bakar1·and Abdul Razak Hamdan1

1University Kebangsaan Malaysia /Center for Artificial Intelligence Technology,
Bangi Selangor, 43600, Malaysia
Email: {aab, arh }@ftsm.ukm.my

Abstract—The representation task in time series data
mining has been a critical issue because the direct
manipulation of continuous, high-dimensional data is
extremely difficult to complete efficiently. One time
series representation approach is a symbolic
representation called the Symbolic Aggregate
Approximation (SAX). The main function of SAX is to
find the appropriate numbers of alphabet symbols and
word size that represent the time series. The aim is to
achieve the largest alphabet size and maximum word
length with the minimum error rate. The purpose of this
study is to propose an integrated approach for a symbolic
time series data representation that attempts to improve
SAX by improving alphabet and word size. The Relative
Frequency (RF) binning method is employed to obtain
alphabet size and is integrated with the proposed Multi-
pitch Harmony Search (HSMPAR) algorithm to calculate
the optimum alphabet and word size. RF is used because
of its ability to obtain a sufficient number of intervals
with a low error rate compared to other related techniques.
HSMPAR algorithm is an optimization algorithm that
randomly generates solutions for alphabet and word sizes
and selects the best solutions. HS algorithms are
compatible with multi-pitch adjustment. The integration
of the RF and HSMPAR algorithms is developed to
maximize information rather than to improve the error
rate. The algorithms are tested on 20 standard time series
datasets and are compared with the meta-heuristic
algorithms GENEBLA and the original SAX algorithm.
The experimental results show that the proposed method
generates larger alphabet and word sizes and achieves a
lower error rate than the compared methods. With larger
alphabet and word sizes, the proposed method is capable
of preserving important information.

Index Terms—Data Mining, Date Representation, Time
Series, Discretization, Harmony Search Algorithm.

I. INTRODUCTION

Time series data are produced, continued, and
processed within a wide range of application domains in
various fields such as economics, engineering, science,
medicine and sociology. A time series is a sequence of
observed real-values, usually stamped with time by [1, 2].
In the context of time series data mining, the fundamental
problem relates to ways of represent time series data.
Several other important concepts that must be considered
when using time series include pre-processing, time
series detection, similarity computation and mining
operations.

The two main characteristics of a time series are the
number of segments (word size) and the number of values
(alphabet size) required to represent continuous values in
the series. The alphabet size partitions the range of
possible time series values into a set of regions. Each
region corresponds to a specific symbol, and each
measurement value is thus uniquely mapped into the
symbol of the region in which it falls. The number of
regions (symbols) reflects the word size and level of
resolution for the information that is retained. These types
of data require huge amounts of data storage. Therefore,
it is desirable to reduce word size and alphabet size to
maintain the most important features of the series
(information loss), information loss is produced after time
series reduction based on alphabet and word size. Many
approaches for working with time series data are focused
primarily on data representation [3-5]. Most of the
representation algorithms require, as an input, the
parameters alphabet size and word size. However, it may
be very difficult to know the best values for alphabet and
word size in advance in real-world applications. Hence,
word size and alphabet size need to be analyzed
extensively in order to find the optimal size of the given
time series data set [6-8]. In [5] have proposed the SAX

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2014, 6, 58-70

 A Harmony Search Algorithm with Multi-pitch Adjustment Rate for Symbolic Time Series Data Representation 59

approach to overcome the problems created by time
series representations. However, the SAX algorithm does
not clearly show how to define word and alphabet size
using a time series data set. There are other various
algorithms [6, 9] that attempt to solve the problem of
defining the optimal (minimum) word and alphabet size,
but these methods do not result in minimal information
loss. Information loss leads to the destruction of
important details contained in the original time series data.
These considerations have yet to be discussed in proofs of
proposed algorithms; often, researchers attempt only to
compress datasets and improve the classification
accuracy, which could lead to a loss of some important
sensitive information, for example in weather and
financial applications, in which the details of the
information in the data should not be removed. Such a
removal could result in essential information and hidden
patterns becoming destroyed. The main objective of this
study is to propose an improvement Harmony Search
algorithm for symbolic time series data representation.
The improvement algorithm takes in account and finds
the optimum (maximum) word and alphabet size, thus
reducing the loss of information [10].

This paper is organized into five sections. The next
section will discuss the background and related work that
has been performed on comparison techniques. Section 3
introduces the concept of the proposed methods: RF, HS
and SAX++ algorithms. The experimental design, results,
and discussion are reviewed in Section 4, and Section 5
will conclude our study

II. RELATED WORK

Most data mining methods for time series data are
assumed to apply to discrete time series [2]. However, in
most applications, these methods generate and use
floating point data types. Therefore, there are many
approaches to represent time series data in which the data
are floating point values. Many approaches and
techniques that focus on time series data representation
problems have been proposed over the past decade. The
first technique that was suggested for time series data
representation is the discrete-time Fourier transform
(DFT) [3]. The DFT is used to transform a sequence from
the time domain to a point in the frequency domain.
Choosing the k first frequencies and then representing
each sequence as a point in the k-dimensional space
achieves this goal. Another technique is the Wavelet
Transform (WT) or the Discrete Wavelet Transform
(DWT) [4]. The DWT has been found to be effective in
replacing the DFT for many applications. The
fundamental idea behind wavelets is to analyze the data
according to scale. Indeed, some researchers in the
wavelet field believe that, with wavelets, one is adopting
a whole new mind set or perspective for data processing.

Numerosity reduction technique for time series data
reduction was improved by [11] the proposed numerosity
reduction, to speed up one-nearest neighbor DTW. While
the idea of numerosity reduction for nearest-neighbor
classifiers has a long history, it show here that it can

leverage off an original observation about the relationship
between dataset size and DTW constraints to produce an
extremely compact dataset with little or no loss in
accuracy. The ideas were tested with a comprehensive set
of experiments, and show that it can efficiently produce
extremely fast accurate classifiers.

One representation scheme that uses a symbolic
representation of the data is called the SAX. SAX
represents the time series in terms of word size (w) and
alphabet size (a). It thus reduces the dimensionality of the
time series into a number of symbolic representations [5].
Their representation is unique in that it reduces the size of
the set while also allowing distance measures to define
the symbolic approach; smaller distance measures
correspond to periods that are defined in the original
series. This method is based on the Piecewise Aggregate
Approximation (PAA) representation [12, 13]. Many
studies have proposed improvements to SAX. These
studies [9, 14-18] have shown that the SAX method is
still an open field of research and that new developments
are required to bring new ideas to improve the
performance of SAX.

The latest research aimed at improving the SAX
algorithm is by [19] and focuses on indexing and mining
time series data. However, this research has not led to
algorithms that can be scaled to the increasingly massive
datasets that are encountered in science, engineering, and
business. The iSAX shows how a novel multi-resolution
symbolic representation can be used to index datasets that
are several orders of magnitude larger than any datasets
that have been considered in the literature. This approach
allows for both fast exact searches and ultra-fast
approximate searches. This scenario shows how both
types of searches can be combined and exploited; running
both searches as sub-routines in data mining algorithms
allows for exact mining of truly massive real-world
datasets, which contain millions of time series. Because
this approach is used to enhance the SAX representation
in terms of indexing and does not account for both the
alphabet and word sizes, we decided not to compare our
method with this approach. Otherwise, the comparison
would be unfair.

