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Abstract—The representation task in time series data 
mining has been a critical issue because the direct 
manipulation of continuous, high-dimensional data is 
extremely difficult to complete efficiently. One time 
series representation approach is a symbolic 
representation called the Symbolic Aggregate 
Approximation (SAX). The main function of SAX is to 
find the appropriate numbers of alphabet symbols and 
word size that represent the time series. The aim is to 
achieve the largest alphabet size and maximum word 
length with the minimum error rate. The purpose of this 
study is to propose an integrated approach for a symbolic 
time series data representation that attempts to improve 
SAX by improving alphabet and word size. The Relative 
Frequency (RF) binning method is employed to obtain 
alphabet size and is integrated with the proposed Multi-
pitch Harmony Search (HSMPAR) algorithm to calculate 
the optimum alphabet and word size. RF is used because 
of its ability to obtain a sufficient number of intervals 
with a low error rate compared to other related techniques. 
HSMPAR algorithm is an optimization algorithm that 
randomly generates solutions for alphabet and word sizes 
and selects the best solutions. HS algorithms are 
compatible with multi-pitch adjustment. The integration 
of the RF and HSMPAR algorithms is developed to 
maximize information rather than to improve the error 
rate. The algorithms are tested on 20 standard time series 
datasets and are compared with the meta-heuristic 
algorithms GENEBLA and the original SAX algorithm. 
The experimental results show that the proposed method 
generates larger alphabet and word sizes and achieves a 
lower error rate than the compared methods. With larger 
alphabet and word sizes, the proposed method is capable 
of preserving important information. 
 
Index Terms—Data Mining, Date Representation, Time 
Series, Discretization, Harmony Search Algorithm.  
 

I.  INTRODUCTION 

Time series data are produced, continued, and 
processed within a wide range of application domains in 
various fields such as economics, engineering, science, 
medicine and sociology. A time series is a sequence of 
observed real-values, usually stamped with time by [1, 2]. 
In the context of time series data mining, the fundamental 
problem relates to ways of represent time series data. 
Several other important concepts that must be considered 
when using time series include pre-processing, time 
series detection, similarity computation and mining 
operations. 

The two main characteristics of a time series are the 
number of segments (word size) and the number of values 
(alphabet size) required to represent continuous values in 
the series. The alphabet size partitions the range of 
possible time series values into a set of regions. Each 
region corresponds to a specific symbol, and each 
measurement value is thus uniquely mapped into the 
symbol of the region in which it falls. The number of 
regions (symbols) reflects the word size and level of 
resolution for the information that is retained. These types 
of data require huge amounts of data storage. Therefore, 
it is desirable to reduce word size and alphabet size to 
maintain the most important features of the series 
(information loss), information loss is produced after time 
series reduction based on alphabet and word size. Many 
approaches for working with time series data are focused 
primarily on data representation [3-5]. Most of the 
representation algorithms require, as an input, the 
parameters alphabet size and word size. However, it may 
be very difficult to know the best values for alphabet and 
word size in advance in real-world applications. Hence, 
word size and alphabet size need to be analyzed 
extensively in order to find the optimal size of the given 
time series data set [6-8]. In [5] have proposed the SAX  

Copyright © 2013 MECS                                                    I.J. Modern Education and Computer Science, 2014, 6, 58-70 



 A Harmony Search Algorithm with Multi-pitch Adjustment Rate for Symbolic Time Series Data Representation 59 

approach to overcome the problems created by time 
series representations. However, the SAX algorithm does 
not clearly show how to define word and alphabet size 
using a time series data set. There are other various 
algorithms [6, 9] that attempt to solve the problem of 
defining the optimal (minimum) word and alphabet size, 
but these methods do not result in minimal information 
loss. Information loss leads to the destruction of 
important details contained in the original time series data. 
These considerations have yet to be discussed in proofs of 
proposed algorithms; often, researchers attempt only to 
compress datasets and improve the classification 
accuracy, which could lead to a loss of some important 
sensitive information, for example in weather and 
financial applications, in which the details of the 
information in the data should not be removed. Such a 
removal could result in essential information and hidden 
patterns becoming destroyed. The main objective of this 
study is to propose an improvement Harmony Search 
algorithm for symbolic time series data representation. 
The improvement algorithm takes in account and finds 
the optimum (maximum) word and alphabet size, thus 
reducing the loss of information [10].  

This paper is organized into five sections. The next 
section will discuss the background and related work that 
has been performed on comparison techniques. Section 3 
introduces the concept of the proposed methods: RF, HS 
and SAX++ algorithms. The experimental design, results, 
and discussion are reviewed in Section 4, and Section 5 
will conclude our study 
 

II.  RELATED WORK 

Most data mining methods for time series data are 
assumed to apply to discrete time series [2]. However, in 
most applications, these methods generate and use 
floating point data types. Therefore, there are many 
approaches to represent time series data in which the data 
are floating point values. Many approaches and 
techniques that focus on time series data representation 
problems have been proposed over the past decade. The 
first technique that was suggested for time series data 
representation is the discrete-time Fourier transform 
(DFT) [3]. The DFT is used to transform a sequence from 
the time domain to a point in the frequency domain. 
Choosing the k first frequencies and then representing 
each sequence as a point in the k-dimensional space 
achieves this goal. Another technique is the Wavelet 
Transform (WT) or the Discrete Wavelet Transform 
(DWT) [4]. The DWT has been found to be effective in 
replacing the DFT for many applications. The 
fundamental idea behind wavelets is to analyze the data 
according to scale. Indeed, some researchers in the 
wavelet field believe that, with wavelets, one is adopting 
a whole new mind set or perspective for data processing. 

Numerosity reduction technique for time series data 
reduction was improved by [11]  the proposed numerosity 
reduction, to speed up one-nearest neighbor DTW. While 
the idea of numerosity reduction for nearest-neighbor 
classifiers has a long history, it show here that it can 

leverage off an original observation about the relationship 
between dataset size and DTW constraints to produce an 
extremely compact dataset with little or no loss in 
accuracy. The ideas were tested with a comprehensive set 
of experiments, and show that it can efficiently produce 
extremely fast accurate classifiers. 

One representation scheme that uses a symbolic 
representation of the data is called the SAX. SAX 
represents the time series in terms of word size (w) and 
alphabet size (a). It thus reduces the dimensionality of the 
time series into a number of symbolic representations [5]. 
Their representation is unique in that it reduces the size of 
the set while also allowing distance measures to define 
the symbolic approach; smaller distance measures 
correspond to periods that are defined in the original 
series. This method is based on the  Piecewise Aggregate 
Approximation (PAA) representation [12, 13]. Many 
studies have proposed improvements to SAX. These 
studies [9, 14-18] have shown that the SAX method is 
still an open field of research and that new developments 
are required to bring new ideas to improve the 
performance of SAX. 

