
I.J. Modern Education and Computer Science, 2015, 1, 31-37
Published Online January 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2015.01.05

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 1, 31-37

A Novel Testing Model for SOA based Services

Abhishek Kumar
Trinity institute of technology & research, Bhopal (M.P), India

Email: abhikumar695@gmail.com

Abstract—SOA (Service-Oriented Architecture) filled

the gap between software and commercial enterprise.

SOA integrates multiple web services. We bear to secure

the caliber of web services that gives guarantee about

what network services work and their output results.

There is close to work has to be performed for an

automatic test case generation for SOA based services.

But, full coverage of XML elements is missing. To the

best of our knowledge this all works do not attempt to

cover all possible elements of the XML schema presents

in the WSDL file. There is also a need to apply different

assertions on each service operation for generating the

test cases. To overcome this problem we proposed a

novel testing model for SOA based application. This new

testing model helps us to get the automatic test cases of

SOA based application. We build up our new test model

with the aid of our proposed test case generation

algorithm and test case selection algorithm. In the end,

we generate the test suite execution results and find the

coverage of XML schema elements present in the WSDL

file.

Index Terms—Automatic Test Data Generation,

Automatic Test Case Generation, SOA, Testing Model.

I. INTRODUCTION

Service-Oriented Architecture (SOA) based services

are loosely coupled, discoverable, reusable, interoperable

and heterogeneous in nature. SOA aligned business needs

and technical solutions closely. The web service is the

common technology to implement the SOA based system.

The web service is technology neutral, support automated

discovery and uses of services and having standards

protocols. But SOA has much broader scope as

compared to web services. SOA is the architectural

concept which is used to acquire and integrate the

services. SOA separates the service interface from its

implementation, i.e, on that point is clear separation

between the 'What' and the 'How'. SOA is the

methodology and a governance plan and web services use

this concept and established the communication between

the services. In an SOA environment, web service acts as

a tool that provides automation in business-to-business

relationship. Thus, we can state that the web service is the

realization of SOA. HTTP and SOAP are common

protocols used by web services for the message

Exchanging. Universal Description, Discovery and

Integration (UDDI) registry is used to register and locate

the web services. Application functionalities are exposed

by web services through web service description

language (WSDL). We have two types of web services.

One is atomic services and another is composite services.

Atomic services do not rely on other web services to full-

fill consumer needs. For example- Temperature

conversion service, weather report service, etc. are

considered as an atomic service. But atomic services

alone can't full-fill the consumer demands. Thus, we need

a composite service. Web services include many benefits

such as- reusability, modularity and interoperability. But,

it also included a number of concerns and challenges. For

example- When a service developer developing a web

service than his main concerns is about its correctness. So,

a developer takes some reasonable measure, including

testing to ensure whether the web service is implemented

correctly or not. Similarly, when a service consumer

wants to use the web service, then quality assurance is

important for him. So, it is important to test the web

services and ensure the tested service is the right service

for use. Service consumers and service testers are not the

developers of the web services. They can exclusively

access the web service through its interface (WSDL)

without recognizing the internal execution. As a result,

only black-box testing is possible for web services.

When there is any evolution in the service or when

service needs a maintenance at that time testing play an

important role. Interface information of a service can be

used to rank the error- detection ability of test cases.

When we talk about service Integrator perspective for

testing, structure of service process information and

information about the interfaces of partner services are

available. The responsibility of service Integrator is to

check the interactive behaviors of the services and detect

the changes of partner service. Interface information is

coming out through WSDL. WSDL having abstract-level

description information and access information. The

abstract - level description provides service functional

interface. Through access information service user can

access the service at the concrete end point. Port Type,

operation, message and type included abstract-level

descriptive information. Port and binding included access

information.

Processes, binding and interfaces are the three types

through which we can identify the changes in the

composite service. BPEL, as the de-facto standard for

service composition. The Composite service which uses

BPEL is a combination of partner service and process

service. Process is an interface described in the WSDL

specification. Partner service interacting with the process

service. Process change occurs due to the change of

BPEL activities and the change of activities order.

Binding change includes the changes in endpoint

addresses of partner services. There are two types of

32 A Novel Testing Model for SOA based Services

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 1, 31-37

interface change first is a composite service interface

change and partner service interface change [5]. Web

service execution, reliability depends upon web service

transactions. WS-transactions involve autonomous and

independent partners, multiple parties cooperation and

define dependency among partner service activities.