Another algorithm for time series representation is
proposed by [20]. The algorithm is using Bag of Patterns
(BOP). It works as follows. For each time series, it uses a
sliding window and extracts every possible subsequence
of length n (a user-defined parameter). Each subsequence
is normalized to have a mean of zero and standard
deviation of one before it is converted to a SAX string.
As a result, it obtains a set of strings, each of which
corresponds to a subsequence in the time series. As noted
in SAX, given a subsequence Si, it is likely to be very
similar to its neighboring sub sequences, Si-1 and Si+1
(i.e. those that start one point to the left, and one point to
the right of Si), especially if Si is in the smooth region of
the time series. These sub sequences are called trivial
matches of Si. To avoid over-counting these trivial
matches as true patterns, it needs to perform numerosity
reduction. Since SAX preserves the general shape of the
sequence, in some cases it might see that multiple

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2014, 6, 58-70

60 A Harmony Search Algorithm with Multi-pitch Adjustment Rate for Symbolic Time Series Data Representation

consecutive sub sequences are mapped to the same string.
In that case, the algorithm records only the first
occurrence of the string, and ignores the rest until it
encounters a string that is different. In other words, for
each group of consecutive identical strings, it records
only the first occurrence and count this group of
occurrences only once. The proposed algorithm shows
outperforms the existing methods in clustering,
classification, and anomaly detection on several real
datasets.

The majority of the methods used in data mining in
time series assume that the time series are discrete.
Nevertheless, most applications generate and use
floating-point data. Therefore, there are numerous
approaches to the discretisation of time series using
floating-point values. Different approaches and different
measures of function have been proposed, such as in [21];
the purpose of this method is to detect the persistent
states of the time series, and the method does not require
parameter specification. The applicability of this method
is restricted to the existence of persistent states in the
time series; this is uncommon in most of real-world
applications. This method processes a single time series
at a time, so the discretisation criterion is not generalized
to the complete dataset. In [16], time series values are
represented as a multi-connected graph. Using this
representation, similar time series are grouped in a
graphical model. However, this method is limited in that
it only works with one series at a time. Generating
alphabet and word sizes becomes a vital challenge in
discretising and reducing time series in the data
representation phase. Hence, much of the research
involved in using time series data sets focuses on solving
these problems.

Acosta et al. [22] introduced the entropy based linear
approximation (EBLA2) algorithm; this algorithm was
proposed as a method to automatically generate the
alphabet and word sizes to maximize classification
accuracy. Similar to a greedy search, a heuristic approach
is used to lead to a specific solution that is obtained from
the best result of iteration. EBLA2 requires no parameters
for the search because the outcome is deterministic.

An enhanced version of the algorithm EBLA2 was
proposed in [23] and is called EBLA3. This enhanced
algorithm performs a broader search than does EBLA2
while using simulated annealing as the discretisation
scheme for temporal datasets. This algorithm
automatically generates parameters with which it is
possible to identify better discretisation schemes.
However, the results obtained by this approach may be
improved by enabling entire populations to generate
discretisation schemes; this strategy may quickly reach
good solutions.

Daniel et al. [6] proposed a new algorithm for time
series discretisation using an approach that applies a
genetic algorithm called GENEBLA. This algorithm
generates random alphabet and word sizes for given time
series. The GENEBLA has proven to be an efficient
search algorithm for the state space or an approximate
solution optimization. It also performs efficiently when

the user does not have precise domain expertise because
genetic searches possess the ability to explore and learn
from their domain. Several other GA-based algorithms
used for discretisation are discussed in [24].

Bakar et al. [18] proposed an improvement to the time
series data discretisation approach by using the relative
frequency and K-nearest neighbor functions, which is
called the RF method. The main idea of the RF method is
to improve the process of determining a sufficient
alphabet size while discretising the time series data. The
proposed approach improves the time series data
representation in the SAX representation. Alphabets are
represented as symbols and can ensure an efficient
mining process, whereas better knowledge in the model
may be obtained without major knowledge loss. The
basic idea is not to minimize or maximize the size of the
alphabet for temporal patterns over their class labels.
Thus, RF can improve the representation precision
without losing the symbolic nature of the original SAX
representation.

Another proposed algorithm [17] for the SAX, seeks to
efficiently recognize and accurately discover important
patterns that are essential for time series data. The
proposed improved SAX, called iSAX, includes the
relative frequency and K-nearest neighbor (RFknn)
algorithm. The main task of the iSAX algorithm is to
determine the number of intervals represented in symbols
(alphabet size) that is sufficient to ensure efficient mining
and a good knowledge model without major loss of
knowledge. Thus, iSAX can improve representation
precision without losing the symbolic nature of the
original SAX representation. The iSAX algorithm is
compared with the original SAX and PAA
representations and demonstrates its improvement in
quality of the model. Ten time series rainfall data sets
were used. The experimental results showed that iSAX
yields better representation terms and minimal Euclidean
distance.

Ahmed et al. [9] proposed an improved SAX
representation, known as HSAX, which uses the
Harmony Search algorithm (HS) to explore the optimal
alphabet (a) and word size (w) for a SAX representation.
The HS algorithm was developed to maximize
information rather than to improve the error rate. The
HSAX algorithm was applied to standard time series
datasets. The experimental results were compared with
those of other meta-heuristic methods such as GENEBLA
[6] and the original SAX algorithm. These results show
that HSAX generates larger word and alphabet sizes than
GENEBLA and SAX. HSAX also achieves an error rate
that is lower than that of SAX and comparable to that of
GENEBLA.

Another algorithm for SAX representation was
introduced by Rechy-Ram [8]. The main idea in this work
is that the algorithm includes optimization of alphabet
size and word size. This algorithm uses evolutionary
programming (EP) and continues the search for an
efficient discretization scheme by using a fitness function
which considers three criteria: the entropy with respect to
the classification, the complexity measured as the number

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2014, 6, 58-70

 A Harmony Search Algorithm with Multi-pitch Adjustment Rate for Symbolic Time Series Data Representation 61

of different strings needed to represent the complete data
set, and the compression rate, which is assessed as the
length of the discrete representation.

Many studies have proposed improvements to SAX.
These studies [9, 14-18] have shown that the SAX
method is still an open field of research and those new
developments and ideas are needed to further improve the
performance of SAX. Table 1 shows the methods that are
proposed to improve SAX in terms of alphabet and word
sizes.

Table 1: The main focus of SAX algorithm variants

Algorithm Author Using Data Main focus

ELBA2 Acosta
(2005)

Grady
search

UCR(20) Minimisation

ELBA3 Alejandro
et al.
(2007)

SA UCR(22) Minimisation

GA Acosta
and
Lopez
(2009)

GA UCR(22) Minimisation

RF Bakar et
al. (2010)

Relative
Frequenc
y

UCR(22) Maximisatio
n

HSAX Ahmed et
al. (2011)

Harmony
search

UCR(22) Maximisatio
n

EP Rechy-
Ram
(2011)

Evolutio
nary
Program
ming

UCR(20) Minimisation

The proposed algorithms for improving the SAX time

series representations are required to minimize the
complete original set of time series into a smaller set of
time series. For example, the size of the word is found by
separating intervals (of given lengths) of the time series;
the number for the alphabet size reduces the number of
distinct values in the series. Table 1 shows that all of the
methods that have attempted to improve the SAX method
focus only on minimizing the time series rather than on
maximizing it. Thus, these methods may lead to large
reductions of the time series, which, in turn, results in the
loss of important information.

Hence, we must analyze temporal data to obtain an
efficient discrete representation of the given datasets. We
must take the problems described above into account as
one part of the search; however, our focus is mainly to
design an algorithm that maximizes both the word size
and the alphabet size for given datasets. These
considerations have yet to be discussed in the proofs of
proposed algorithms; often, researchers attempt only to
compress datasets and improve their classification
accuracy. This may lead to a loss of some information
that is both important and sensitive; for example,
applying these algorithms in weather and financial
applications, in which the details of the information in the
data should not be removed, may lead to knowledge loss.
Removing these details may result in the destruction of
essential information and hidden patterns.