The latest research aimed at improving the SAX 
algorithm is by [19] and focuses on indexing and mining 
time series data. However, this research has not led to 
algorithms that can be scaled to the increasingly massive 
datasets that are encountered in science, engineering, and 
business. The iSAX shows how a novel multi-resolution 
symbolic representation can be used to index datasets that 
are several orders of magnitude larger than any datasets 
that have been considered in the literature. This approach 
allows for both fast exact searches and ultra-fast 
approximate searches. This scenario shows how both 
types of searches can be combined and exploited; running 
both searches as sub-routines in data mining algorithms 
allows for exact mining of truly massive real-world 
datasets, which contain millions of time series. Because 
this approach is used to enhance the SAX representation 
in terms of indexing and does not account for both the 
alphabet and word sizes, we decided not to compare our 
method with this approach. Otherwise, the comparison 
would be unfair. 

Another algorithm for time series representation is 
proposed by [20]. The algorithm is using Bag of Patterns 
(BOP). It works as follows. For each time series, it uses a 
sliding window and extracts every possible subsequence 
of length n (a user-defined parameter). Each subsequence 
is normalized to have a mean of zero and standard 
deviation of one before it is converted to a SAX string. 
As a result, it obtains a set of strings, each of which 
corresponds to a subsequence in the time series. As noted 
in SAX, given a subsequence Si, it is likely to be very 
similar to its neighboring sub sequences, Si-1 and Si+1 
(i.e. those that start one point to the left, and one point to 
the right of Si), especially if Si is in the smooth region of 
the time series. These sub sequences are called trivial 
matches of Si. To avoid over-counting these trivial 
matches as true patterns, it needs to perform numerosity 
reduction. Since SAX preserves the general shape of the 
sequence, in some cases it might see that multiple 
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consecutive sub sequences are mapped to the same string. 
In that case, the algorithm records only the first 
occurrence of the string, and ignores the rest until it 
encounters a string that is different. In other words, for 
each group of consecutive identical strings, it records 
only the first occurrence and count this group of 
occurrences only once. The proposed algorithm shows 
outperforms the existing methods in clustering, 
classification, and anomaly detection on several real 
datasets.  

The majority of the methods used in data mining in 
time series assume that the time series are discrete. 
Nevertheless, most applications generate and use 
floating-point data. Therefore, there are numerous 
approaches to the discretisation of time series using 
floating-point values. Different approaches and different 
measures of function have been proposed, such as in [21]; 
the purpose of this method is to detect the persistent 
states of the time series, and the method does not require 
parameter specification. The applicability of this method 
is restricted to the existence of persistent states in the 
time series; this is uncommon in most of  real-world 
applications. This method processes a single time series 
at a time, so the discretisation criterion is not generalized 
to the complete dataset. In [16], time series values are 
represented as a multi-connected graph. Using this 
representation, similar time series are grouped in a 
graphical model.  However, this method is limited in that 
it only works with one series at a time.  Generating 
alphabet and word sizes becomes a vital challenge in 
discretising and reducing time series in the data 
representation phase. Hence, much of the research 
involved in using time series data sets focuses on solving 
these problems. 

Acosta et al. [22] introduced the entropy based linear 
approximation (EBLA2) algorithm; this algorithm was 
proposed as a method to automatically generate the 
alphabet and word sizes to maximize classification 
accuracy. Similar to a greedy search, a heuristic approach 
is used to lead to a specific solution that is obtained from 
the best result of iteration. EBLA2 requires no parameters 
for the search because the outcome is deterministic.  

An enhanced version of the algorithm EBLA2 was 
proposed in [23] and is called EBLA3. This enhanced 
algorithm performs a broader search than does EBLA2 
while using simulated annealing as the discretisation 
scheme for temporal datasets. This algorithm 
automatically generates parameters with which it is 
possible to identify better discretisation schemes. 
However, the results obtained by this approach may be 
improved by enabling entire populations to generate 
discretisation schemes; this strategy may quickly reach 
good solutions.  

Daniel et al. [6] proposed a new algorithm for time 
series discretisation using an approach that applies a 
genetic algorithm called GENEBLA. This algorithm 
generates random alphabet and word sizes for given time 
series. The GENEBLA has proven to be an efficient 
search algorithm for the state space or an approximate 
solution optimization. It also performs efficiently when 

the user does not have precise domain expertise because 
genetic searches possess the ability to explore and learn 
from their domain. Several other GA-based algorithms 
used for discretisation are discussed in [24]. 

Bakar et al. [18] proposed an improvement to the time 
series data discretisation approach by using the relative 
frequency and K-nearest neighbor functions, which is 
called the RF method. The main idea of the RF method is 
to improve the process of determining a sufficient 
alphabet size while discretising the time series data. The 
proposed approach improves the time series data 
representation in the SAX representation. Alphabets are 
represented as symbols and can ensure an efficient 
mining process, whereas better knowledge in the model 
may be obtained without major knowledge loss. The 
basic idea is not to minimize or maximize the size of the 
alphabet for temporal patterns over their class labels. 
Thus, RF can improve the representation precision 
without losing the symbolic nature of the original SAX 
representation.  

Another proposed algorithm [17] for the SAX, seeks to 
efficiently recognize and accurately discover important 
patterns that are essential for time series data. The 
proposed improved SAX, called iSAX, includes the 
relative frequency and K-nearest neighbor (RFknn) 
algorithm. The main task of the iSAX algorithm is to 
determine the number of intervals represented in symbols 
(alphabet size) that is sufficient to ensure efficient mining 
and a good knowledge model without major loss of 
knowledge. Thus, iSAX can improve representation 
precision without losing the symbolic nature of the 
original SAX representation. The iSAX algorithm is 
compared with the original SAX and PAA 
representations and demonstrates its improvement in 
quality of the model. Ten time series rainfall data sets 
were used. The experimental results showed that iSAX 
yields better representation terms and minimal Euclidean 
distance.  

Ahmed et al. [9] proposed an improved SAX 
representation, known as HSAX, which uses the 
Harmony Search algorithm (HS) to explore the optimal 
alphabet (a) and word size (w) for a SAX representation. 
The HS algorithm was developed to maximize 
information rather than to improve the error rate. The 
HSAX algorithm was applied to standard time series 
datasets. The experimental results were compared with 
those of other meta-heuristic methods such as GENEBLA 
[6] and the original SAX algorithm. These results show 
that HSAX generates larger word and alphabet sizes than 
GENEBLA and SAX. HSAX also achieves an error rate 
that is lower than that of SAX and comparable to that of 
GENEBLA. 

Another algorithm for SAX representation was 
introduced by Rechy-Ram [8]. The main idea in this work 
is that the algorithm includes optimization of alphabet 
size and word size. This algorithm uses evolutionary 
programming (EP) and continues the search for an 
efficient discretization scheme by using a fitness function 
which considers three criteria: the entropy with respect to 
the classification, the complexity measured as the number 
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of different strings needed to represent the complete data 
set, and the compression rate, which is assessed as the 
length of the discrete representation. 

