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Abstract—This paper presents a boon and amend 

technique for eradicating the artifacts from the 

Electroencephalogram (EEG) signals. The abolition of 

artifacts from scalp EEGs is of considerable implication 

for both the computerized and visual investigation of 

fundamental brainwave activities. These noise sources 

increase the difficulty in analyzing the EEG and 

procurement clinical information related to pathology. 

Hence it is critical to design a procedure for diminution 

of such artifacts in EEG archives. This paper uses a blind 

extraction algorithm, appropriate for the generality of 

complex-valued sources and both complex noncircular 

and circular, is introduced. This is achieved based on 

higher order statistics of dormant sources, and using the 

deflation approach Spatially-Constrained Independent 

Component Analysis (SCICA) to separate the 

Independent Components (ICs) from the initial EEG 

signal. As the next phase, level-4 daubechies wavelet db-

4 is applied to extract the brain activity from purged 

artifacts, and lastly the artifacts are projected back and 

detracted from EEG signals to get clean EEG data. Here, 

thresholding plays an imperative role in delineating the 

artifacts and hence an improved thresholding technique 

called Otsu’s thresholding is applied. Experimental 

consequences show that the proposed technique results in 

better removal of artifacts. 

 
Index Terms—Artifacts removal, Biomedical Signal 

Filtering, Electroencephalogram (EEG), source 

separation, Spatially-Constrained Independent 

Component Analysis (SCICA), thresholding, daubechies 

wavelet. 

 

I. INTRODUCTION 

Human brain possesses rich spatiotemporal subtleties 

Because of its complicated uncertain cautious nature. 

Electroencephalography (EEG) provides a direct 

determination of cortical behavior with millisecond 

temporal steadfastness when compared to supplementary  

techniques. Electroencephalogram (EEG) is multivariate 

time series data measured using multiple sensors 

positioned on scalp that imitates electrical potential 

produced by behaviors of brain and is a record of the 

electrical potentials created by the cerebral cortex nerve 

cells. There are two categories of EEG, which is based on 

location of the signal obtained in the head: scalp or 

intracranial. Scalp EEG as being the main focus of the 

research, uses small metal discs, also known as electrodes, 

which are kept on the scalp with good electrical and 

mechanical touch. Intracranial EEG is obtained by 

special electrodes placed in the brain during a surgery. 

The electrodes should be of minimum impedance, in 

order to record the exact voltage of the brain neuron. The 

variations among the voltage difference among electrodes 

are sensed and amplified before being transmitted to a 

computer program. 

Electrical impulses generated by nerve firings in the 

brain diffuse through the head and can be measured by 

electrodes placed on the scalp, & is known as 

electroencephalogram (EEG). The artifacts, such as eye 

blinks etc., in EEG recordings obscures the underlying 

processes and makes analysis difficult. Large amounts of 

data must often be discarded because of contamination by 

artifacts. To overcome this difficulty, signal separation 

techniques are used to separate artifacts from the EEG 

data of interest. The noise, or artifacts, sources include: 

line noise from the power grid, eye movements, eye 

blinks, heartbeat, breathing, and other muscle activity. 

Some artifacts, such as eye blinks, produce voltage 

changes of much higher amplitude than the endogenous 

brain activity. In this situation the data must be discarded 

unless the artifacts can be removed from the data. 

EEG data may be contaminated at many points during 

the recording and transmission process. Most of the 

artifacts are biologically generated by sources external to 

the brain. Improving technology can decrease externally 

generated artifacts, such as line noise, but biological 

artifacts signals must be removed after the recoding 

process. Figure 1 shows waveforms of some common 

EEG artifacts. 
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 Eye Blink artifacts: It is very common in EEG data, 

produces a high amplitude signal that can be many 

times greater than EEG signals into consideration. 