III. PROPOSED METHODS

Time series data are produced, continued, and
processed within a wide range of application domains in
various fields such as economics, engineering, science,
medicine and sociology. In this section, we present an
improved SAX algorithm to represent time series data
called SAX++. The SAX algorithm works with two
parameters: alphabet size and word size. Specifically, we
propose an integration of the two algorithms RF and
HSMPAR to improve SAX. Using these algorithms allows
for the integration of a large amount of information
through maximization of the alphabet size and word size
while maintaining a low error rate.

3.1 Proposed RF method for alphabet size

In this section, we review the RF binning approach that
is proposed in [18]. The main goal of RF is to optimize
the alphabet size and minimize changes and losses in
knowledge from the original information. It is important
to achieve these goals, especially in a dataset that requires
the means and the integrity of the data to be retained. The
principle of RF and the distance measure are used to
determine a sufficient number of intervals (alphabet size)
that can ensure an acceptable to excellent knowledge
model, which will be obtained without a major loss of
knowledge. The explanation of RF is presented in the
following:
Definition 1: Let C=c1,c2,c3,..,cn, where C is a time series
and n denotes the time series length.
Definition 2: Let a=a1,a2,a3,…,am, where a denotes
alphabet size and m denotes the number of observations
in C.

1

1

1 , , 1..
m

rf j m
j

j

a a where j .
a=

=

= =∑
∑

m (1)

Where j=1,2,…,m, and arf is the relative frequency for

each alphabet (a) in a time series C and aj is the alphabet
in C.

1

1

, , 1..
m

rfj
m

j
rfj

j

a
T where j

a=

=

= =∑
∑

.m

.

 (2)

Where T, is the cumulative relative frequency of

alphabets in C, which is known as the threshold value.

,
() , , 1..

,
rfj

class j
rfj

c a T
x a where j

c a T

≥⎧ ⎫⎪ ⎪= =⎨ ⎬≤⎪ ⎪⎩ ⎭&
m (3)

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2014, 6, 58-70

62 A Harmony Search Algorithm with Multi-pitch Adjustment Rate for Symbolic Time Series Data Representation

Definition 3: Let where denotes the class
high confidence alphabet and C denotes the class low
confidence alphabet.

{ , }X C C= & C
&

Definition 4: Let a={a1class,a2class,a3class,..,awclass} where a
denotes the alphabets with the class label equal to the
high confidence alphabet and w denotes the number of
observations.
Definition 5: Let where

 denotes the alphabets with the class label equal to the
low confidence alphabet and k denotes the number of
observations.

{ , , ,...,1 2 }3a a a a aclass class class kclass′ ′ ′ ′ ′=

a′

2

1 1

(,) min () .
k w

i j i j
j i

Dist a a im a a
= =

′ = −∑∑ ′ (4)

Where the Dist is a distance function, which computes

the difference between the two alphabets a and returns
the minimum values for the distance.

ˆ { , (,) min .i ja a Dist a a im′= ≡ (5)

Where is denotes the new alphabets and w is a new
number for the generated alphabet size.

â

1 2 3ˆ ˆ ˆ ˆ ˆ(, , ,... ,}.wa a a a a= (6)

In Eq. (1), the RF algorithm starts to compute the

relative frequency for each observed alphabet in C. The
RF means that each alphabet’s frequency value is divided
by the number of observation alphabets. Then, Eq. (2)
shows how the algorithm computes the threshold values
(T), which relies on the summation of rf for each alphabet
and is divided by the number of observations. In Eq. (3),
RF shows how the class is assigned to each alphabet:
either (high confidence) or C (low confidence).
Moreover, RF continues to find the distance between the
two alphabets as shown in Eq. (4). Lastly, RF merges the
two alphabets based on the minimum values that are
yielded by Eq. (5), and lastly, Eq. (6) demonstrates the
new alphabets of the new alphabet size.

C &

Previous discussions have indicated that to eliminate a
redundant alphabet size (intervals), state-of-the-art
interval selection methods must rely on using subset
evaluation, which substantially reduces the number of
intervals and leads to greater information loss. Hence,
this method can produce better results than can methods
that do not address information loss. Our goal is to
efficiently find the optimal set of alphabet sizes using the
RF algorithm and to integrate it with the HSMPAR
algorithm to find word size. In the next section, we will
discuss the HSMPAR algorithm.

3.2 Proposed Harmony Search with Multi-pitch Adjusting
Rate (HSMPAR) for word size.

In this section, we explain our proposed HSMPAR
algorithm. It is based on the basic HS algorithm with
Multi-pitch Adjusting Rate as well as five important steps
outlined below. HSMPAR algorithm is integrated with RF
algorithm to calculate the optimum alphabet and word
size .Our technique takes the order of the information into
account without changing the original information. The
basic HSMPAR algorithm consists of the following five
steps: i) parameter initialisation; ii) harmony memory
initialisation; iii) new harmony improvisation; iv)
harmony memory update; and v) termination criterion
check.
Step 1. Parameter Initialisation:

Parameter initialisation: In the first step, the
optimisation problem is specified using the following
decision variables and other variables. F(x) is the fitness
function, xi is the decision variable representing two
variables which are alphabet size (ai) and word size (wi),
and HMS represents the candidate solutions for each
variable (x) as a variable value word size (w).

In this study, there are 50 randomly selected candidate
HMS values which are obtained from a and w for each
variable, where N is the number of decision variables, k is
HMS, and xi is the random solution. HMCR=0.2 and
PAR=0.9. HM is shown in Eq. (7):

{ (1), (2), (3),..., ()ij ij ij ijHM x x x x HMS .= (7)

Here, HMS is the number of candidate values for the
discrete decision variables, and xij is the decision
variables as in Eq. (7).

1 2 3() { (), (), (),..., ().HMSF X f x f x f x f x= (8)

Here, f(x1), f(x2),…, f(xHMS) shows each solution vector
for design variables and the corresponding fitness
function value.

The HS algorithm parameters are also specified in this
step: HMS (harmony memory size = the number of
simultaneous solution vectors in harmony memory),
HMCR (harmony memory considering rate), PAR (pitch
adjusting rate), and the number of improvisations
(number of fitness function evaluations). These algorithm
parameters are presented in Table 2.

Table 2. Parameters description

Parameter Description
F(x) fitness function
Xi decision variable (W, a)
N number of decision variables
HM harmony memory
HMS number of solutions in HM
PAR patch adjustment
HMCR harmony memory consideration
P probability
W word size
A alphabet size
Ni number of iterations
N time series length

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2014, 6, 58-70

 A Harmony Search Algorithm with Multi-pitch Adjustment Rate for Symbolic Time Series Data Representation 63

Step 2.Harmony Memory initialisation
In Step 2, the Harmony Memory (HM) is crammed

with as many randomly generated solution vectors as the
size of the HM will allow. The harmony memory
initialisation consists of the following steps: Every
harmony i randomly generates the solution vector x1=
{w1,w2,...,wHMS-1, wHMS} x2= {a1, a2, ..., aHMS1, aHMS}
where {2≤w<n}, and HMS is the number of solutions in
HM. The random values generated range between [0,1],
where the random values represent the real values of the
time series sequences. The information gain is then
calculated based on entropy for F(x).
Step 3: New Harmony Improvisation

Basically, a new harmony vector, x′ = (x′1, x′2,..., x′HMS)
is improvised by following three rules: (i) random
selection, (ii) HMCR consideration, and (iii) multi-pitch
adjustment.
(1) Random selection

When HSMPAR determines the value iI for the new
harmony x′ = (x′1, x′2,..., x′HMS), it randomly picks any two
values from total value range {xi(1),…,xi(HMS)} with a
probability of (1-HMCR).
(2) HMCR consideration