Many studies have proposed improvements to SAX. 
These studies [9, 14-18] have shown that the SAX 
method is still an open field of research and those new 
developments and ideas are needed to further improve the 
performance of SAX. Table 1 shows the methods that are 
proposed to improve SAX in terms of alphabet and word 
sizes.  

Table 1: The main focus of SAX algorithm variants 

Algorithm Author Using Data Main focus 
 

ELBA2 Acosta 
(2005) 

Grady 
search 

UCR(20) Minimisation

ELBA3 Alejandro 
et al. 
(2007) 

SA UCR(22) Minimisation

GA Acosta 
and 
Lopez 
(2009) 

GA UCR(22) Minimisation

RF Bakar et 
al. (2010) 

Relative 
Frequenc
y 

UCR(22) Maximisatio
n  

HSAX Ahmed et 
al. (2011) 

Harmony 
search  

UCR(22) Maximisatio
n 

EP Rechy-
Ram 
(2011) 

Evolutio
nary 
Program
ming 

UCR(20) Minimisation

 
The proposed algorithms for improving the SAX time 

series representations are required to minimize the 
complete original set of time series into a smaller set of 
time series. For example, the size of the word is found by 
separating intervals (of given lengths) of the time series; 
the number for the alphabet size reduces the number of 
distinct values in the series. Table 1 shows that all of the 
methods that have attempted to improve the SAX method 
focus only on minimizing the time series rather than on 
maximizing it. Thus, these methods may lead to large 
reductions of the time series, which, in turn, results in the 
loss of important information. 

Hence, we must analyze temporal data to obtain an 
efficient discrete representation of the given datasets. We 
must take the problems described above into account as 
one part of the search; however, our focus is mainly to 
design an algorithm that maximizes both the word size 
and the alphabet size for given datasets. These 
considerations have yet to be discussed in the proofs of 
proposed algorithms; often, researchers attempt only to 
compress datasets and improve their classification 
accuracy.  This may lead to a loss of some information 
that is both important and sensitive; for example, 
applying these algorithms in weather and financial 
applications, in which the details of the information in the 
data should not be removed, may lead to knowledge loss. 
Removing these details may result in the destruction of 
essential information and hidden patterns.  

 
 

III.  PROPOSED METHODS 

Time series data are produced, continued, and 
processed within a wide range of application domains in 
various fields such as economics, engineering, science, 
medicine and sociology. In this section, we present an 
improved SAX algorithm to represent time series data 
called SAX++. The SAX algorithm works with two 
parameters: alphabet size and word size. Specifically, we 
propose an integration of the two algorithms RF and 
HSMPAR to improve SAX. Using these algorithms allows 
for the integration of a large amount of information 
through maximization of the alphabet size and word size 
while maintaining a low error rate.  

 

3.1 Proposed RF method for alphabet size  

In this section, we review the RF binning approach that 
is proposed in [18]. The main goal of RF is to optimize 
the alphabet size and minimize changes and losses in 
knowledge from the original information. It is important 
to achieve these goals, especially in a dataset that requires 
the means and the integrity of the data to be retained. The 
principle of RF and the distance measure are used to 
determine a sufficient number of intervals (alphabet size) 
that can ensure an acceptable to excellent knowledge 
model, which will be obtained without a major loss of 
knowledge. The explanation of RF is presented in the 
following: 
Definition 1: Let C=c1,c2,c3,..,cn, where C is a time series 
and n denotes the time series length. 
Definition 2: Let a=a1,a2,a3,…,am, where a denotes 
alphabet size and m denotes the number of observations 
in C. 
 

1

1

1 , , 1..
m

rf j m
j

j

a a where j .
a=

=

= =∑
∑

m               (1) 

 
Where j=1,2,…,m, and arf  is the relative frequency for 

each alphabet (a) in a time series C and aj  is the alphabet 
in C. 
 

1

1

, , 1..
m

rfj
m

j
rfj

j

a
T where j

a=

=

= =∑
∑

.m

.

                 (2) 

 
Where T, is the cumulative relative frequency of 

alphabets in C, which is known as the threshold value. 
 

,
( ) , , 1..

,
rfj

class j
rfj

c a T
x a where j

c a T

≥⎧ ⎫⎪ ⎪= =⎨ ⎬≤⎪ ⎪⎩ ⎭&
m      (3) 
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Definition 3: Let where  denotes the class 
high confidence alphabet and C denotes the class low 
confidence alphabet.  

{ , }X C C= & C
&

Definition 4: Let a={a1class,a2class,a3class,..,awclass} where a 
denotes the alphabets with the class label equal to the 
high confidence alphabet and w denotes the number of 
observations. 
Definition 5: Let where 

 denotes the alphabets with the class label equal to the 
low confidence alphabet and k denotes the number of 
observations. 

{ , , ,...,1 2 }3a a a a aclass class class kclass′ ′ ′ ′ ′=

a′

 
2

1 1

( , ) min ( ) .
k w

i j i j
j i

Dist a a im a a
= =

′ = −∑∑ ′              (4) 

 
Where the Dist is a distance function, which computes 

the difference between the two alphabets a and returns 
the minimum values for the distance. 
 

ˆ { , ( , ) min .i ja a Dist a a im′= ≡                (5) 
 

Where  is denotes the new alphabets and w is a new 
number for the generated alphabet size. 

â

 

1 2 3ˆ ˆ ˆ ˆ ˆ( , , ,... ,}.wa a a a a=                 (6) 

 
In Eq. (1), the RF algorithm starts to compute the 

relative frequency for each observed alphabet in C. The 
RF means that each alphabet’s frequency value is divided 
by the number of observation alphabets. Then, Eq. (2) 
shows how the algorithm computes the threshold values 
(T), which relies on the summation of rf for each alphabet 
and is divided by the number of observations. In Eq. (3), 
RF shows how the class is assigned to each alphabet: 
either (high confidence) or C (low confidence). 
Moreover, RF continues to find the distance between the 
two alphabets as shown in Eq. (4). Lastly, RF merges the 
two alphabets based on the minimum values that are 
yielded by Eq. (5), and lastly, Eq. (6) demonstrates the 
new alphabets of the new alphabet size.  

C &

Previous discussions have indicated that to eliminate a 
redundant alphabet size (intervals), state-of-the-art 
interval selection methods must rely on using subset 
evaluation, which substantially reduces the number of 
intervals and leads to greater information loss. Hence, 
this method can produce better results than can methods 
that do not address information loss. Our goal is to 
efficiently find the optimal set of alphabet sizes using the 
RF algorithm and to integrate it with the HSMPAR 
algorithm to find word size. In the next section, we will 
discuss the HSMPAR algorithm. 