Because of its high amplitude an eye blink can 

corrupt data on all electrodes, even those which are 

at the back of the head. Eye artifacts are often 

measured more directly in the Electro-Oculogram 

(EOG), pairs of electrodes placed above and around 

the eyes. But unfortunately, these measurements are 

contaminated with EEG signals of interest and so 

simple subtraction is not a removal option even if an 

exact model of EOG diffusion across the scalp is 

available [2] 

 Eye Movement: These artifacts are caused by the 

reorientation of the retinocorneal dipole [3]. The 

effect of this artifacts is sturdier than that of the eye 

blink artifacts. Eye blinks and movements often 

occur at close intervals.  

 Line Noise: Strong signals from A/C power supplies 

can corrupt EEG data during transfer from the scalp 

electrodes to the recording device. Notch filters are 

often used to filter this artifacts containing lower 

frequency line noise and harmonics. Notch filtering 

at these frequencies can remove useful information. 

Line noise can disturb the data from some or all of 

the electrodes depending on the source of the 

problem. 

 Muscle Activity: These artifacts are caused by 

activity in different muscle groups including neck 

and facial muscles. These signals have a wide 

frequency range and can be distributed across 

different sets of electrodes depending on the location 

of the source muscles.  

 Pulse: When an electrode is placed on or near blood 

vessel, it causes pulse, or heartbeat, artifacts. The 

expansion and contraction of the vessel introduce 

voltage changes into the recordings. The artifacts 

signal has a frequency around 1.2Hz, but can vary 

with the state of the object. This artifacts can appear 

as a sharp spike or smooth wave [4].  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig.1 (a) Clean EEG, (b) Eye blink, (c) Eye movement, (d) 50 Hz, (e) 

Muscle activity, (f) Pulse.  

EEG offers a continuous graphic display of varying 

voltage with time. However, the captured EEG [4-7] 

includes artifacts in the waveforms. Several researches 

have been organized to remove the artifacts in the EEG 

signal and various techniques are resulted due to this 

research. 

The placement of the EEG electrodes on the scalp is 

standardized by the international 1020 system depicted in 

Figure 1.2. The electric field intensity of the EOG 

decreases with distance from the eyes when observing 

individual channels of the EEG from the frontal, central, 

and the parietal regions of the scalp [6]. 

 

 

Fig.2. International 10-20 System for Electrode Placement (Top View) 

This paper proposes a new technique for removing the 

artifacts [33, 34] from the EEG signal which uses 

kurtosis based on difference of Gaussian and Super-

Gaussian signal and Spatially-Constrained ICA (SCICA) 

[37, 38] and daubechies wavelet techniques. Threshold 

plays an important role in separating the artifacts from 

the non-artifact EEG [39]. Otsu’s Threshold is been 

adopted as the thresholding method in this paper. This 

method pre-assumes that EEG contains two classes 

namely, artifact and non artifact signal and further it 

calculates the optimum threshold separating those two 

classes. 

 

II. RELATED WORK 

Artifacts noise in EEG are usually handled by 

dumping the affected segments of EEG. The humblest 

methodology is to discard a fixed length segment, 

perhaps one second, from the time an artifacts is detected. 

Discarding segments of EEG data with artifacts can 
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greatly decrease the amount of data available for analysis. 

EEG data collected from children is especially 

problematic in this respect [10]. The first attempts at 

removing artifacts focused on eye blinks. Regression 

using the EOG channel was attempted in the time and 

frequency domain [12, 11, 20, 24, and 25]. These 

methods all rely on a clean measure of the artifacts signal 

to be subtracted out. Since the EOG is contaminated with 

EEG signals, the regression of ocular artifacts has the 

undesired effect of removing EEG signals from the 

observations. A good review can be found in [8, 9]. 

