
I.J. Modern Education and Computer Science, 2015, 12, 42-50
Published Online December 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2015.12.06

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 12, 42-50

An Investigation of Software Engineering

Knowledge of Undergraduate Students

Isong Bassey
North-West University, Department of Computer Sciences, Mmabatho, South Africa

Email: bassey.isong@nwu.ac.za

Dominic Afuro and Mbodila Munienge
University of Venda, Computer Science Department, Thohoyandou, South Africa

Email: domafuro@gmail.com, munienge.mbodila@univen.ac.za

Abstract—Computer programming (CP) course offered

in universities is difficult coupled with insufficient

infrastructures and teaching staff. In spite of these,

several undergraduate Computer Science (CS) students

are increasingly acquiring programming skills and

developing commercial applications even without

attending formal programming classes. However,

software intended for use other than by the developer

requires teamwork, the use of software engineering

methodologies and quality. What is not known about

these undergraduate students is how their programming is

learnt or applications developed. This is important in the

light of software dependability and cost of failures today.

Therefore, this paper investigates how undergraduate CS

students learn programming and their software

engineering knowledge. The purpose is to gain insights

into how knowledge is gained and applied. To

accomplish this, the paper conducted a survey utilizing

questionnaire and interview on undergraduate students of

CS in the University of Venda (UNIVEN). The data

collected were analyzed and results quantitatively and

qualitatively presented. The results showed that many CS

students learned programming via the Internet reusable

code, applied development methodology and are aware of

software quality during development.

Index Terms—Computer programming, developer,

teaching, learning, students.

I. INTRODUCTION

Today, in the context of continuing pressure for well-

trained personnel for economic development with respect

to information technology, Computer Science (CS)

graduates have been in high demand [12]. In this case,

programming skill is one of the core competencies CS

graduates are required to have. For this to be achieved in

the perspective of higher education, computer

programming (CP) courses are offered. CP courses are

intended to prepare and proffer undergraduate CS

students for a career: not only with technical knowledge,

but also with the skills that are essential to work in real-

life software development projects [1]. However, learning

to program is hard and students have found programming

to be difficult [2][3].

Interestingly today, in the light of the difficulties

associated with CP, majority of CS students can still

develop software codes exceptionally even without

attending formal classes or practical in the computer

laboratory. The software applications developed by these

students range from personal to commercial. Nonetheless,

in the context of commercial applications, it is intended

for use by someone other than the developer. Thus, the

development of such applications requires teamwork

rather than individuals using appropriate software

engineering (SE) methodology. The application of SE

methodologies is required to develop a high quality

system that is reliable, stable, and maintainable

throughout its lifetime [4]. It is designed to support

professional software development that ranges from the

techniques of program specification to maintenance, none

of which are considered relevant for personal software

development [4].

In addition, as software is becoming more dependable

and pervasive day by day, the relevance of software

quality cannot be overemphasized. The increasing

prominence of software and the related cost associated

with software failures are the drivers for high quality of

software products. To this end, SE methodologies are

indispensable requirements for effective software

development in order to meeting such demand. In

software development organizations, software processes

are used to achieve the required levels of productivity and

quality. Thus, CS undergraduate students as future

developers can as well follow such processes if their goal

is to achieve high quality products in their career. Albeit,

it is hard to rebuild the real-world software development

in the classroom, student developers need to have skills

such as analytical thinking, creative synthesis, and

attention to details in order to write good code, test and

maintain software to ensure that the developed

application meets the needs of the users [5][6].

Though undergraduate CS students are increasingly

developing software applications today, commercial

applications in particular, the issue is how are such

applications developed: Are SE methodologies employed?

Do they develop with the goal of software quality in mind?

 An Investigation of Software Engineering Knowledge of Undergraduate Students 43

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 12, 42-50

Therefore, the objective of this paper is to explore and

answer the questions stated above. The goal is to gain

insights into how student applied the knowledge acquired

in their studies in their personal software development

life and if there are appropriate. This is important in order

to provide them with the necessary assistance or suggests

some improvement in the current CP teaching

methodology that will align to their needs. To achieve

this, this study carried out a survey on undergraduate

students of the department of CS in the University of

Venda (UNIVEN). Reponses obtained were analyzed and

results presented quantitatively and qualitatively. The

findings indicated that reusable code on the Internet

constitutes the new method for learning programming

among the undergraduate CS students. In addition, it is

also revealed that some of these student developers have

software quality in mind when they develop their

applications as well as the use of software development

methodologies. However, regrettably the students were

found not to be following the appropriate methodology

and there are not working in teams, which we believed

could affect the quality of the developed products.

The rest of the paper is organized as follows: Section II

is the study background information, III is the challenges

of CP teaching in UNIVEN and IV is the methodology

used. Accordingly, Section V is the results and

discussions, VII is the threats to validity and VIII is the

study conclusions.