 

3.2 Proposed Harmony Search with Multi-pitch Adjusting 
Rate (HSMPAR) for word size. 

In this section, we explain our proposed HSMPAR 
algorithm. It is based on the basic HS algorithm with 
Multi-pitch Adjusting Rate as well as five important steps 
outlined below. HSMPAR algorithm is integrated with RF 
algorithm to calculate the optimum alphabet and word 
size .Our technique takes the order of the information into 
account without changing the original information. The 
basic HSMPAR algorithm consists of the following five 
steps: i) parameter initialisation; ii) harmony memory 
initialisation; iii) new harmony improvisation; iv) 
harmony memory update; and v) termination criterion 
check. 
Step 1. Parameter Initialisation: 

Parameter initialisation: In the first step, the 
optimisation problem is specified using the following 
decision variables and other variables. F(x) is the fitness 
function, xi is the decision variable representing two 
variables which are alphabet size (ai) and word size (wi), 
and HMS represents the candidate solutions for each 
variable (x) as a variable value word size (w).  

In this study, there are 50 randomly selected candidate 
HMS values which are obtained from a and w for each 
variable, where N is the number of decision variables, k is 
HMS, and xi is the random solution. HMCR=0.2 and 
PAR=0.9.  HM is shown in Eq. (7): 
 

{ (1), (2), (3),..., ( )ij ij ij ijHM x x x x HMS .=          (7) 
 
Here, HMS is the number of candidate values for the 
discrete decision variables, and xij is the decision 
variables as in Eq. (7).  
 

1 2 3( ) { ( ), ( ), ( ),..., ( ).HMSF X f x f x f x f x=       (8) 
 

Here, f(x1), f(x2),…, f(xHMS) shows each solution vector 
for design variables and the corresponding fitness 
function value. 

The HS algorithm parameters are also specified in this 
step: HMS (harmony memory size = the number of 
simultaneous solution vectors in harmony memory), 
HMCR (harmony memory considering rate), PAR (pitch 
adjusting rate), and the number of improvisations 
(number of fitness function evaluations). These algorithm 
parameters are presented in Table 2. 

Table 2. Parameters description 

Parameter Description 
F(x) fitness function 
Xi decision variable (W, a) 
N number of decision variables 
HM harmony memory 
HMS number of solutions in HM 
PAR patch adjustment 
HMCR harmony memory consideration 
P probability  
W word size 
A alphabet size 
Ni number of iterations 
N time series length 
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Step 2.Harmony Memory initialisation 
In Step 2, the Harmony Memory (HM) is crammed 

with as many randomly generated solution vectors as the 
size of the HM will allow. The harmony memory 
initialisation consists of the following steps: Every 
harmony i randomly generates the solution vector x1= 
{w1,w2,...,wHMS-1, wHMS} x2= {a1, a2, ..., aHMS1, aHMS} 
where {2≤w<n}, and HMS is the number of solutions in 
HM. The random values generated range between [0,1], 
where the random values represent the real values of the 
time series sequences.  The information gain is then 
calculated based on entropy for F(x). 
Step 3: New Harmony Improvisation 

Basically, a new harmony vector, x′ = (x′1, x′2,..., x′HMS) 
is improvised by following three rules: (i) random 
selection, (ii) HMCR consideration, and (iii) multi-pitch 
adjustment.  
(1) Random selection  

When HSMPAR determines the value iI for the new 
harmony x′ = (x′1, x′2,..., x′HMS), it randomly picks any two 
values from total value range {xi(1),…,xi(HMS)} with a 
probability of (1-HMCR).  
(2) HMCR consideration 

When HS determines the value i, it randomly picks 
any two values from HM= {xi (1),…,xi (HSM)} with the 
probability HMCR. The probability of HMCR can be 
calculated using the uniform distribution U (0, 1):  
 

int( (0,1), ) 1.HMCRP U HMS= +                  (9) 
 

As the musician plays any pitch out of the preferred 
pitches in his/her memory (for example, k candidates is 
the number of random solutions (a,w) for each variable 
HM={k1, k2, k3, …, kHMS-1,kHMS}, the value of the decision 
variable x′i is chosen from any number of pitches stored 
in HM with the probability PHMCR while it is randomly 
chosen as shown in Eq (9).  
(3) Multi-pitch adjustment 

After the value of i has been randomly picked from 
the HM in the above memory consideration process, it 
can be further adjusted into neighbouring values by 
adding a certain amount to the value, with the probability 
PAR as shown in Eq. (10). For example, the value of k1 
can be adjusted to (k±m) with respect to (1<k <n), with a 
range of time series original length (U (2, n-1)), while the 
original pitch obtained in the HM consideration is 
maintained at the probability PAR. 
 

int( (0,1), ) 1.PARP U HMS= +                     (10) 
 

In this study, a new harmony vector represented by 
word size and alphabet size, x1= {w1,w2,...,wHMS-1,wHMS} 
and x2={a1, a2, ..., aHMS1, aHMS} is improved by the three 
rules with the following steps. 

1. Select two random solutions x([wrndm1,arndm1] and 
[wrndm2,arndm2]). 

2. The harmony memory consideration rate is the 
intersection of the two solutions of the 
probability HMCR. For example, (wrndm1,arndm1) 

is swapped with (wrndm2,arndm2) and PHMCR>0.2, 
then the HMCR will be (wrndm1,arndm2) and 
(wrndm2,arndm1). 

3. The Harmony Pitch Adjustment PAR is 
converted more than once (multi-pitch) using the 
PAR probability. If the PPAR<0.9, then the 
random value is generated in the range of the 
original time series (U (2,n-1)). For example 
when k=i, then k is converted to i± (U (2,n-1)). 

Step 4: Harmony Memory Update 
If the new harmony F(xrandm1) and F(xrandm2) are better 

than both the selected old harmony F(x1) and F(x2) in the 
HM, as judged by the fitness function value, the new 
harmony values are included in the HM and the existing 
worst old harmony values are excluded from the HM. 

1. For each new harmony, x1 and x2 are adjusted by 
PAR (solution1, solution2).  

2. Calculate the fitness function for each x, F(x). 
3. Repeat until the new solutions (xi) get better than 

the randomly selected solution in HM. 
4. Include the new solutions in HM and exclude the 

old solutions from HM. 
5. End  

Step 5: Termination Criteria Check 
Termination criterion check: If the termination 

criterion (the number of improvisations) is reached, the 
computation is stopped. Otherwise, Steps 3 and 4 are 
repeated. 

Fitness Function  
Any optimisation algorithm requires a fitness function 

to measure the fitness of the set of solutions that are 
created. Most discretisation techniques require a 
heuristics approach to avoid the a priori definition of 
alphabet size and word size[15, 25]. Multi-Interval 
Discretisation (Ent-MDLP) is a discretisation technique 
that uses the entropy measure proposed by Fayyad and 
Irani. Ent-MDLP uses the entropy minimisation heuristic 
(EMH) to divide continuous values and the minimum 
description length criteria to control the number of 
intervals produced in continuous space. The stopping 
criterion for this technique is the minimum description 
length principle (MDLP). Later, the MDLP is applied in 
many other techniques and is known as one of the best 
discretisation techniques that exist. 