Kenemans et al. [14] gave a general lagged regression 

model. Jung et al. [2] used this regression model for a 

baseline artifacts removal method. Multivariate statistical 

analysis techniques, such as principal component analysis, 

have been used to separate and remove noise signals 

from the brain activity of interest [5, 16, 2, 13, 17, 7, and 

20]. Comparisons of artifacts removal using different 

transformations can be found in [26, 22]. Comparison of 

four methods for artifacts removal by artificially mixing 

an artifacts signal from one subject with a set of EEG 

signals from another subject is given in [22]. The 

artificial mixing matrices were chosen to approximate 

mixing in the scalp. Two independent component 

analysis methods studied in [6], were significantly better 

than principal component analysis and simple EOG 

subtraction. Performance was measured using the mean 

squared error between the true artifacts signal and the 

extracted artifacts signal. Significance was measured 

using an F-statistic and Tukey's studentized range test 

[22]. 

The common spatial patterns (CSP) technique, which 

requires the use of two data sets was used by Koles [15] 

to remove abnormal Components, It uses data from 80 

patients. No quantitative evaluation was done on the 

removal but it was visually observed that the artifacts 

were extracted into a small number of components that 

would allow their removal. In online filtering systems, 

artifacts recognition is important for achieving their 

automatic removal. One approach to recognition of noise 

components is based on measuring structure in the signal. 

The fractal dimension and a metric based on auto-

regressive (AR) coefficients have been used for this 

purpose [7, 21].  

Eye blinks and heart beats were found to have 

consistent fractal dimensions on the data studied [21]. 

Jung [2] suggests that the spectral structure might be 

distinct for certain artifacts components (e.g., line noise) 

and that this would allow for automatic removal of these 

artifacts. Kalman filters and extended Kalman filters have 

also been used for artifacts detection with success  

Depending heavily on the artifact type [19, 18]. This 

approach was most successful at recognizing one second  

 

 

 

 

 

 

windows containing muscle and movement artifacts. The 

common signal separation approaches to artifact removal 

are: principal components analysis, maximum signal 

fraction analysis, canonical correlation analysis, and 

independent component analysis.  

Shao et al., [26, 27] proposed an automatic EEG 

Artifact removal which uses a Weighted SupportVector 

Machine approach with error correction. An automatic 

electroencephalogram (EEG) [37- 38]artifact removal 

method is presented in this paper. Compared to past 

methods, it has two unique features: 

 

a. A weighted version of support vector machine 

formulation that handles the inherent unbalanced 

nature of component classification and 

b. The ability to accommodate structural information 

typically found in component classification.  

 

The advantages of the proposed method are 

demonstrated on real-life EEG recordings with 

comparisons made to several benchmark methods. 

Results show that the proposed method is preferable than 

the other methods in the context of artifact removal by 

achieving a better tradeoff between removing artifacts 

and preserving inherent brain activities. Qualitative 

evaluation of the reconstructed EEG epochs also 

demonstrates that after artifact removal inherent brain 

activities are largely preserved. 

Kavitha et al., [28] suggested a modified ocular artifact 

removal technique from EEG [35, 36] by adaptive 

filtering. Electroencephalogram (EEG) is the reflection of 

brain activity and is widely used in clinical diagnoses and 

biomedical researches. 

EEG signals recorded from the scalp contain many 

artifacts that make its interpretation and analysis very 

difficult. One major source of artifacts is the eye 

movements that generate the Electrooculogram (EOG). 

Many applications of EEG such as BrainComputer 

Interface (BCI) need real time processing of EEG [39]. 

Adaptive filtering is one of the most efficient methods for 

removal of ocular artifacts which can be applied in real 

time. In the conventional adaptive filtering, primary input 

is the measured EEG signal and the reference inputs are 

vertical EOG (VEOG) and horizontal EOG (HEOG) 

signals. 

In this paper, an adaptive filtering approach is 

proposed which includes radial EOG (REOG) signal as a 

third reference input. By the analysis based on the 

performance of adaptive algorithms using two reference 

inputs i.e. HEOG and VEOG and that with three 

reference inputs i.e. VEOG, HEOG and REOG, it is 

found that the reference method gives more accurate 

results than the existing reference method. 
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Table 1. Summary of some Ocular Artifact Removal techniques from 

literatures surveyed. 

Technique  Limitations  

Experiment 

Control 

Controlling patients blinking is 

unrealistic, difficult to 

accomplish, and nearly 

impossible. 