When HS determines the value i, it randomly picks
any two values from HM= {xi (1),…,xi (HSM)} with the
probability HMCR. The probability of HMCR can be
calculated using the uniform distribution U (0, 1):

int((0,1),) 1.HMCRP U HMS= + (9)

As the musician plays any pitch out of the preferred
pitches in his/her memory (for example, k candidates is
the number of random solutions (a,w) for each variable
HM={k1, k2, k3, …, kHMS-1,kHMS}, the value of the decision
variable x′i is chosen from any number of pitches stored
in HM with the probability PHMCR while it is randomly
chosen as shown in Eq (9).
(3) Multi-pitch adjustment

After the value of i has been randomly picked from
the HM in the above memory consideration process, it
can be further adjusted into neighbouring values by
adding a certain amount to the value, with the probability
PAR as shown in Eq. (10). For example, the value of k1
can be adjusted to (k±m) with respect to (1<k <n), with a
range of time series original length (U (2, n-1)), while the
original pitch obtained in the HM consideration is
maintained at the probability PAR.

int((0,1),) 1.PARP U HMS= + (10)

In this study, a new harmony vector represented by
word size and alphabet size, x1= {w1,w2,...,wHMS-1,wHMS}
and x2={a1, a2, ..., aHMS1, aHMS} is improved by the three
rules with the following steps.

1. Select two random solutions x([wrndm1,arndm1] and
[wrndm2,arndm2]).

2. The harmony memory consideration rate is the
intersection of the two solutions of the
probability HMCR. For example, (wrndm1,arndm1)

is swapped with (wrndm2,arndm2) and PHMCR>0.2,
then the HMCR will be (wrndm1,arndm2) and
(wrndm2,arndm1).

3. The Harmony Pitch Adjustment PAR is
converted more than once (multi-pitch) using the
PAR probability. If the PPAR<0.9, then the
random value is generated in the range of the
original time series (U (2,n-1)). For example
when k=i, then k is converted to i± (U (2,n-1)).

Step 4: Harmony Memory Update
If the new harmony F(xrandm1) and F(xrandm2) are better

than both the selected old harmony F(x1) and F(x2) in the
HM, as judged by the fitness function value, the new
harmony values are included in the HM and the existing
worst old harmony values are excluded from the HM.

1. For each new harmony, x1 and x2 are adjusted by
PAR (solution1, solution2).

2. Calculate the fitness function for each x, F(x).
3. Repeat until the new solutions (xi) get better than

the randomly selected solution in HM.
4. Include the new solutions in HM and exclude the

old solutions from HM.
5. End

Step 5: Termination Criteria Check
Termination criterion check: If the termination

criterion (the number of improvisations) is reached, the
computation is stopped. Otherwise, Steps 3 and 4 are
repeated.

Fitness Function
Any optimisation algorithm requires a fitness function

to measure the fitness of the set of solutions that are
created. Most discretisation techniques require a
heuristics approach to avoid the a priori definition of
alphabet size and word size[15, 25]. Multi-Interval
Discretisation (Ent-MDLP) is a discretisation technique
that uses the entropy measure proposed by Fayyad and
Irani. Ent-MDLP uses the entropy minimisation heuristic
(EMH) to divide continuous values and the minimum
description length criteria to control the number of
intervals produced in continuous space. The stopping
criterion for this technique is the minimum description
length principle (MDLP). Later, the MDLP is applied in
many other techniques and is known as one of the best
discretisation techniques that exist.

A new quality score for meaningful, unsupervised
discretisation of the time series [21] is proposed by
accounting for temporal information while searching for
persistence. Recently [22], a fitness function to select the
optimal cut points that are based on the information gain
measure was proposed. Fitness functions should reflect
how well a set is represented by a set of features. Hence,
we make use of the information gain measure as a fitness
function for a given solution or individual via the
harmony algorithm. Formally, the maximum value of
entropy is based on information gain and can be stated as
Eq. (11) where Sclass and Svalue are the time series class
and value, respectively. [6] The variable #Svalue is the
number of time series with a value in S, and #Sclass is the
number of time series in class S. The entropy of Sclass,
Ent(Sclass) is given by Eq.(12). The term c is the number

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2014, 6, 58-70

64 A Harmony Search Algorithm with Multi-pitch Adjustment Rate for Symbolic Time Series Data Representation

of classes and pi is the probability of class i in Sclass. It is
important to note that the entry time series is considered
to be one attribute and that the discretisation scheme is
considered for the entire dataset. This method allows the
algorithm to find a good global solution that maximises
the entropy of the data.

(,) () ()Gain Sclass Svalue Ent Sclass Ent Svalue= −

.i

. (11)

2
1

() log
c

i
i

Ent Sclass p p
=

= −∑ (12)

The entropy of S when it takes on the time series value

Svalue is given by Eq. (13), and the fitness function is
given by Eq.(14) where n is the time series length and
gaini is the gain between time series values and its class,
i=1…n.

2() (|) log (|)i iEnt Svalue p S v p S v= (13)

1() .

n

i
i

Gain
F x

n
==
∑

 (14)

3.3 Proposed SAX++ method

There are three critical factors that demonstrate the
major difference between the HSAX that was reported
previously [9] with our proposed SAX++ algorithm. First,
in [9], HSAX is implemented only to generate the word
size based on one pitch adjustment at each iteration; SAX
is then run using a predefined alphabet size. In contrast,
our proposed HSMPAR generates both alphabet size and
word size and it works with multi-pitch adjustment (four
pitches at one iteration). Secondly, the previous HS runs
with 10 populations and 50 iterations, whereas in this
study, the HSMPAR extends the number of individuals to
50 populations, and the number of improvements is
increased to 100 iterations. Thirdly, in this study,
whenever the HSMPAR returns the optimal alphabet size, it
will pass over to the RF process to maintain it. It then
returns the most frequent alphabets to the HSMPAR process.
Our algorithm aims to find solutions for given time series,
which is the problem described in the following
definition:
Definition 6: Let D={C1,C2,C3,...,CN}, where D denotes
the time series dataset, C={c1,c2,c3,..,cn},where C denotes
the time series, n denotes the length of the time series,
i=1..n.

Input: C=c1,c2,c3,...,cn, a time series
HMCR=0.2
PAR=0.
Output: Alphabet size and Word size
1:Begin
2:Initialise the Harmony Memory
(HM),HM=([w1,a1],[w2,a2],[w3,a3],..,[wHMS-1,aHMS1],[wHMS,aHMS]),:
Calculate fitness for each solution vector generated in HM.
F(X)=(x1,x2,x3,..,xHMS-1,xHMS),

3:WhileiGeneration<nGeneration
 4: For i=1 to number of decision variables N do where N=1..2

 5:PHMCR=Rand(0,1), PPAR= Rand(0,1).
 6: If (PHMCR<HMCR) /*(memory consideration)*/
 7:x[i]=Fselection (HM) /*two solutions will be randomly
 chosen from harmony memory*/
 8: []x̀ i = FHMCR(x[i]) /* harmony memory consideration
rate
 9: If (PPAR< PAR) /* pitch adjustment)*/
10: [] []` `x i x i= ± U(2,n-1)/* pitch adjustment rate * four */
 11: End if
 12: Else
 13: PAR=PPAR± rand(0,1); HMCR= PHMCR± rand(0,1)
 14: End if
 15: End for
 16: fitness_x =Ffitness(x̀).
17: For each HMj in HM do, where j=1..HMS
 18: If the new solution is better than the random selected solution in
the harmony memory
 19: then Replace the worst solution by the new one
 20: End if
21: End for
 22: Increase(iGeneration)
23: End while
24: Return best individual (population).