II. BACKGROUND INFORMATION

CP is a crucial part of computing and a useful skill

which constitutes one of the nucleus competences

expected of anyone in the discipline of CS [1]. It is

described by Deek & McHugh [7] as a problem solving

process of formulating, planning the solution, designing

the solution, translation, testing, and delivery.

Furthermore, in order to achieve these processes, [7]

stressed that programmers must be equipped with skills

such as learning the language, composing new programs,

comprehending, reusing and integrating existing

programs, modifying etc. Nevertheless, programming is

difficult and constitute a challenging tasks which involve

huge cognitive activities [1][5][7][8].

Today, it has been recognized that one of the greatest

concerns that have remained for decades is the teaching

and learning of programming [2][3][8]. The teaching and

learning of programming has been one of the key

challenges in the field of CS. Learning to program is

known to be difficult due to the fact that the learning

process is vulnerable to several risks [8]. This is

evidenced in several researches in the literature [6].

However, these challenges are common in several

developing nations’ universities. It has been noted that

some of the factors that contributes to the challenges are

lack of experienced programming teachers, lack of

computing infrastructure and ineffective teaching

methods [6]. In most cases, CP is only taught in ordinary

classrooms while computer laboratories are rarely used.

This has resulted in many students that offers CP as a

course to lose enthusiasm and interests in the learning [1].

In addition, it has been revealed that most students’

interest in the CS discipline is declining. For instance,

data by Foster [9] showed that students who indicated

their desire to major in CS declined by more than 60

percent between the fall of 2000 and 2004. Nevertheless,

in spite of the difficulty associated with CP, several

undergraduate students are progressively developing

software applications (either personal or commercial) as

well as improving their skills day by day. But what has

not been known is how the programming is learnt and

what software engineering methodology is applied during

the development process, in particular the commercial

applications. This forms the basis for this study. This is

important because, with today’s globalization, rapid

technological development and knowledge-based

economy [12], it is of the essence to ensure that graduates

of CS are fully equipped with the cutting-edge technical

skills and basic competences to excel in the production of

quality software products.

III. COMPUTER PROGRAMMING TEACHING IN UNIVEN

As stated above, learning to program has been deemed

hard and the undergraduate programming courses are

generally considered insufficient and difficult as well.

Consequently, utmost dropout rates among CS students

have been witnessed and are popular among several rural

universities in developing countries, where UNIVEN is

no exception. In the department of CS, there are few

teaching staffs, few programming modules and a single

computer room with almost 15 to 20 computers while

about 200 or more students struggle to learn

programming in one computer room with only one or no

supervisor. With the nature of the computer laboratory,

the lecturer responsible usually employed student tutors

to take charge of the students. Sometimes, the student

tutors are not different from the students they tutored. In

this case, students often get stuck in problems and left

unattended to. Consequently, several students have quite

left CS programme to other programmes or performed

poorly because of lack of motivations as they cannot find

ideal solutions to their problems. Moreover, another

course that is used to supplement CP is the SE modules

where students are given projects in teams.

However, one well-known truth supported empirically

that involved the teaching of CP which has to be known

is the fact that a motivated student needs some form of

guidance to succeed irrespective of the prevailing

conditions including the teachers [10][11]. Similarly, ill

motivated student will fail regardless of what the teacher

says or how good the teacher is at explaining the concepts

of CP [10]. Thus, students learning motivation and

effectiveness can be hindered by environmental factors

such as the learning approach, infrastructural availability

and social pressure from learning peers [12]. Though

undergraduate students in UNIVEN may be affected by

lack of full guidance when it comes to learning CP, it is

fascinatingly to know that the students never back-off.

They have found a new way of complementing their

44 An Investigation of Software Engineering Knowledge of Undergraduate Students

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 12, 42-50

classroom’s programming needs and discovering it

therefore, forms the basis for this paper.

IV. RESEARCH DESIGN

This section discussed the design of the research we

employed in this study: the participants, the questionnaire

and interview design.

A. Study Participants

The target participants in this study are the

undergraduate students of UNIVEN who are in their 2nd,

3rd and 4th year that have offered or still offering any of

the two programming modules and SE module in the CS

Department: COM 1721, COM 2701 and COM 3620.

COM 1721 is an introduction to object-oriented

programming module in C++ that is taught at the first

level and COM 2701 is programming module in Java

taught at the second year level. In this study, the first year

students were excluded because of insufficient

programming experience. COM 3620 is a SE module

taught at the third year level. In all these courses, lectures

are always held in the classrooms, practical laboratory

scheduled maybe once or none, and projects are given in

teams where problems are solved using their personal

computers since the computer laboratory are not

sufficient. The study was conducted using a sample of

112 students (students available as of the time the

questionnaire was administered) drawn up from the entire

CS student population as captured in Table 1.

Table 1. Participants’ Gender and Study Level

Gender Study Year

Males 92 2nd 65

Females 20 3rd 41

Total 112 4th 6

B. Questionnaire, Interview Design and Data Collection

This study used the mixed research method, utilizing

questionnaire and interview as methods for collecting

data from the students. Due to the nature of the

information collected, the study followed a descriptive

analysis approach to analyze the extracted data.