Rejection Rejection of ocular artifacts 

results in significant information 

loss which is impractical for 

clinical data.  

Linear Filtering Information loss or insufficient 

ocular artifact removal result due 

to a large spectrum overlaps 

between ocular artifacts and brain 

activity. 

Regression 

Analysis 

Highly dependent on a clean EOG 

channel, varies from one ocular 

artifact to another, and does not 

account for EEG propagating 

onto EOG electrodes.  

PCA and SVD Cannot separate ocular artifact 

from EEG when  

Amplitudes are comparable 

because of their higher order 

statistical dependencies. 

 

III. PROPOSED METHODOLOGY 

The architecture of proposed method for pre-

processing of EEG data is presented in figure 1. 

As represented, EEG data implicated is generated 

based on ICA model as: 

 

X (t) =As(t) v(t)                           (1) 

 

where x(t) = [x1(t), x2(t), · · · , xM(t)]T, which is a linear 

mixture of N sources s(t) = [s1(t), s2(t), · · · , sN(t)]T, A is 

M×N mixing matrix, and v(t) = [v1(t), v2(t), · · · , vM(t)]T 

is nothing but the additive noise at the EEG sensors. Here 

the number of sources are represented as N and the 

waveforms are represented as si (t), and mixing matrix A 

are all unknown. In order to make the problem effortless, 

the square mixing problem is taken into account, i.e., 

M=N. The source signals si(t) can be regarded as being 

created from various brain regions and artifacts. These 

artifacts mist the brain activity data, and are hazardous 

for further examination and processing. Thus it is 

mandatorily vital to process EEG data x(t) so that 

contribution of artifacts is separated, without altering the 

brain-activity data, and it is also the key focus of the 

technique provided by the author. As represented in 

figure 3, the proposed technique consists of following 

key process: 

 

 Pre-processing with the help of existing filtering uses 

kurtosis based on difference of Gaussian and Super-

Gaussian signal. 

 Use of SCICA to obtain SC-ICs representing artifacts 

in EEG data. 

 Use daubechies level 4 wavelet  to separate any 

brain activity leaked to these artifact ICs. 

 The extracted artifact-only signals are projected 

back, and subtracted from, EEG data to get clean 

EEG for further examination and processing. 

 

The principle of conventional filtering is to process 

raw EEG data x(t) to eliminate 50 Hz line noise, baseline 

values, artifacts which dwell in very low frequencies and 

high frequency sensor noise v(t), and this phase may 

include mixture of different existing notch, low-pass, 

and/or high pass filters. 

 

Complex statistics: Kurtosis 

Kurtosis, is a well understood concept in statistics of 

real-valued random variables, and has been used to 

design contrast functions in BSS, such as in the Fast ICA 

[30], and BSE algorithms [13]. It is common to use the 

normalized kurtosis KR (.) instead of the standard 

kurtosis kurtR (.) as it allows the comparison of the 

Gaussianity of random variables, irrespective with the 

range of amplitudes. In [31], the extension and relevance 

of this concept to the complex domain, as well as the 

relation between the kurtosis of the real and imaginary 

components of a complex random variable, kurtR (zr) 

and kurtR (zi), and the kurtosis of the complex random 

variable kurtc (z) has been discussed. 

The real-valued normalized kurtosis of a complex 

random variable can be defined in several forms, where 

 

 

=   

 
 

The first term in above equation is the normalized 

fourth order moment whereas the second term is the 

square of the circularity coefficient, and kurtc (z) in 

above equation is the real-valued kurtosis of the complex 

random variable z. Similar to kurtosis of a real-valued 

Gaussian random variable, the value of Kc is zero for 

both noncircular and circular complex Gaussian random 

variables. Furthermore, in this measure, kurtosis values 

of a sub-Gaussian complex random variable are negative 

and that of a super-Gaussian complex random variable is 

positive, irrespective of the circularity/non-circularity of 

the random variable. 