Algorithm 1: Phase 1- HSMPAR Algorithm for optimal alphabet and word
size

The HSMPAR is designed to solve the problem of
discretisation. As discussed earlier, the problem of
discretisation of a time series relates to finding the
number and range of intervals of the time series that
maintain relevant information (alphabet size). It also
relates to the discretisation of data on each interval of
time (word size). In this method, C={c1,c2,c3,...,cn} is a
time series and n is the length of the time series. The
algorithm starts with initialising the Harmony Memory
(HM), where HM includes random solutions, and each
harmony contains two decision variables, x1 and x2,
which denote the alphabet and word size, respectively.
These solutions are randomly generated and follow the
hard rule that states that (2 ≥w< n) and (2 ≥ a <w). The
PHMCR contains the probability values between [0, 1] and
the PPAR contains the probability values between [0, 1].
nGeneration is the number of iterations in the algorithm.
The efficiency of the algorithm is the amount of
improvement. It is based on the harmony memory
consideration and random selection, where two random
solutions are picked from HM. For instance HM1(w1,
a1)and HM2(w2, a2) may be used. The HSMPAR algorithm
then tries to improve both solutions at the same time, first
if the PHMCR is less than HMCR, then the harmony
memory-considering rate function (FHMCR()) is called
to improve the selected solutions. For instance, HM1(w1,
a1) and HM2(w2, a2) may be swapped similarly to cross
over in GA, where HM1(a1) is swapped with HM2(a2) to
result in HM1(w1,a2) and HM2(w2, a1). In the last stage of
the improvement, if the PPAR satisfies the PAR, then the
pitch adjustment rate is performed four times (multi-pitch
adjustment) to improve the selected solutions, where PAR
is adjusted by adding or minimising a random value in
the range of U(2,n-1) and U(2,w). Finally, the
improvement of solutions in HM is measured using the
fitness function, F(x). If the new solutions are better than

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2014, 6, 58-70

 A Harmony Search Algorithm with Multi-pitch Adjustment Rate for Symbolic Time Series Data Representation 65

the selected old solutions in HM, then the old solutions
from HM are excluded and the new solutions in HM are
included to return the best individual.

Example
A given time series of length n=90 and a=13 are

passed through the HSMPAR algorithm. As explained
earlier, each time series has the chance to be run 10 times
with nGeneration=100 iterations for each time the series
run. The number of populations is HMS=50, the
PHMCR=0.2 and the PPAR=0.9. First, the original time
series is tested with F(x) and the output is F(x) =0.63.

Fig. 1a.

Fig. 1b.

Fig. 1c.

Fig 1: Two random optimal solutions that were generated after 100
iterations.

Figure 1a shows the improvement of the HSMPAR
solutions, including the solutions for (F (x)) that are
returned after 100 iterations the solutions after 10
applications of HSMPAR. Solution1 reaches the best gain at
0.957, and solution2 reaches the best gain at 0.955. It

should be noted that solution1 starts at an initial accuracy
F(x) =0.62 and is improved with 100 iterations and ten
runs. Through this improvement, PAR is adjusted four
times at each iGeneration. Figure 1b represents the
number of word sizes that was generated at each
iGeneration, associated with the best F(x) at application
number 6. As shown in figure 1c, the best word size (47)
is reached at F(x)=0.957, and the best alphabet size (12)
is achieved at the same F(x). Table 3 shows an example
of the first 10 populations in HM that are used in this
example.

Table 3. Example of HM

Populations Word
size

Alphabet
size

F(x)

1 42 12 0.60

2 51 12 0.69

3 46 12 0.63

4 38 12 0.73

5 48 11 0.63

6 50 13 0.67

7 45 13 0.62

8 46 13 0.68

9 40 11 0.64

10 45 11 0.67

Input: C=c1,c2,c3,...,cn, a time series Alphabet size
Output:Alphabet size
1:Begin
2: For each ci in C do, i=1..n

 3: C =& FSort(C),sorting the values of C

 4: observedC =& FGenerateAlphabet() , a=1..m. ,C a&
5: End For

 6: For each observediC& in observedC& do, i=1…m.
 7: For each Cj in C do, j=1..n.

 8: Rfobservedi=FRelativefrequency(observedC& ,C).

 9: Rf =FCumulativeRF=(RfobservediC& observedi).

 10: Rfia = FCumulativeRF=(Rfobservedi).

 11: Threshold=Fmean(Rfia ,m)

 10: End for
 11: End for
 12: For each Rfobservedi in Rfobserved do, i=1…m .
 13: For each Rfia in Rfa do, j=1…m

 14: If Rfia ≥ Threshold then

 15: RfClassHighi= CC ,High_confidenceinterval class &

 16: Else
 17: RfClassLowi=CC,Low_confidenceinterval class
 18: End if
 19: End for
 20 End for
 21: for each RfClassLowi in RfClassLow do, i=1..m
 22 for each RfClassHighj in RfClassHigh do, j=1..a
 23: D(minim)= Fdistance(RfClassLowi,RfClassHighj).
 24: MergeAlphabet(D,observedJ,RfClassLowi,RfClassHighJ).
 25: End for
 26: End for
27: End

Algorithm 2: Phase 2- RF Algorithm

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2014, 6, 58-70

66 A Harmony Search Algorithm with Multi-pitch Adjustment Rate for Symbolic Time Series Data Representation

In this phase, RF is used to maintain the alphabet size
of the given time series, and the time series C is
restructured based on the Frequency method. The
algorithm starts by sorting time series C, via the Fsort
function with the limit that the function maintains the
order of original time series. Then, the
FGenerateAlphabet function is called to generate the
number of alphabets based on (a) that are derived from
the HSMPAR algorithm. Next, the FRelativefrequency
function computes the largest number of frequency
alphabets (intervals) and returns each alphabet with its
corresponding frequency value. Then, these alphabets are
passed through the FCumulativeRF process to compute
the relative value for each alphabet as the number of
observations divided by the number of elements in C(n).
The Fmean function returns the mean of these relative
values, and the mean is considered to be the Threshold
value. If the relative value of the alphabet is higher or
equal to the Threshold value, the alphabet class is
assigned to the High_confidence class (). If the
relative value of the alphabet is not greater than or equal
to the Threshold value, it is assigned to the low
confidence class (CC). Finally, the distance function is
used to measure the distance between two objectives
(alphabets), i.e., alphabets assigned to the high
confidence class and alphabets assigned to the low
confidence class. The Fmerge function is then applied to
merge two alphabets that are close in distance, which is
based on the lowest similar value of the distance function.
RF returns the new number of alphabets.

CC&

Input: C=c1,c2,c3,...,cn, a time series
Output: ĉ= ĉ1,…, ĉ W=: A symbolic representation of a time series
1: Begin
 2: For each CK in D do, where k=1..N

 3: X(w,a)=FHS(Ck);/*Call HSMPAR algorithm function to
compute the alphabet and word size*/)
4: a = FRF(Ck, a);/*Call RF algorithm function to compute the
alphabet size again*/
 5: For each ci in CK do, where i=1..n,k=1..N

 6:

(1) 1

n i
w

PAA i
ni i
w

wC c
n

= − +

= ∑ ;/*Call PAA algorithm to

reduce time series length */
 7:End For
 8: ()normlz PAAC FNormlaz C=
 9: For each Ci in Ck do, where i=1..w,
 10: For each βj in β do, where j=1..L,where L=1..50;

 11: alphaˆ
iC = j, if βj-1 ≤ < βˆ

iC j

 12: End if
 13:End for
 14: End for
15: End

Algorithm3: Phase 3-SAX++ algorithm

The main contribution of the work is stated in Phase 3
of the Algorithm3, which tries to settle the problem of
discretisation in the SAX++ procedure via finding the
optimal alphabet size (a) and word size (w) for a given
time series. FHS is a function that receives a time series
of length n. Through this function, the HSMPAR algorithm

searches the problem space (2,n) and returns the best
individual population (w, a).The steps are explained in
Phase 1 of Algorithm1. The FRF function is then applied;
the process of this function is based on the RF algorithm.
It aims to maintain the output of the HSMPAR. RF receives
a time series length of n with the optimal alphabet size
defined by the HSMPAR algorithm. The RF function then
determines the optimal alphabet size by testing the
frequency of the HSMPAR alphabets. The output of RF
either confirms or improves the alphabet size of the
HSMPAR. The RF process is explained in Phase 2 of
Algorithm2. The PAA algorithm is employed to reduce
the time series length from length n to length w where
firstly, PAA receives word size (w) via the HSMPAR
algorithm and then aggregates the time series based on
step 4 of Algorithm3. The output of PAA is PAA
=Č1,…,ČW. PAA is explained in section 2. Normalisation
of the time series then takes place as denoted in Step 6 of
Algorithm 3.