A new quality score for meaningful, unsupervised 
discretisation of the time series [21] is proposed by 
accounting for temporal information while searching for 
persistence. Recently [22], a fitness function to select the 
optimal cut points that are based on the information gain 
measure was proposed. Fitness functions should reflect 
how well a set is represented by a set of features. Hence, 
we make use of the information gain measure as a fitness 
function for a given solution or individual via the 
harmony algorithm.  Formally, the maximum value of 
entropy is based on information gain and can be stated as 
Eq. (11) where Sclass and Svalue are the time series class 
and value, respectively. [6] The variable #Svalue is the 
number of time series with a value in S, and #Sclass is the 
number of time series in class S. The entropy of Sclass, 
Ent(Sclass) is given by  Eq.(12). The term c is the number 
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of classes and pi is the probability of class i in Sclass. It is 
important to note that the entry time series is considered 
to be one attribute and that the discretisation scheme is 
considered for the entire dataset. This method allows the 
algorithm to find a good global solution that maximises 
the entropy of the data. 
 

( , ) ( ) ( )Gain Sclass Svalue Ent Sclass Ent Svalue= −

.i

.           (11) 
 

2
1

( ) log
c

i
i

Ent Sclass p p
=

= −∑              (12) 

 
The entropy of S when it takes on the time series value 

Svalue is given by Eq. (13), and the fitness function is 
given by Eq.(14) where n is the time series length and 
gaini  is the gain between time series values and its class, 
i=1…n. 

 

2( ) ( | ) log ( | )i iEnt Svalue p S v p S v=          (13) 
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i
i
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F x
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==
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                         (14) 

 

3.3 Proposed SAX++ method  

There are three critical factors that demonstrate the 
major difference between the HSAX that was reported 
previously [9] with our proposed SAX++ algorithm. First, 
in [9], HSAX is implemented only to generate the word 
size based on one pitch adjustment at each iteration; SAX 
is then run using a predefined alphabet size. In contrast, 
our proposed HSMPAR generates both alphabet size and 
word size and it works with multi-pitch adjustment (four 
pitches at one iteration). Secondly, the previous HS runs 
with 10 populations and 50 iterations, whereas in this 
study, the HSMPAR extends the number of individuals to 
50 populations, and the number of improvements is 
increased to 100 iterations. Thirdly, in this study, 
whenever the HSMPAR returns the optimal alphabet size, it 
will pass over to the RF process to maintain it. It then 
returns the most frequent alphabets to the HSMPAR process. 
Our algorithm aims to find solutions for given time series, 
which is the problem described in the following 
definition:  
Definition 6: Let D={C1,C2,C3,...,CN}, where D denotes 
the time series dataset, C={c1,c2,c3,..,cn},where C denotes 
the time series, n denotes the length of the time series, 
i=1..n. 
 

Input: C=c1,c2,c3,...,cn, a time series 
HMCR=0.2 
PAR=0. 
Output: Alphabet size and Word size  
1:Begin 
2:Initialise the Harmony Memory 
(HM),HM=([w1,a1],[w2,a2],[w3,a3],..,[wHMS-1,aHMS1],[wHMS,aHMS]),: 
Calculate fitness for each solution vector generated in HM. 
F(X)=(x1,x2,x3,..,xHMS-1,xHMS), 

3:WhileiGeneration<nGeneration 
     4: For i=1 to number of decision variables N do where N=1..2 

       5:PHMCR=Rand(0,1), PPAR= Rand(0,1). 
    6: If (PHMCR<HMCR)  /*(memory consideration)*/ 
        7:x[i]=Fselection (HM) /*two solutions will be randomly          
 chosen from harmony memory*/ 
         8: [ ]x̀ i =  FHMCR(x[i]) /* harmony memory consideration 
rate 
            9:  If (PPAR< PAR)  /* pitch adjustment)*/ 
10: [ ] [ ]` `x i x i=   ± U(2,n-1)/* pitch adjustment rate * four  */ 
           11: End if  
       12: Else  
         13: PAR=PPAR± rand(0,1); HMCR= PHMCR± rand(0,1)  
       14: End if  
     15: End for  
 16: fitness_x =Ffitness( x̀ ). 
17: For each HMj in HM do, where j=1..HMS 
  18: If the new solution is better than the random selected solution in 
the harmony memory  
        19: then Replace the worst solution by the new one 
   20: End if  
21: End for  
  22: Increase(iGeneration) 
23: End while  
24: Return best individual (population). 

Algorithm 1: Phase 1- HSMPAR Algorithm for optimal alphabet and word 
size 

The HSMPAR is designed to solve the problem of 
discretisation. As discussed earlier, the problem of 
discretisation of a time series relates to finding the 
number and range of intervals of the time series that 
maintain relevant information (alphabet size). It also 
relates to the discretisation of data on each interval of 
time (word size). In this method, C={c1,c2,c3,...,cn} is a 
time series and n is the length of the time series. The 
algorithm starts with initialising the Harmony Memory 
(HM), where HM includes random solutions, and each 
harmony contains two decision variables, x1 and x2, 
which denote the alphabet and word size, respectively. 
These solutions are randomly generated and follow the 
hard rule that states that (2 ≥w< n) and (2 ≥ a <w). The 
PHMCR contains the probability values between [0, 1] and 
the PPAR contains the probability values between [0, 1]. 
nGeneration is the number of iterations in the algorithm. 
The efficiency of the algorithm is the amount of 
improvement. It is based on the harmony memory 
consideration and random selection, where two random 
solutions are picked from HM. For instance HM1(w1, 
a1)and HM2(w2, a2) may be used. The HSMPAR algorithm 
then tries to improve both solutions at the same time, first 
if the PHMCR is less than HMCR, then the harmony 
memory-considering rate function (FHMCR()) is called 
to improve the selected solutions. For instance, HM1(w1, 
a1) and HM2(w2, a2) may be swapped similarly to cross 
over in GA, where HM1(a1) is swapped with HM2(a2) to 
result in HM1(w1,a2) and HM2(w2, a1). In the last stage of 
the improvement, if the PPAR satisfies the PAR, then the 
pitch adjustment rate is performed four times (multi-pitch 
adjustment) to improve the selected solutions, where PAR 
is adjusted by adding or minimising a random value in 
the range of U(2,n-1) and U(2,w). Finally, the 
improvement of solutions in HM is measured using the 
fitness function, F(x). If the new solutions are better than 
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the selected old solutions in HM, then the old solutions 
from HM are excluded and the new solutions in HM are 
included to return the best individual.  