 

Spatially-Constrained ICA (SCICA) 

The main process in the proposed technique is the 

application of SCICA to obtain artifact ICs from filtered 

and baseline corrected EEG data y (t). Description of 

SCICA is portrayed in detail. The key intention is to 

illustrate a Spatial Constraint (SC) on the mixing matrix 
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A to symbolize specific prior knowledge or prior 

assumptions concerning the spatial topography of some 

source sensor projections, that is, the SC operates on 

chosen columns of A and is enforced with reference to a 

set of predetermined constraint sensor projections, 

represented by Ac. Thus, the spatially constrained mixing 

matrix consists of two kinds of columns 

 

A =[Ac, Au]                                 (2) 

 

Where A~Ac, are columns which are regarded as 

constraint, and Au otherwise regarded as Unconstrained 

columns. Based on the usage, the pre-determined sensor 

projections could be gathered by manual choice of 

sources extracted from a previous information segment 

with the help of existing ICA technique or derived from 

the predictions of some mathematical model of the signal 

obtaining procedure under examination. 

Based upon the confidence level regarding the 

accuracy of the constraint topographies Ac, and the level 

to which constrained columns may diverge from 

reference Ac, there are three kinds of constraints: 

 

1. Hard constraints that represents fixed column, 

2. Soft constraints permitting divergence within a small 

angular threshold α, and  

3. Weak constraints that only can afford an initial 

approximation for otherwise unconstrained 

assessment. 

The spatially-constrained-Fast ICA (Fast ICA) 

technique is the one categorized under soft SCs. 

 

 
Fig.3.Overall process of artifact removal 

The FastICA technique aims to maximize the 

statistical independence of the unconstrained sources and 

at the same time reducing the divergence among the 

spatially constrained source sensor projections and their 

corresponding reference topographies. A deflationary  

 

 

method is implemented to take out only desired 

components, and therefore the output of the Fast ICA 

technique is SC-ICs (which are artifact signals in our 

case), and an estimate of matching mixing matrix. This 

results in fast computational time, as compared with the 

condition that all ICs are extracted. 

 

Daubechies Wavelet in SC-ICs 

The Daubechies wavelets are a family of orthogonal 

wavelets defining a discrete wavelet transform and 

characterized by a maximal number of vanishing 

moments for some given support. With every single 

wavelet type of this class, there is a scaling function 

(called the father wavelet) which generates an orthogonal 

Multi resolution analysis. 

In general the Daubechies wavelets are chosen to have 

the highest number A of vanishing moments, (this do not 

imply the best smoothness) for given support width 

N=2A, and among the 2A−1possible solutions the one is 

chosen whose scaling filter has external phase. The 

wavelet transform is also easy to put into practice using 

the fast wavelet transform. Daubechies wavelets are 

generally used in solving a broad range of problems, for 

e.g. self-similarity properties of a signal discontinuities, 

signal or fractal problems, etc. 

Fig.4. Scaling & Wavelet Functions in case of Daubechies wavelet. 

There are many Daubechies transforms, but they are 

all very similar. In this section we shall concentrate on 

the used, the Daub4 wavelet transform. The Daub4 

wavelet transform is defined in essentially the same way 

as the Haar wavelet transform.  

 

Transform, D4 

It is assumed that S, a column vector with even number 

of elements, has been pre-defined as the signal to be 

analyzed. 
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N = length(S); 

s1 = S(1:2:N-1) + sqrt(3)*S(2:2:N); 

d1 = S(2:2:N) - sqrt(3)/4*s1 - (sqrt(3)-2)/4*[s1(N/2); 

s1(1:N/2-1)]; 

s2 = s1 - [d1(2:N/2); d1(1)]; 

s = (sqrt(3)-1)/sqrt(2) * s2; 

d = (sqrt(3)+1)/sqrt(2) * d1; 
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Inverse transform, D4 

 
 

 

 

 

 

 

 

 

 

If a signal f has an even number NoI values, then the 1-

level Daub4 transform is the mapping f=D1→(a1|d1) from 

the signal f to its first trend sub-signal a1 and first 

fluctuation sub-signal d1. 