The FNormlaz function receives aggregated time series
via PAA and returns the normalised time series that have
high Gaussian distributions and can simply determine the
“breakpoints” that will produce a equal-sized areas under
the Gaussian curve[26]. The output of FNormlaz is normlz.
The discretisation and transformation processes start
using this output. The discretisation process is performed
based on the lookup table; it is explained in [4], for a
given time series with an alphabet. The transformation of
the time series to the symbolic representation is then
accomplished depending on the number defining the
alphabet size. The output of SAX++ is produced with the
symbolic representation of a new time series, ĉ= ĉ1,…, ĉW.

IV. EXPERIMENTS

Experiments were conducted in which RF and HSMPAR
were integrated into the SAX time series data
representation to generate sufficient alphabet and word
sizes. The performance of SAX++ was evaluated by the
alphabet and word sizes and the error rates on twenty
benchmark time series datasets that were obtained from
time series datasets website. The SAX++ algorithm was
compared to the original SAX and GENEBLA algorithms.

4.1 Experimental design

The performance of the SAX++ method was tested
using 20 datasets that are available on the time series
classification/clustering web page[27]. These datasets
were previously used by [5] to test the SAX approach.
The SAX and PAA were used in the experiment. The RF
and HSMPAR algorithms were applied to determine an
efficient number of intervals for the alphabet size (a) and
the word size (w). Then, SAX was run with the same
generated parameters (generated by the RF and HSMPAR
algorithms) of the alphabet size (a) and word size (w),
which is called SAX++. SAX++ was compared to the
original Eumonn’s 1-NN (1-NN EU) and 1-NN SAX [5]
and GENEBLA [15]. The alphabet size produced by RF
and HSMPAR, denoted as a-SAX++, was compared to the

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2014, 6, 58-70

 A Harmony Search Algorithm with Multi-pitch Adjustment Rate for Symbolic Time Series Data Representation 67

fixed alphabet size a, which was given by the original
SAX and is denoted as a-SAX [5] and compared to the
alphabet size, which is denoted as a-G.

Word size was produced by HSMPAR and is denoted as
w-SAX++. It was compared to the fixed word size given
by Keogh’s experiment, which is denoted as w-SAX. We
then compared it to the word size that was generated by
GENEBLA, which is denoted as w-G.

We used 1-NN to evaluate the SAX++ method, and we
also used Absolute Distance for the classification
performance. The classification performance was
evaluated using the raw data (the continuous time series).
It is important to note that SAX uses its own similarity
measure[5]. When using algorithms and parameters for
classification as described above, a lower error rate
indicates better classification performance. This
experiment was conducted to determine whether SAX++
can maintain more alphabet and word sizes compared to
the previous approaches to the time series problem.

4.2 Results

The experimental results showed that the proposed
SAX++ algorithm performs better in terms of error rates
returned in several datasets when compared to the 1-NN
EU technique. SAX++yielded exceedingly low error rates
when compared to the original SAX algorithm in most
datasets that have larger alphabet and word sizes, as
shown in Figure 2 and Figure 3. SAX++ performed more
efficiently on more than 70% of the datasets with respect
to the returned error rates, as shown in Table 4.

Table 4 shows that when compared to GENEBLA,
SAX++ approached similar error rates using different
parameters (the alphabet size and word size), with the
advantage that SAX++ did not require these parameters a
priori. A priori parameters were not required because they
are automatically calculated in SAX++, whereas in SAX, a
high error rate was returned with fixed alphabet and word
sizes. In some datasets, SAX++ provides better
performance compared to the original SAX. It should be
noted that SAX++ yielded lower error rates on 9 datasets,
meaning that it is more effect than SAX and GENEBLA.
SAX++ was similar to the other two algorithms in four
data sets; in addition, SAX++ performed more poorly
compared to SAX and GENEBLA in seven datasets.

Table 4. Error rates obtained by SAX++, GENEBLA and SAX

N
o

Data sets SAX++ GA SAX p-value
SAX++

1 coffee 0.398 0.420 0.464 0.001
2 Adiac 0.502 0.490 0.890 0.004
3 Gun Point 0.290 0.200 0.180 0.001
4 ECG200 0.320 0.200 0.120 0.005
5 Beef 0.400 0.500 0.567 0.001
6 Olive Oil 0.533 0.380 0.833 0.00
7 Fish 0.200 0.320 0.474 0.001
8 Trace 0.450 0.500 0.460 0.005
9 FaceFour 0.185 0.210 0.170 0.001
10 50word 0.300 0.44 0.341 0.005
11 faceAll 0.299 0.330 0.330 0.001
12 Swedish Leaf 0.390 0.400 0.483 0.004
13 Two pattern 0.033 0.280 0.081 0.001
14 Wafer 0.038 0.010 0.020 0.005
15 Yoga 0.195 0.200 0.195 0.001
16 Light7 0.397 0.490 0.397 0.00
17 Light2 0.203 0.200 0.213 0.001
18 Osu Leaf 0.399 0.500 0.467 0.005
19 Control chart 0.100 0.310 0.467 0.000
20 CBF 0.102 0.100 0.104 0.000

Table 4 indicates that the proposed method, SAX++,

achieved high significance (p-value) in all data sets.
SAX++ was compared to the GA and SAX methods. As
shown in the table, SAX++ reached p-values that were less
than 0.01 (p-value < 0.01), which means that the SAX++
representation is a highly significant representation
compared to that obtained using previous methods. This
result indicates that this method always tries to achieve
the maximum p-values compared to SAX. Small p-values
provide evidence against the null hypothesis because the
observed data are improbable. As shown in Table 4, the
statistical analysis of each dataset for HSMPAR-RF with
SAX revealed that the p-value was less than 0.01, which
supports the efficiency of the proposed method.

Columns 3 and 8 of Table 5 show the optimal alphabet
sizes that were generated by the SAX++algorithm. These
alphabet sizes were chosen as the optimal alphabet after
the HS algorithm ran 10 times for each dataset. The
SAX++algorithm performed better in 16 datasets in terms
of maximising information (alphabet size) when
compared to the alphabet sizes produced by GENEBLA
(a-G) and the original SAX (a-SAX). This result is
demonstrated in Table 5, whereas SAX++ performed as
well as the original SAX and GENEBLA algorithms in
the datasets faceAll and wafer, which are also shown in
the table.

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2014, 6, 58-70

68 A Harmony Search Algorithm with Multi-pitch Adjustment Rate for Symbolic Time Series Data Representation

Table 5. The Alphabet Size for SAX++, GENEBLA and Classical SAX.