Example  
A given time series of length n=90 and a=13 are 

passed through the HSMPAR algorithm. As explained 
earlier, each time series has the chance to be run 10 times 
with nGeneration=100 iterations for each time the series 
run. The number of populations is HMS=50, the 
PHMCR=0.2 and the PPAR=0.9. First, the original time 
series is tested with F(x) and the output is F(x) =0.63.  
 

 
Fig. 1a. 

 
Fig. 1b. 

 
Fig. 1c. 

Fig 1: Two random optimal solutions that were generated after 100 
iterations. 

Figure 1a shows the improvement of the HSMPAR 
solutions, including the solutions for (F (x)) that are 
returned after 100 iterations the solutions after 10 
applications of HSMPAR. Solution1 reaches the best gain at 
0.957, and solution2 reaches the best gain at 0.955. It 

should be noted that solution1 starts at an initial accuracy 
F(x) =0.62 and is improved with 100 iterations and ten 
runs. Through this improvement, PAR is adjusted four 
times at each iGeneration. Figure 1b represents the 
number of word sizes that was generated at each 
iGeneration, associated with the best F(x) at application 
number 6. As shown in figure 1c, the best word size (47) 
is reached at F(x)=0.957, and the best alphabet size (12) 
is achieved at the same F(x). Table 3 shows an example 
of the first 10 populations in HM that are used in this 
example.  

Table 3. Example of HM 

Populations Word
size 

Alphabet 
size 

F(x)

1 42 12 0.60

2 51 12 0.69

3 46 12 0.63

4 38 12 0.73

5 48 11 0.63

6 50 13 0.67

7 45 13 0.62

8 46 13 0.68

9 40 11 0.64

10 45 11 0.67

 
Input: C=c1,c2,c3,...,cn, a time series  Alphabet size 
Output:Alphabet size 
1:Begin 
2: For each ci in C do, i=1..n 

     3: C =& FSort(C),sorting the values of C 

     4: observedC =& FGenerateAlphabet( ) , a=1..m. ,C a&
5: End For 

       6: For each observediC&  in observedC&  do, i=1…m. 
                 7:  For each Cj in C do, j=1..n. 

                    8: Rfobservedi=FRelativefrequency( observedC& ,C). 

                     9: Rf =FCumulativeRF=(RfobservediC& observedi).  

                    10: Rfia =  FCumulativeRF=( Rfobservedi). 

                   11: Threshold=Fmean( Rfia ,m) 

                 10:  End for  
       11:  End for 
   12: For each Rfobservedi in Rfobserved do, i=1…m . 
       13:  For each Rfia  in Rfa  do, j=1…m 

           14: If Rfia  ≥ Threshold then 

             15: RfClassHighi= CC ,High_confidenceinterval class  &

           16: Else  
              17: RfClassLowi=CC,Low_confidenceinterval class  
          18:   End if  
        19: End for  
   20    End for  
  21: for each RfClassLowi in RfClassLow do, i=1..m 
       22 for each RfClassHighj in RfClassHigh do, j=1..a 
         23: D(minim)= Fdistance(RfClassLowi,RfClassHighj). 
           24: MergeAlphabet(D,observedJ,RfClassLowi,RfClassHighJ). 
         25: End for 
 26: End for 
27: End 

Algorithm 2: Phase 2- RF Algorithm 
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In this phase, RF is used to maintain the alphabet size 
of the given time series, and the time series C is 
restructured based on the Frequency method. The 
algorithm starts by sorting time series C, via the Fsort 
function with the limit that the function maintains the 
order of original time series. Then, the 
FGenerateAlphabet function is called to generate the 
number of alphabets based on (a) that are derived from 
the HSMPAR algorithm. Next, the FRelativefrequency 
function computes the largest number of frequency 
alphabets (intervals) and returns each alphabet with its 
corresponding frequency value. Then, these alphabets are 
passed through the FCumulativeRF process to compute 
the relative value for each alphabet as the number of 
observations divided by the number of elements in C(n). 
The Fmean function returns the mean of these relative 
values, and the mean is considered to be the Threshold 
value. If the relative value of the alphabet is higher or 
equal to the Threshold value, the alphabet class is 
assigned to the High_confidence class ( ). If the 
relative value of the alphabet is not greater than or equal 
to the Threshold value, it is assigned to the low 
confidence class (CC). Finally, the distance function is 
used to measure the distance between two objectives 
(alphabets), i.e., alphabets assigned to the high 
confidence class and alphabets assigned to the low 
confidence class. The Fmerge function is then applied to 
merge two alphabets that are close in distance, which is 
based on the lowest similar value of the distance function. 
RF returns the new number of alphabets.  

CC&

 
Input: C=c1,c2,c3,...,cn, a time series  
Output: ĉ= ĉ1,…, ĉ W=: A symbolic representation of a time series 
1: Begin 
  2: For each CK in D do, where k=1..N 

     3: X(w,a)=FHS(Ck);/*Call HSMPAR algorithm function to 
compute the alphabet and word size*/) 
4: a = FRF(Ck, a);/*Call RF algorithm function to compute the 
alphabet size again*/ 
           5: For each ci in CK  do, where i=1..n,k=1..N 

               6: 

(1 ) 1

n i
w

PAA i
ni i
w

wC c
n

= − +

= ∑   ;/*Call PAA algorithm to 

reduce time series length */ 
           7:End For 
              8: ( )normlz PAAC FNormlaz C=  
   9: For each  Ci in Ck  do, where i=1..w, 
        10: For each  βj in β do, where j=1..L,where L=1..50; 

           11: alphaˆ
iC = j, if βj-1 ≤  < βˆ

iC j

               12:  End if  
          13:End for  
    14: End for  
15: End  

Algorithm3: Phase 3-SAX++ algorithm 

The main contribution of the work is stated in Phase 3 
of the Algorithm3, which tries to settle the problem of 
discretisation in the SAX++ procedure via finding the 
optimal alphabet size (a) and word size (w) for a given 
time series. FHS is a function that receives a time series 
of length n. Through this function, the HSMPAR algorithm 

searches the problem space (2,n) and returns the best 
individual population (w, a).The steps are explained in 
Phase 1 of Algorithm1. The FRF function is then applied; 
the process of this function is based on the RF algorithm. 
It aims to maintain the output of the HSMPAR.  RF receives 
a time series length of n with the optimal alphabet size 
defined by the HSMPAR algorithm. The RF function then 
determines the optimal alphabet size by testing the 
frequency of the HSMPAR alphabets. The output of RF 
either confirms or improves the alphabet size of the 
HSMPAR. The RF process is explained in Phase 2 of 
Algorithm2. The PAA algorithm is employed to reduce 
the time series length from length n to length w where 
firstly, PAA receives word size (w) via the HSMPAR 
algorithm and then aggregates the time series based on 
step 4 of Algorithm3. The output of PAA is PAA 
=Č1,…,ČW. PAA is explained in section 2. Normalisation 
of the time series then takes place as denoted in Step 6 of 
Algorithm 3.  