Technical failure or/and service level failure may occur

during the WS-transactions. So, to ensure the correctness

and accuracy of SOA based services, testing of web

service transactions plays an important role. Level,

feature and depth are the three dimensions of testing WS

transactions. These three dimensions use the basic test

concept such as test conditions, test unit and test coverage

items [2]. Lack of observability of the source code, lack

of control of the service, cost of testing when service is

not deployed, service invocations charge on peruse basis

and dynamic behavior of the services make it difficult to

test service-oriented system [3].

 In this paper, we proposed a novel testing model

which takes a WSDL file to generate the test cases. To

implement our proposed testing model we take an

example of temperature conversion service [17]. The

remainder of this paper is organized as follows. Section II

provides details about related work. Section III describes

our propose test case generation approach. In section IV

we are implementing our propose approach. Section V

summaries the paper and draw the conclusion and future

work.

II. RELATED WORK

Jeff Offutt and Wuzhi Xu [1] introduced Data

Perturbation technique. In data perturbation technique

two methods are introduced named: Data Value

Perturbation and Interaction Perturbation. The Data Value

Perturbation method is used only between two services.

XML based test data generation approach is introduced in

[4] [7] [9] [11]. In these approaches, XML complex data

type is decomposed into simple data type. Further,

various XSD constraints are applied into this simple data

type which help in the test case generation approach.

Jiang et al. [8] Proposed contract mutation testing

approach to test web services. To support contract

mutation testing three sources of test data is introduced

which are function based test data, structure based test

data and error based test data. A function based test data

gained through service requirement. Structure based test

data information can be gained at the time of the service

implementation stage. We gained error based test data

when there is any error reporting during the development

process. Khan and Heckel [15] proposed a model based

regression testing approach. The model describes service

interfaces and identify changes before and after service

evolution. In order to analyze the system evolution and

identifying which test cases need to be rerun and where

the new one are required khan and Heckel proposed a

model. The proposed model specifies external behavior

of the services and its data dependence and analysis.
Athira B and Philip Samuel [13] introduced an approach

to identify the original model and modified model

through activity part of activity diagram. Tsai et al. [16]

proposed web service group testing approach (WSGT) to

test the composite service. WSGT rank the atomic service

and composite service. For this, In WSGT there is a

voting service oracle where each input according to

majority principle is stored. These majority inputs decide

rank of services. Bai and Dong [10] proposed WSDL

based test case generation approach. In this approach test

data generation and test operation generation are two

perspectives to generate the test cases. Tsai et al. [6]

Introduced testability evaluation criteria in SOA software,

which serve as a reference for both service providers and

developers. Chen et al. [14] introduced automatic test

case generation approach based on activity diagrams.

Boghdady et al. [12] introduced an XML based automatic

test case generation approach using activity diagram.

Here, for each XML file activity dependency table (ADT)

is created. These ADT should cover all the functionalities

present in the activity diagram, but in a reduced form.

Further, activity dependency graph (ADG) is generated

from this ADT. ADG shows all the possible test paths.

Test cases derived from the model are functional test

cases. These test cases have the same level of abstraction

as the model creating them. Activity diagram uses all

basic path coverage criteria.

III. PROPOSED TEST CASE GENERATION APPROACH

To generate the automatic test cases we proposed a

novel testing model (Figure 1) to test SOA based

application. This novel testing model help us to generate

the automatic test cases of SOA based application. We

developed our novel testing model with the help of our

proposed test case generation algorithm and test case

selection algorithm. Next section explained our proposed

testing model.

A. Proposed Service Testing Model Explanation

This section explain our proposed testing model. In our

proposed model service provider first published the

service into UDDI. Service tester then send a request to

service provider and get a WSDL file to start testing

activity. We explain our testing model in detail as follow-

Fig.1. Proposed service testing model for SOA based application

 A Novel Testing Model for SOA based Services 33

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 1, 31-37

i. Service Provider: - Service developer develops the

web services and service provider publish this service

into UDDI. Sometime service developer also known

as service provider when developer himself publish

the service into UDDI. Before publishing the service,

service provider test the service to ensure that the

service meets the service level agreement. Service

provider also submits the interface information

(WSDL) of the services. Service name, operator name,

interface name, operation input-output parameter,

operation return value, message format and location

of the service information contain in the WSDL file.