Each value am of a1 = (a1, . . . ,aN/2)is equal to the 

scalar product: 

 

                                 (3) 

 

having f with a 1-level scaling signal V 1m. Likewise, 

each value dm of d1 =(d1, . . . , dN/2) is equal to a scalar 

product: 

 

                                (4) 

 

having f with a 1-level wavelet W 1m. We shall define 

these Daub4 scaling signals and wavelets after briefly 

describing the higher levelDaub4 transforms. 

The Daub4 wavelet transform, like the Haar transform, 

can be extended to multiple levels as many times as the 

signal length can be divided by 2.The extension is similar 

to the way the Haar transform is extended, i.e., by 

applying the 1-level Daub4 transform D1 to the first trend 

a1. 

This produces the mapping a1/ D1 →(a2 | d2) from the 

first trend sub-signal a1 to a second trend sub-signal a2 

and second fluctuation sub-signal d2. As with the Haar 

transform, the values of the second trend a2 and second 

fluctuation d2 can be obtained via scalar products with 

second-level scaling signals and wavelets. Likewise, the 

definition of a k-level Daub4 transform is obtained by 

applying the 1-level transform to the preceding level 

trend sub-signal, just like in the Haar case. And, asin the 

Haar case, the values of the k-level trend sub-signal ak 

and fluctuation sub-signal dk are obtained as scalar 

products of the signal with k-level scaling signals and 

wavelets. The difference between the Haar transform and 

the Daub4 transform liesin the way that the scaling 

signals and wavelets are defined. We shall first discuss 

the scaling signals. Let scaling numbers α1, α2, α3, α4 be 

defined by 

 

 
 

Using this natural basis, the first level Daub4 scaling 

signals satisfy 

 

 

After performing above operations, the noise 

coefficients have minimum values, inversely to the 

informative signal (normal or pathologic neural activity 

and artifacts). Subsequently, denoising can be attained by 

thresholding the wavelet coefficients using Otsu’s 

thresholding method. The Implementation is pointed as 

follows: 

 

 Choosing the value of the threshold using Otsu’s 

Thresholding Method 

 Then daubechies wavelet transform is 

performed to the SC-IC signal to obtain details 

and approximations 

 Threshold of the detailed components obtained 

in the previous step 

 

Otsu’s Thresholding Method 

In computer vision and image processing, Otsu's 

method is generally used to automatically perform 

histogram shape-based image thresholding, disintegration 

of a gray-level image to a binary image. This algorithm 

assumes that the image to be thresholded contains two 

classes of pixels or bi-modal histogram (e.g. foreground 

and background) then calculates the optimum threshold 

separating those two classes so that their combined 

spread (intra-class variance) is minimal. The extension of 

the original method for multi-level thresholding is 

referred to as the Multi Otsu method. This method is 

named after Nobuyuki Otsu. 

By adaptively changing the threshold, based upon 

artifacts amplitude mean or variance, an optimum value 

could be used that would minimize the amount of 

undetected and incorrectly detected artifacts. By lowering 

the threshold, the amount of undetected blinks will 

decrease but it will simultaneously increase the amount 

of incorrect detection.  

 

Fig.5 Control Data Amplitude (mV) vs. Sample Time (500 Hz sample 

rate) after Removal; scurries indicate artifact locations. 

Conversely, a higher threshold will decrease false 

positive, but increase the chances for not detecting blinks 

when they occur. 

d1 = d * ((sqrt(3)-1)/sqrt(2)); 

s2 = s * ((sqrt(3)+1)/sqrt(2)); 

s1 = s2 + circshift(d1,-1); 

S(2:2:N) = d1 + sqrt(3)/4*s1 + (sqrt(3)-2)/4*circshift(s1,1); 

S(1:2:N-1) = s1 - sqrt(3)*S(2:2:N); 
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IV. EXPERIMENTAL RESULTS 

This section presents the evaluation of the proposed 

artifact removal technique. Initially, EEG signals are 

traced with occurrence of artifacts. The captured EEG 

signal is shown in figure2. The results obtained are 

depicted in figure 3 and figure 4. 