SAX++ produced 10 alphabet sizes, and the original

SAX also produced 10 alphabet sizes for the same data
(faceAll dataset). For the wafer dataset, the SAX++
algorithm produced 40 alphabet sizes. The SAX++
algorithm performed worse than the original SAX in only
two data sets (Control chart and CBF). When compared
to SAX in control chart dataset, the SAX++ algorithm
produced 8 alphabets, whereas SAX yielded 10 alphabets
for same data. The SAX++ algorithm also performed
worse with the CBF dataset; the SAX++ algorithm yielded
just 7 alphabets, whereas SAX yielded 10 alphabets. This
result is shown in Table 5. Figure 2 shows the difference
between SAX++, GENABLA and SAX in term of the
alphabet size defined by the SAX process.

Fig 2: Alphabet size for SAX++, GENEBLA and Classical SAX.

The word sizes that were produced by SAX++,
GENEBLA and SAX are denoted in Table 6 as w-SAX++,
w-G and w-SAX, respectively. SAX++ yielded large

generated word sizes in 16 data sets. GENEBLA
generated large word sizes in only 2 datasets, as did SAX.

No Data sets a- SAX++ a-G a-SAX

1 coffee 15 5 10

2 Adiac 52 35 10
3 Gun Point 32 5 10
4 ECG200 50 11 10

5 Beef 20 17 10
6 Olive Oil 22 17 10
7 Fish 52 10 10
8 Trace 50 13 10

9 FaceFour 23 3 10

10 50word 20 6 10

11 faceAll 13 7 10

12 Swedish Leaf 30 8 10
13 Two pattern 15 4 10
14 wafer 40 40 10
15 Yoga 25 8 10
16 Light7 45 8 10
17 Light2 15 5 10
18 Osu Leaf 25 4 10

19 Control chart 10 6 10
20 CBF 10 3 10

Table 6. The word sizes for SAX++, GENEBLA and Classical SAX.

No Data sets TS w-
SAX++

w-G w-
SAX

1 coffee 286 166 93 128
2 Adiac 176 102 89 64
3 Gun Point 150 86 61 64
4 ECG200 96 49 41 32
5 Beef 470 236 233 128
6 Olive Oil 570 189 231 256
7 Fish 463 187 134 128
8 Trace 275 141 126 128
9 FaceFour 350 139 106 128
10 50word 270 140 89 128
11 faceAll 131 55 68 64
12 Swedish Leaf 128 62 56 56
13 Two pattern 128 61 59 32
14 wafer 152 74 78 64
15 Yoga 426 209 176 128
16 Light7 319 119 89 128
17 Light2 637 204 155 256
18 Osu Leaf 427 234 106 128
19 Control chart 60 45 31 16
20 CBF 128 66 30 32

The comparison between SAX++, GENEBLA and SAX

is shown in Figure 3. This figure demonstrates the
difference between each algorithm that is associated with
each dataset.

Fig. 3. Word sizes for SAX++, GENEBLA and Classical SAX.

4.3 Discussion

The advantage of the proposed method is that SAX++
does not require a priori parameters because these
parameters are automatically calculated; moreover, RF
works very well whenever the time series data length is
large. RF and HSMPAR improved the performance of SAX,
especially in datasets where SAX improved the
classification performance of larger alphabet sizes. Hence,
most of the datasets improved the performance of SAX
when word size was defined by the parameters that were
found using SAX++. We decided to compare SAX++ to
GENEBLA because GENEBLA is one of the most
efficient methods that have been proposed thus far. RF
allows greater control over the selection of the number of

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2014, 6, 58-70

 A Harmony Search Algorithm with Multi-pitch Adjustment Rate for Symbolic Time Series Data Representation 69

intervals because it uses a relative frequency to compute
the interval size for the data. In addition, RF uses the
fundamentals of the distance algorithm to merge the
confidence interval values and the lower confidence
interval values. Based on the two functions used in RF,
the distance measure may also contribute to achieving
better classification performance. SAX, on the other hand,
uses its own measure of distance to reconstruct part of the
original data while maintaining the relationship between
the discrete representation and the representation of the
continuous time series data.

We conclude that SAX++ performed better than the
other techniques that were used for comparison in the
previous experiment. The ability to optimise the
appropriate number of intervals (the alphabet size) and
the number of characters in the word (the word size)
ensures that important knowledge patterns are retained
with good accuracy; this scenario has inspired us to test
the RF and HSMPAR using time series datasets to observe
its effectiveness in temporal patterns. One feature in
applications of most time series data is the ability to
manage and control the amount of information loss,
whereas some of the discretisation techniques hide
important points. Hence, it is very important to retain the
integrity of the data representations that are generated for
a specific domain.

Experiments further verified that the performance of
SAX++, in which RF and HSMPAR are integrated to
generate the alphabet and the word sizes to be used in the
SAX time series representation, was superior. Larger
word and alphabet sizes and the ability to obtain lower
error rates indicate that the proposed algorithm manages
to preserve more knowledge by retaining most of the
original data values. Given a labelled dataset that contains
temporal data, the RF and HSMPAR algorithms
automatically compute only the alphabet size (a) and the
word size (w). The efficiency of the method was
evaluated using 20 datasets and was compared to some of
the most efficient representation methods that are known
for time series, which are called SAX, GENEBLA and
raw data. Usually, error rates obtained via the SAX++
representation are similar to those obtained by
GENEBLA tests using the same parameters (alphabet
size and word size). SAX++ performed at an error rate (18
wins/ 2 losses/ 0 ties) that outperformed SAX (15 wins/ 5
losses/ 0 ties) and GENEBLA (15 wins/ 3 losses/ 2 ties).

V. CONCLUSION

We propose the integration of the RF approach and the
HSMPAR algorithm to improve the performance of SAX, a
symbolic time series data representation. Both RF and
HSMPAR have a specific feature that, when integrated,
provides advantages to improve the previous SAX
method. RF lends its advantage in using a frequency
method to generate the alphabet size of a long time series,
whereas RF lends the ability to produce a large number of
intervals with respect to maintain accuracy. Using the
frequency function in conjunction with HSMPAR with
multi-pitch adjustment yields improved solutions in each

iteration and HSMPAR is capable of using discrete
variables.

The main feature of RF is the threshold value, which is
calculated based on the accumulated relative frequency of
each interval. Setting the lower and upper boundaries that
are based on this threshold has enabled us to ensure that a
larger number of intervals is generated; thus, more
information is preserved. The results have shown that the
proposed SAX++ method potentially generates a larger
number of intervals as well as more accurate alphabet and
word sizes with lower error rates. When continuous data,
such as time series data, must be discretised, the aim is to
optimise the bin number without losing information. This
goal is very important when addressing weather data, in
which patterns from each time series may contribute
important information. The SAX++ method is appealing in
discretising time series data because of its simplicity.
This advantage has made RF and HS competitive when
integrated with other time series data representations.

REFERENCES

[1] E. Keogh, S. Chu, D. Hart, M. Pazzani, An online
algorithm for segmenting time series, in: Data Mining,
2001. ICDM 2001, Proceedings IEEE International
Conference on, 2001, pp. 289-296.

[2] H.-G. Acosta-Mesa, F. Rechy-Ramírez, E. Mezura-
Montes, N. Cruz-Ramírez, R. Hernández Jiménez,
Application of time series discretization using
evolutionary programming for classification of
precancerous cervical lesions, Journal of Biomedical
Informatics, (2014).

[3] C. Faloutsos, M. Ranganathan, Y. Manolopoulos, Fast
subsequence matching in time-series databases, SIGMOD
Rec., 23 (1994) 419-429.

[4] K.F. Chan, A. W, Efficient Mining of Partial Periodic
Patterns in Time Series Database, in: Proceedings of the
15th International Conference on Data Engineering, IEEE
Computer Society, 1999, pp. 106.