The FNormlaz function receives aggregated time series 
via PAA and returns the normalised time series that have 
high Gaussian distributions and can simply determine the 
“breakpoints” that will produce a equal-sized areas under 
the Gaussian curve[26]. The output of FNormlaz is normlz. 
The discretisation and transformation processes start 
using this output. The discretisation process is performed 
based on the lookup table; it is explained in [4], for a 
given time series with an alphabet. The transformation of 
the time series to the symbolic representation is then 
accomplished depending on the number defining the 
alphabet size. The output of SAX++ is produced with the 
symbolic representation of a new time series, ĉ= ĉ1,…, ĉW. 
 

IV.  EXPERIMENTS 

Experiments were conducted in which RF and HSMPAR 
were integrated into the SAX time series data 
representation to generate sufficient alphabet and word 
sizes. The performance of SAX++ was evaluated by the 
alphabet and word sizes and the error rates on twenty 
benchmark time series datasets that were obtained from 
time series datasets website. The SAX++ algorithm was 
compared to the original SAX and GENEBLA algorithms. 

 

4.1 Experimental design 

The performance of the SAX++ method was tested 
using 20 datasets that are available on the time series 
classification/clustering web page[27]. These datasets 
were previously used by [5] to test the SAX approach. 
The SAX and PAA were used in the experiment. The RF 
and HSMPAR algorithms were applied to determine an 
efficient number of intervals for the alphabet size (a) and 
the word size (w). Then, SAX was run with the same 
generated parameters (generated by the RF and HSMPAR 
algorithms) of the alphabet size (a) and word size (w), 
which is called SAX++. SAX++ was compared to the 
original Eumonn’s 1-NN (1-NN EU) and 1-NN SAX [5] 
and GENEBLA [15]. The alphabet size produced by RF 
and HSMPAR, denoted as a-SAX++, was compared to the 
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fixed alphabet size a, which was given by the original 
SAX and is denoted as a-SAX [5] and compared to the 
alphabet size, which is denoted as a-G. 

Word size was produced by HSMPAR and is denoted as 
w-SAX++. It was compared to the fixed word size given 
by Keogh’s experiment, which is denoted as w-SAX. We 
then compared it to the word size that was generated by 
GENEBLA, which is denoted as w-G. 

We used 1-NN to evaluate the SAX++ method, and we 
also used Absolute Distance for the classification 
performance. The classification performance was 
evaluated using the raw data (the continuous time series). 
It is important to note that SAX uses its own similarity 
measure[5]. When using algorithms and parameters for 
classification as described above, a lower error rate 
indicates better classification performance. This 
experiment was conducted to determine whether SAX++ 
can maintain more alphabet and word sizes compared to 
the previous approaches to the time series problem. 

 

4.2 Results  

The experimental results showed that the proposed 
SAX++ algorithm performs better in terms of error rates 
returned in several datasets when compared to the 1-NN 
EU technique. SAX++yielded exceedingly low error rates 
when compared to the original SAX algorithm in most 
datasets that have larger alphabet and word sizes, as 
shown in Figure  2 and Figure 3. SAX++ performed more 
efficiently on more than 70% of the datasets with respect 
to the returned error rates, as shown in Table 4. 

Table 4 shows that when compared to GENEBLA, 
SAX++ approached similar error rates using different 
parameters (the alphabet size and word size), with the 
advantage that SAX++ did not require these parameters a 
priori. A priori parameters were not required because they 
are automatically calculated in SAX++, whereas in SAX, a 
high error rate was returned with fixed alphabet and word 
sizes. In some datasets, SAX++ provides better 
performance compared to the original SAX. It should be 
noted that SAX++ yielded lower error rates on 9 datasets, 
meaning that it is more effect than SAX and GENEBLA. 
SAX++ was similar to the other two algorithms in four 
data sets; in addition, SAX++ performed more poorly 
compared to SAX and GENEBLA in seven datasets. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4. Error rates obtained by SAX++, GENEBLA and SAX 

N
o  

Data sets SAX++ GA SAX p-value 
SAX++

1 coffee 0.398 0.420 0.464 0.001 
2 Adiac 0.502 0.490 0.890 0.004 
3 Gun Point 0.290 0.200 0.180 0.001 
4 ECG200 0.320 0.200 0.120 0.005 
5 Beef 0.400 0.500 0.567 0.001 
6 Olive Oil 0.533 0.380 0.833 0.00 
7 Fish 0.200 0.320 0.474 0.001 
8 Trace 0.450 0.500 0.460 0.005 
9 FaceFour 0.185 0.210 0.170 0.001 
10 50word 0.300 0.44 0.341 0.005 
11 faceAll 0.299 0.330 0.330 0.001 
12 Swedish Leaf 0.390 0.400 0.483 0.004 
13 Two pattern 0.033 0.280 0.081 0.001 
14 Wafer 0.038 0.010 0.020 0.005 
15 Yoga 0.195 0.200 0.195 0.001 
16 Light7 0.397 0.490 0.397 0.00 
17 Light2 0.203 0.200 0.213 0.001 
18 Osu Leaf 0.399 0.500 0.467 0.005 
19 Control chart 0.100 0.310 0.467 0.000 
20 CBF 0.102 0.100 0.104 0.000 
 
Table 4 indicates that the proposed method, SAX++, 

achieved high significance (p-value) in all data sets. 
SAX++ was compared to the GA and SAX methods. As 
shown in the table, SAX++ reached p-values that were less 
than 0.01 (p-value < 0.01), which means that the SAX++ 
representation is a highly significant representation 
compared to that obtained using previous methods. This 
result indicates that this method always tries to achieve 
the maximum p-values compared to SAX. Small p-values 
provide evidence against the null hypothesis because the 
observed data are improbable. As shown in Table 4, the 
statistical analysis of each dataset for HSMPAR-RF with 
SAX revealed that the p-value was less than 0.01, which 
supports the efficiency of the proposed method. 

Columns 3 and 8 of Table 5 show the optimal alphabet 
sizes that were generated by the SAX++algorithm. These 
alphabet sizes were chosen as the optimal alphabet after 
the HS algorithm ran 10 times for each dataset. The 
SAX++algorithm performed better in 16 datasets in terms 
of maximising information (alphabet size) when 
compared to the alphabet sizes produced by GENEBLA 
(a-G) and the original SAX (a-SAX). This result is 
demonstrated in Table 5, whereas SAX++ performed as 
well as the original SAX and GENEBLA algorithms in 
the datasets faceAll and wafer, which are also shown in 
the table.  
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Table 5. The Alphabet Size for SAX++, GENEBLA and Classical SAX. 