This WSDL file always be in XML format.
ii. Service Tester: - Service Tester can generates the test

cases from the WSDL file. The role of tester is to

generates the various XML instances of the given

schema. These XML instances help us to generate the

test data. After generating the test data from all the

instances we have to build a test data set. This test

data set can be used as input for the test cases. Service

tester also check the versions of services.

iii. Generate Test Cases: - To generate the test cases we

apply various XSD constraints into the XML schema.

Some of the XSD constraints are- maxLength,

minLength, maxExclusive, minInclusive, whitespace,

enumeration etc. This XSD constraint helps to

generate test cases. For example- maxLength is used

to specify the maximum number of characters.

Similarly, minLength specifies the minimum number

of characters, maxInclusive specify the upper bound

where as minInclusive specify the lower bound,

Whitespace can be used to handle spaces, tab and line

feed and Enumeration defines the acceptable value

list. We generate the test cases by applying the

characteristics of these XSD constraints into an XML

schema. We can use test data set as an input for the

generated test cases. XML schema defines the various

data types. Such as: int, float, double, decimal, date,

time, long, short, etc. We can change the identity of

the data type to generate various ranges of the test

data. For example, we can change the string data type

into int to generate the minValue and maxValue of the

application.

We proposed a test case generation algorithm for SOA

based application. Our proposed algorithm help us to

generate the test cases for SOA based services. In our

algorithm precondition determines the condition under

which we assign the input value. Assertion help us to

decide the precondition. Assertions value used in our

algorithm determine the message customization, message

validation, message modification and response time

validation of test cases.

B. Proposed Automatic Test Case Generation Algorithm

for SOA Based Application

We proposed a test case generation algorithm which is

given as follow-

1. Load the WSDL _le of service into SoapUI/ SoapUI

Pro tool.

2. Identify the individual operation of a service.

3. Set the precondition by applying various assertion

types. Postcondition should be the actual output

value.

4. Assign the assertion value to each XML element of

individual service operation.

5. Run test step.

6. if assertion value==actual output value then

7. Test pass.

8. else

9. Test fail.

10. end if

11. Repeat steps 3 to 10 until all elements of operation

are traversed.

12. Exit.

To set the number of preconditions different types of

assertion are used. Figure. 2 explain some assertions and

their features.

Fig. 2. Assertion Types with Explanation

iv. Test Suite: - We use SoapUI/ SoapUI Pro tool to

test SOA based services. In SoapUI/ SoapUI Pro

tool test automation start when we create a test suite.

The test suite contains the collection of test cases.

When we use SoapUI/ SoapUI Pro tool then it

shows that number of test cases is equal to number

of service operation. Each test cases also has a

number of test steps. These test steps help us to give

variety in our test cases.

v. Test Case Selection: - There is continue evolution

in the service to full-fill clients need. Service

evolution make changes in the particular service.

We can identify the changes in the service in the

following way-

34 A Novel Testing Model for SOA based Services

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 1, 31-37

I. When new operation/operations is/are added in the

WSDL.

II. When new element/elements is/are added to the

XML schema.

III. Remove and/or rename the operations.

When the tester identifies the changes among two or

more versions of the service, then tester find-out the

missed coverage items of that service. We can select the

test case set 't' from the given test suite 'T' such that t ⊆T

where t= {t1,t2,t3,t4.......tn}. To identify the missed

coverage item tester compares the testing result between

the previous version and new one version of the service.

For example- Let S is the original service and S1 is the

evolved version (added some extra features in S) of S. S1

includes some additional features that are not presents in

S. Now service tester executes the test case set 't' on

service S and find out the testing result. The test case set

't' includes all necessary test cases for testing the original

service S. When the service S is tested now tester

executes the test case set 't' on service S1. The item which

are not covered by test case set 't' known as missed

coverage item. When tester find out the missed coverage

item, then there is a need to select the test cases other

then t from the given test suite 'T' that can test the missed

coverage items. Here, we propose a test case selection

algorithm for testing the missed coverage items.

C. Proposed Test Case Selection Algorithm for SOA

Based Application

Here, we proposed automatic test case selection

algorithm for SOA based application.

Proposed Test Case Selection Algorithm for SOA

Based Application

1. Let T be the prioritize Test Suite and t be the Subset

of T (t ⊆ T) where t={t1,t2,t3,t4.......tn}executed

before and after service evolution.

2. Repeat steps 3 to 8 until all missed coverage items

are tested.

3. Execute test cases other than t from T to cover all

missed coverage items after service evolution. Let

this test case set be T' where T'=T-t.