[5] J. Lin, E. Keogh, S. Lonardi, B. Chiu, A symbolic
representation of time series, with implications for
streaming algorithms, in: Proceedings of the 8th ACM
SIGMOD workshop on Research issues in data mining
and knowledge discovery, ACM, San Diego, California,
2003, pp. 2-11.

[6] C.-G.A.-M. Daniel-Alejandro Garc, Discretization of
Time Series Dataset with a Genetic Search, in:
Proceedings of the 8th Mexican International Conference
on Artificial Intelligence, Springer-Verlag, Guanajuato,
M\&\#233;xico, 2009, pp. 201-212.

[7] r. Fabian Mörchen, Alfred Ultsch, Optimizing time series
discretization for knowledge discovery, in: Proceedings
of the eleventh ACM SIGKDD international conference
on Knowledge discovery in data mining, ACM, Chicago,
Illinois, USA, 2005, pp. 660-665.

[8] F. Rechy-Ram, G.A. Mesa, Efr, n. Mezura-Montes, N.
Cruz-Ram, Times series discretization using evolutionary
programming, in: Proceedings of the 10th international
conference on Artificial Intelligence: advances in Soft
Computing - Volume Part II, Springer-Verlag, Puebla,
Mexico, 2011, pp. 225-234.

[9] A.M. Ahmed, A.A. Bakar, A.R. Hamdan, Harmony
Search algorithm for optimal word size in symbolic time
series representation, in: Data Mining and Optimization
(DMO), 2011 3rd Conference on, 2011, pp. 57-62.

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2014, 6, 58-70

70 A Harmony Search Algorithm with Multi-pitch Adjustment Rate for Symbolic Time Series Data Representation

[10] A.B. Layeb, Seriel Rayene, A Novel Quantum Inspired
Cuckoo Search Algorithm for Bin Packing Problem.,
International Journal of Information Technology &
Computer Science Vol. 4 (2012) p58-67.

[11] X. Xi, E. Keogh, C. Shelton, L. Wei, C.A.
Ratanamahatana, Fast time series classification using
numerosity reduction, in: Proceedings of the 23rd
international conference on Machine learning, ACM,
Pittsburgh, Pennsylvania, 2006, pp. 1033-1040.

[12] B.-K. Yi, C. Faloutsos, Fast Time Sequence Indexing for
Arbitrary Lp Norms, in: Proceedings of the 26th
International Conference on Very Large Data Bases,
Morgan Kaufmann Publishers Inc., 2000, pp. 385-394.

[13] K. Chakrabarti, E. Keogh, S. Mehrotra, M. Pazzani,
Locally adaptive dimensionality reduction for indexing
large time series databases, ACM Trans. Database Syst.,
27 (2002) 188-228.

[14] G.-L. Alexander, Discretization algorithm Time Series
Based on Aplicaci'on in entropy and colposcopic data,
Universidad Veracruzana, (2007).

[15] D. Garc, Acosta-Mesa, Discretization of Time Series
Dataset with a Genetic Search, in: Proceedings of the 8th
Mexican International Conference on Artificial
Intelligence, Springer-Verlag, Guanajuato; Mxico, 2009,
pp. 201-212.

[16] E. Dimitrova, McGee, J., Laubenbacher, E, Discretization
of Time Series Data, eprint arXiv (2005).

[17] A.M. Ahmed, A.A. Bakar, A.R. Hamdan, Improved SAX
time series data representation based on Relative
Frequency and K-Nearest Neighbor Algorithm, in:
Intelligent Systems Design and Applications (ISDA),
2010 10th International Conference on, 2010, pp. 1320-
1325.

[18] A.A. Bakar, A.M. Ahmed, A.R. Hamdan, Discretization
of time series dataset using relative frequency and K-
nearest neighbor approach, in: Proceedings of the 6th
international conference on Advanced data mining and
applications: Part I, Springer-Verlag, Chongqing, China,
2010, pp. 193-201.

[19] J. Shieh, E. Keogh, iSAX: indexing and mining terabyte
sized time series, in: Proceedings of the 14th ACM
SIGKDD international conference on Knowledge
discovery and data mining, ACM, Las Vegas, Nevada,
USA, 2008, pp. 623-631.

[20] J. Lin, Y. Li, Finding Structural Similarity in Time Series
Data Using Bag-of-Patterns Representation, in:
Proceedings of the 21st International Conference on
Scientific and Statistical Database Management, Springer-
Verlag, New Orleans, LA, USA, 2009, pp. 461-477.

[21] F. M, A. Ultsch, Optimizing time series discretization for
knowledge discovery, in: Proceedings of the eleventh
ACM SIGKDD international conference on Knowledge
discovery in data mining, ACM, Chicago, Illinois, USA,
2005, pp. 660-665.

[22] H.G. Acosta Mesa, Nicandro, C.R., Daniel-Alejandro, G.-
L, Entropy Based Linear Approximation Algorithm for
Time Series Discretization, In: Advances in Artificial
Intelligence and Applications, 32 (2005) 214–224.

[23] G.-L. Alexander, Algorithm discretization Time Series
Based on Aplicaci'on in entropy and colposcopic data,
Universidad Veracruzana (2007).

[24] B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom,
Models and issues in data stream systems, in: Proceedings
of the twenty-first ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, ACM,
Madison, Wisconsin, 2002, pp. 1-16.

[25] U.M.F.a.K.B. Irani, Multi-Interval Discretization of
Continuous-Valued Attributes for Classification Learning,
In: Proceedings of the 13th International Joint Conference
on Artificial Intelligence, (1993) 1022-1029.

[26] R.J. Larsen, M.L. Marx, An Introduction to Mathematical
Statistics and Its Applications, Prentice-Hall, 1986.

[27] E. Keogh, Xi, X., Wei, L., R, C.A, The UCR Time Series
Classiffication/Clustering Homepage
http://www.cs.ucr.edu/~eamonn/time_series_data/, (2006).

Authors’ Profiles

Almahdi Mohammed Ahmed is Postdoctoral Researcher in
the Center for Artificial Intelligence Technology UKM. He
received his PhD degree in computer science from the
University Kebangsaan Malaysia. Dr. Almahdi is interested to
the Data Mining Pre-processing like discretization, reduction
and representation of time series and combinatorial optimization
methods and its application to solve several problems from
different domains like Weather problem and electric load
problems. Dr. Almahdi has many publications in Data mining
and applications.

Azuraliza Abu Bakar is Prof. Dr. Head of Centre for Artificial
Intelligence Technology (CAIT). She got her BSc, MSc from
UKM, and got her PhD from UPM Malaysia

Prof. Dr. Azuraliza is interested to the Data Mining Pre-
processing like discretization, reduction and representation of
time series and combinatorial optimization methods and its
application to solve several problems from different domains
like Weather problem and medical data problems. Prof. Dr.
Azuraliza has many publications in Data mining and
applications.

Abdul Razak Hamdan is Prof. Dr. Dean, Head of the Data
Mining active. He got his BSc from (UKMalaysia),and MSc
from (Ncle, UK), and PhD from (Lboro) Department of
Management Science and Systems Faculty of Technology and
Information Sciences Universiti Kebangsaan Malaysia.

Prof. Dr. Abdul Razak is interested to the Data Mining Pre-
processing like discretization, reduction and representation of
time series and combinatorial optimization methods and its
application to solve several problems from different domains
like Weather problem and medical data problems. Prof. Dr.
Abdul Razak has many publications in Data mining and
applications.

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2014, 6, 58-70

http://www.cs.ucr.edu/~eamonn/time_series_data/

	I. Introduction
	II. Related Work
	III. Proposed Methods
	(6)
	IV. Experiments
	V. Conclusion
	References