 
SAX++ produced 10 alphabet sizes, and the original 

SAX also produced 10 alphabet sizes for the same data 
(faceAll dataset). For the wafer dataset, the SAX++ 
algorithm produced 40 alphabet sizes. The SAX++ 
algorithm performed worse than the original SAX in only 
two data sets (Control chart and CBF). When compared 
to SAX in control chart dataset, the SAX++ algorithm 
produced 8 alphabets, whereas SAX yielded 10 alphabets 
for same data. The SAX++ algorithm also performed 
worse with the CBF dataset; the SAX++ algorithm yielded 
just 7 alphabets, whereas SAX yielded 10 alphabets. This 
result is shown in Table 5. Figure 2 shows the difference 
between SAX++, GENABLA and SAX in term of the 
alphabet size defined by the SAX process.  

 

 
Fig 2: Alphabet size for SAX++, GENEBLA and Classical SAX. 

The word sizes that were produced by SAX++, 
GENEBLA and SAX are denoted in Table 6 as w-SAX++, 
w-G and w-SAX, respectively. SAX++ yielded large 

generated word sizes in 16 data sets. GENEBLA 
generated large word sizes in only 2 datasets, as did SAX.  

No Data sets a- SAX++ a-G a-SAX

1 coffee 15 5 10 

2 Adiac 52 35 10 
3 Gun Point 32 5 10 
4 ECG200 50 11 10 

5 Beef 20 17 10 
6 Olive Oil 22 17 10 
7 Fish 52 10 10 
8 Trace 50 13 10 

9 FaceFour 23 3 10 

10 50word 20 6 10 

11 faceAll 13 7 10 

12 Swedish Leaf 30 8 10 
13 Two pattern 15 4 10 
14 wafer 40 40 10 
15 Yoga 25 8 10 
16 Light7 45 8 10 
17 Light2 15 5 10 
18 Osu Leaf 25 4 10 

19 Control chart 10 6 10 
20 CBF 10 3 10 

Table 6. The word sizes for SAX++, GENEBLA and Classical SAX. 

No Data sets TS  w- 
SAX++

w-G w-
SAX

1 coffee 286 166 93 128 
2 Adiac 176 102 89 64 
3 Gun Point 150 86 61 64 
4 ECG200 96 49 41 32 
5 Beef 470 236 233 128 
6 Olive Oil 570 189 231 256 
7 Fish 463 187 134 128 
8 Trace 275 141 126 128 
9 FaceFour 350 139 106 128 
10 50word 270 140 89 128 
11 faceAll 131 55 68 64 
12 Swedish Leaf 128 62 56 56 
13 Two pattern 128 61 59 32 
14 wafer 152 74 78 64 
15 Yoga 426 209 176 128 
16 Light7 319 119 89 128 
17 Light2 637 204 155 256 
18 Osu Leaf 427 234 106 128 
19 Control chart 60 45 31 16 
20 CBF 128 66 30 32 

 
The comparison between SAX++, GENEBLA and SAX 

is shown in Figure 3. This figure demonstrates the 
difference between each algorithm that is associated with 
each dataset. 

 

 
Fig. 3. Word sizes for SAX++, GENEBLA and Classical SAX. 

 

4.3 Discussion  

The advantage of the proposed method is that SAX++ 
does not require a priori parameters because these 
parameters are automatically calculated; moreover, RF 
works very well whenever the time series data length is 
large. RF and HSMPAR improved the performance of SAX, 
especially in datasets where SAX improved the 
classification performance of larger alphabet sizes. Hence, 
most of the datasets improved the performance of SAX 
when word size was defined by the parameters that were 
found using SAX++. We decided to compare SAX++ to 
GENEBLA because GENEBLA is one of the most 
efficient methods that have been proposed thus far. RF 
allows greater control over the selection of the number of 
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intervals because it uses a relative frequency to compute 
the interval size for the data. In addition, RF uses the 
fundamentals of the distance algorithm to merge the 
confidence interval values and the lower confidence 
interval values. Based on the two functions used in RF, 
the distance measure may also contribute to achieving 
better classification performance. SAX, on the other hand, 
uses its own measure of distance to reconstruct part of the 
original data while maintaining the relationship between 
the discrete representation and the representation of the 
continuous time series data. 

We conclude that SAX++ performed better than the 
other techniques that were used for comparison in the 
previous experiment. The ability to optimise the 
appropriate number of intervals (the alphabet size) and 
the number of characters in the word (the word size) 
ensures that important knowledge patterns are retained 
with good accuracy; this scenario has inspired us to test 
the RF and HSMPAR using time series datasets to observe 
its effectiveness in temporal patterns. One feature in 
applications of most time series data is the ability to 
manage and control the amount of information loss, 
whereas some of the discretisation techniques hide 
important points. Hence, it is very important to retain the 
integrity of the data representations that are generated for 
a specific domain.  

Experiments further verified that the performance of 
SAX++, in which RF and HSMPAR are integrated to 
generate the alphabet and the word sizes to be used in the 
SAX time series representation, was superior. Larger 
word and alphabet sizes and the ability to obtain lower 
error rates indicate that the proposed algorithm manages 
to preserve more knowledge by retaining most of the 
original data values. Given a labelled dataset that contains 
temporal data, the RF and HSMPAR algorithms 
automatically compute only the alphabet size (a) and the 
word size (w). The efficiency of the method was 
evaluated using 20 datasets and was compared to some of 
the most efficient representation methods that are known 
for time series, which are called SAX, GENEBLA and 
raw data. Usually, error rates obtained via the SAX++ 
representation are similar to those obtained by 
GENEBLA tests using the same parameters (alphabet 
size and word size). SAX++ performed at an error rate (18 
wins/ 2 losses/ 0 ties) that outperformed SAX (15 wins/ 5 
losses/ 0 ties) and GENEBLA (15 wins/ 3 losses/ 2 ties). 
 

V.  CONCLUSION 

We propose the integration of the RF approach and the 
HSMPAR algorithm to improve the performance of SAX, a 
symbolic time series data representation. Both RF and 
HSMPAR have a specific feature that, when integrated, 
provides advantages to improve the previous SAX 
method. RF lends its advantage in using a frequency 
method to generate the alphabet size of a long time series, 
whereas RF lends the ability to produce a large number of 
intervals with respect to maintain accuracy. Using the 
frequency function in conjunction with HSMPAR with 
multi-pitch adjustment yields improved solutions in each 

iteration and HSMPAR is capable of using discrete 
variables. 

The main feature of RF is the threshold value, which is 
calculated based on the accumulated relative frequency of 
each interval. Setting the lower and upper boundaries that 
are based on this threshold has enabled us to ensure that a 
larger number of intervals is generated; thus, more 
information is preserved. The results have shown that the 
proposed SAX++ method potentially generates a larger 
number of intervals as well as more accurate alphabet and 
word sizes with lower error rates. When continuous data, 
such as time series data, must be discretised, the aim is to 
optimise the bin number without losing information. This 
goal is very important when addressing weather data, in 
which patterns from each time series may contribute 
important information. The SAX++ method is appealing in 
discretising time series data because of its simplicity. 
This advantage has made RF and HS competitive when 
integrated with other time series data representations.  
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