4. Add additional test cases say t' in T to cover missed

coverage items. t' may cover additional coverage

items that are not yet covered by pre-executed test

cases. Here, t'={t1',t2',t3',t4'.......tn'}.

5. Check test input condition and test output condition

of the test cases.

6. Execute the test cases until it cover all missed

coverage items.

7. Else

8. Go to step 2

9. Exit.

vi. Different Versions of the Services: - Many

different third parties are involved to provide

services in the SOA environments. Each third party

developed the service according to service consumer

needs. Since, there are many different third parties

are involved to develop the services. So, it may

possible that one service may have different

versions. These services are used by service

consumer. When there is any evolution in the

service, then it is fair to notify the service

consumers about the modification of the service.

But, we can't control all of our service consumers. It

is also impossible to notify all the service consumers

at the same time when there is any evolution in the

service. In SOA environments one service has

different versions and service consumers have

their own choice to choose any version of that

service. So, there is a need to test all the versions of

the service. Test case execution result and test report

should be submitted into UDDI. So that, the service

consumer on request can get the detail information

about the correctness of the service which they want

to use.

D. Implementation of Proposed Automatic Test Case

Generation Algorithm

To implement our proposed test case generation

algorithm we use Soap UI tool to test our temperature

conversion service [17]. To test the temperature

conversion service through Soap UI tool first we load the

WSDL location into the Soap UI. After adding the

WSDL location into Soap UI, all the service operations

loaded into it. In Soap UI/ Soap UI Pro test automation

start when we generate the test suite. After generation of

the test suite now we add various test steps into this test

suite. These test steps help us to give variety in our test

cases. Figure 3. shows the test automation when we add

WSDL document into the SOAP UI and build test suite.

Fig.3. Test Automation in SOAP UI

We can add n-number of test requests that help to

assign the test data to the service operation and generate

the related test response. If the test data is valid then it

shows the valid test response and test cases be passed. If

the test data are invalid, then testing request be filled. If

applied assertion is passed, then test request be passed. If

any of the applied assertions of test request be failed, then

test request not passed. Figure 4 and Figure. 5 shows

passed test assertion and failed test assertion. In figure 4

 A Novel Testing Model for SOA based Services 35

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 1, 31-37

all assertions is passed so test request is successfully

passed, but in figure 5 out of 5 assertions one assertion

(Response SLA) is failing so test request is also failing.

In Soap UI/ Soap UI Pro passed assertion shows with

green color where as failed assertion shows with red color.

Fig.4. Pass assertion of temperature conversion service

Fig.5. Fail assertion of temperature conversion service

It is not necessary to build a separate test step to pass

the test data. We can also find out the response of each

test data at a single test step. But in this case last enter

test data should be lost. The generation of different test

steps stores the test data for the test cases under their test

suite. The number of operations present in the test suite

represented the total number of test cases required for that

service. In our example Temperature Conversion service,

we have two service operation named: -

CelsiusToFahrenheit and FahrenheitToCelsius. However,

we can bring the variation in test cases by entering a
variety of test data. We assigned the different assertion
types and their value into the XML elements for each

service operation. We have build the number of test steps

that give variety in our test cases. So, now we execute our

test suite and see the result. Here, total number of test

cases is 2, because in SOA testing total number of test

cases is equal to the total number of service operations.

Number of test steps which give variety in the test cases

are 73 and 145 numbers of assertions are used. Figure. 6

shows our test suite result report. Figure. 7 shows test

coverage result that covers all the XML elements present

in the individual service operation.

Fig.6. Test Suite Results Report

Fig.7. Test Coverage Results

IV. CONCLUSIONS

This paper proposed a novel testing model to test SOA

based services. Our proposed testing model uses the

WSDL file to generate the test cases. In this paper, we

discussed about test case generation technique, test case

selection technique and web service versioning issue. We

implemented our test case generation algorithm with the

example of Temperature Conversion Service. Here, we

apply different types of assertion of service operation

elements and execute the test suite. Our proposed

approach covers all the XML elements present in the

individual service operation.

36 A Novel Testing Model for SOA based Services

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 1, 31-37

ACKNOWLEDGEMENT

We express our greatest gratitude and appreciation to

school of computer engineering, KIIT University,

Bhubaneswar, Orissa, India.

REFERENCES

[1] Jeff Offutt and Wuzhi Xu. Generating Test Cases for Web

Services Using Data Perturbation. IEEE, 2003.