Table 2. Shows the Efficiency of proposed system in case of 

parameters namely as peak signal-to-noise ratio and mean squared error 

in case different feature control data. 

EEG feature PSNR MSE 

FP1 18.124567 1.0245475 

FP2 17.456244 0.9646441 

FZ 17.785424 0.9945875 

F8 17.945465 1.1254247 
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Fig 6. Original Noised Electroencephalogram Signals 

The signal resulted after the usage of wavelet Kurtosis 

Based Blind Source Extraction and Spatially-Constrained 

ICA. Final signal obtained by using the otsu’s 

thresholding technique is shown in figure 7 and 9. From 

the figures, it can be observed that the proposed artifact 

removal technique results in better removal of artifacts 

when compared to the existing technique.  
 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

 

Fig 7. Final results with Conventionally Filtered transformation matrix 

This would help in improving the performance of the 

further processing with this obtained EEG signal. 
 

Fig.8 Shows the Histogram for the output EEG signal extracted, the 

results shows the values are equalized in histogram for amplitude of 

pure EEG signals. 

 

Without affecting any of the data outside the location 

of the identified artifacts. Successful removal of this type 

involving accurate source separation, were found to 

require minimal patient movement. The third row in 

Figure 5 shows the independent components that were 

determined for this data set. The component apparently 

contains all of the artifacts activity with minimal activity 

outside of the time interval identified with the artifact 

occurrence.  

 

Fig 9. Shows the bar or shadow values from the extracted output values 

as in system developed for noise removal in Electroencephalogram 

signals. This will help analysis the amplitude values from patient data 

which is free from artifacts. 

In an ideal separation of components the artifact 

component would be completely separate from brain 

activity with a waveform that consisted of the artifacts 

and zero everywhere else. To achieve this level of 

perfection an immense number of data points and 

recorded channels would be necessary. Because this is 

not achievable, the data outside of the artifact can contain 

minimal yet relevant brain activity. By removing only the 

activity in the interval identified with the artifacts 

occurrence in the third independent component and not 

the whole component, any error that could potentially be 

introduced by removing non-eye activity is minimized 

when reconstructing the signals. 

Poor removal results occurred with patients that were 

moving or talking while data was being acquired. The 

removal results suffered because the Fast ICA algorithm 

had difficulties separating out independent sources 

associated exclusively with artifact activity. When 
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sources were not separated in a fashion that resulted in 

one component associated with artifact activity and the 

removal process was performed, artifacts were attenuated 

instead of being removed. 

 

V. CONCLUSION & DISCUSSION 

This paper focuses on eradicating the artifacts from 

Electroencephalogram (EEG) signals. Artifact removal is 

a vital process earlier analyzing the EEG signal for 

prediction of any Compulsive diseases. Numerous 

scientists have focused on this process and developed 

their own Technique for artifact elimination. This paper 

intends on developing a new technique to remove the 

artifact from EEG. The use of daubechies wavelets and 

Fast ICA was successfully used in the detection and 

removal of artifacts, in EEG. The promising results 

achieved demonstrate that techniques used here are 

applicable to the desired task. 

The proposed approach uses Kurtosis Based Blind 

Component Analysis (SCICA) to separate the exact 

Independent Components (ICs) from the initial EEG 

signal. After that, Wavelet Denoising is applied to extract 

the brain activities from purged artifacts, and finally 

project back the artifacts to be subtracted from EEG 

signals to get clean EEG data. The thresholding 

technique that is used in this paper is Otsu’s thresholding. 

Experimental evaluation suggests that the proposed 

approach results in better removal of artifact when 

compared to the existing techniques. Also, a more 

powerful wavelet denoising technique can be develop in 

order to increase results in future. 
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