[2] Rubén Casado, Javier Tuya, Muhammad Younas. A

Family of Test Criteria for Web Services Transactions. In

the proceedings of The International Symposium on

Advances in Transaction Processing. Elsevier, 2012.

[3] G. Canfora and M. Di Penta, Testing services and service-

centric systems: challenges and opportunities, IT

Professional 8 (2) (2006) 0–17.

[4] Hai Huang, Rick A. Mason. "Model Checking

Technology for Web Services", In Proceedings of The

Fourth IEEE Workshop on Software Technology for

Future Embedded and Ubiquitous Systems and Second

International Workshop on Collaborative Computing,

Integration and Assurance (SEUS- WCCIA 06), IEEE

2006.

[5] Bixin Li, Dong Qiu, Hareton Leung and Di Wang.

Automatic test case selection for regression testing of

composite service based on extensible BPEL flow graph.

The journal of system and software, 1300-1324, 2012.

Elsevier.

[6] W. T. Tsai, Jerry Gao, Xiao Wei and Yinong Chen.

Testability of Softwarein Service-Oriented Architecture.

In IEEE 2006.

[7] C. Ma, C. Du, T. Zhang, F. Hu, and X. Cai. WSDL-based

automated test data generation for web service. In

CSSE ’08: Proceedings of the 2008 International

conference on Computer Science and Software

Engineering. Wuhan, China: IEEE Computer Society,

December 2008.

[8] Ying Jiang, Ying-Na Li, Shan-Shan Hou and Lu Zhang.

Test Data Generation for Web Services Based on Contract

Mutation. In Proceedings of Third IEEE International

Conference on Secure Software Integration and

Reliability Improvement. IEEE 2009.

[9] Z. J. Li, J. Zhu, L.-J. Zhang, and N. Mitsumori. Towards a

practical and effective method for web services test case

generation. In AST’09: Proceedings of the ICSE

Workshop on Automation of Software Test. Vancouver,

Canada: IEEE Computer Society, May 2009.

[10] Xiaoying Bai and Wenli Dong. WSDL-Based Automatic

Test Case Generationfor Web Services Testing. In IEEE

2005.

[11] C. Bartolini, A. Bertolino, E. Marchetti, and A. Polini.

WS-TAXI: A WSDL-based testing tool for web services.

In ICST’09: roceedings of the International Conference

on Software Testing Verification and Validation. Denver,

Colorado, USA: IEEE Computer Society, April 2009.

[12] Pankinam N. Boghdady, Nagwa L. Badr, Mohamed A.

Hashim and Mohamed F.Tolba. An Enhanced Test Case

Generation Technique Based on Activity Diagrams. In

IEEE (2011).

[13] Athira B and Philip Samuel. "Web Services Regression

Test Case Prioritization", In Proceedings of International

Conferenceon Computer Information Systems and

Industrial Management Applications (CISIM), IEEE,

2010.

[14] Xin Chen, Nan Ye, Peng Jiang, LeiBu and Xuandong Li.

Feedback-Directed Test Case Generation Based on UML

Activity Diagrams. In IEEE 2011.

[15] Tamim Ahmed Khan, Reiko Heckel," A Methodology or

Model-Based Regression Testing of Web Services", In

proceedings of Testing: Academic and Industrial

Conference- Practice and Research Techniques, IEEE

2009.

[16] W.T.Tsai, Y. Chen, R. Paul, N. Liao and H. Huang. Co-

operative and Group Testing in Verification of Dynamic

Composite Web Services. In IEEE (2004).

[17] http://www.w3schools.com/webservices/tempconvert.asm

x?WSDL.

Authors’ Profiles

Abhishek Kumar passed his M.Tech from

school of computer engineering, KIIT

University, Bhubaneswar, Orissa, India.

He joined Trinity institute of technology

& research, Bhopal (M.P) as an assistant

professor in computer science department.

His research area include software testing,

web services and software designing.

Fig.3. Test Automation in SOAP UI

 A Novel Testing Model for SOA based Services 37

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 1, 31-37

Fig.4. Pass assertion of temperature conversion service

Fig.5. Fail assertion of temperature conversion service

How to cite this paper: Abhishek Kumar,"A Novel Testing Model for SOA based Services", IJMECS, vol.7, no.1,

pp.31-37, 2015.DOI: 10.5815/ijmecs.2015.01.05