Furthermore, closed-ended questionnaire was used and

was subjected to strict evaluation by an independent

expert to ascertain the suitability of the questions. The

validated questionnaire was used to elicits information

from the students such as how they learn programming,

develop applications, software engineering knowledge

and application in relation to software quality. Based on

the questionnaire, the analysis was performed question by

question as presented in Section V.

In the same vein, the interview focused only on a

subset of the third year CS students due to time constraint,

albeit we could have obtained more valuable information

using only personal interviews in the entire study.

However, the interview was based on the semester project

of COM3620 given to third year students in teams of five

students each. The project was about developing a

medium-size application of their choice using any

software development methodology. After the project

completion, some selected team members (about 10)

were interviewed. The questions were specifically on the

application type they developed, technologies used and

their teamwork experience. A transcript of this interview

was documented and discussed qualitatively in this paper.

V. RESULTS AND DISCUSSIONS

This section presents the summary of the results

obtained from the study based on the data collected. The

data is analyzed and the results obtained quantitatively

presented section by section as stipulated in the

questionnaire design.

A. How Students Learn Programming

To explore how students learn their programming,

several background questions were asked to obtain the

needed information from the students. These questions

are as follows.

Do you program?: The students were asked this

question in order to improve the quality of the study by

focusing on those who can program. This was necessary

because CP has been deemed difficult which led to the

belive that not all students can program. However, as

presented in Fig. 1, the analysis shows that majority of

the students, about 93% (104 students) are developers

while only 7% (8 students) are not developers.

Fig.1. Programming Interest

Moreover, when asked the programmers how long they

have been programming, the analysis shows that majority

of the students, about 55% have been programming for

over a period of one year followed by 31% who have

been programming between 2 to 3 years. (See Fig. 1)

therefore, based on these results, it can be deduced that

despite the difficulties and other environmental

challenges students in UNIVEN might face in the course

of learning of CP, they have continued to show great

interest in CP and their expertise is growing.

What is your general perception about programming?:

This question was designed to test students’ perception

about programming in general. However, from the results

obtained and out of the 104 students who can program,

Programm
ers

93%

Non-
programm

ers
7%

 An Investigation of Software Engineering Knowledge of Undergraduate Students 45

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 12, 42-50

about 55 students considered CP to be interesting, 45

considerd it difficult while 4 declined. This is captuured

in Fig. 2. Further analysis revealed that about 64% (66) of

the students weren known to have average basic

programming skill. Based on this result obtained, this

study believed that the result is in line with the response

obtained in their years of experience as it shows that the

students are gradually becoming proficient in CP course.

Fig.2. Participants’ Programming Perception

What resources are used when learing to program?:

This question forms one of the core objectives of this

research. It was designed to discover the different

approaches students invented in learning CP. Nonetheless,

with the analysis presented in Fig. 3, out of 104 students

who can program, analysis shows that majority of the

students, about 49 of them learnt from reuse codes on the

Internet, while 32 learn how to program by combining

classrooms, textbooks and reuse codes. The results

obtained in this regard suggest that while programming is

insufficient in the classrooms, the Internet has become a

leverage. Moreover, this could be the reason why

students find programming interesting because of the

availability of source codes on the internet and textbooks.

Fig.3. Programming Learning Approach

Fig.4a. No of Hours Spent Online Learning Programming

If you have learnt programming with reuse codes

online, how often do you access the Internet?: This

question was designed to assist this study to know the

length of time and how often students used the Internet to

learn CP with reuse codes for them to be effective in

programming. Interestingly, out of the 81 respondent who

uses Internet, analysis indicates that about 29% (23) of

the students spent one hour while 37% (30) spent two

hours on the Internet learning with reuse codes. (See Fig.

4a) In the same vein, further analysis indicates that 33%

(27) of the students accessed the internet once a week, 43%

(35 students) access the Internet more than once a week.

This is captured in Fig.4b. The significance of this result

is that, for students to be effective in programming

outside the classroom, they have to spend a considerable

number of hours at least more than once a week on the

Internet either at their home, school, café and so on.

Fig.4b. Frequency of Internet Access

B. Rationale for Learning Programming Outside the

Classrooms

This section focus on eliciting information on the

challenges students faced and their motivation to learning

programming in a specific way. Based on the responses

analyzed above, we focused only on the classroom as

follows:

55
45

4 0

10

20

30

40

50

60

Interesting Difficult Don't know

10 8

49

5

32

0 0

10

20

30

40

50

60

6%

29%

37%

17%

11%

< 1Hrs 1Hr 2Hrs 3-4Hrs > 4Hrs

3%

33%

43%

21%

Once a month Once a week

More than one a week Everyday

46 An Investigation of Software Engineering Knowledge of Undergraduate Students

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 12, 42-50

Fig.5. Programming Challenges in Classroom

What is/are the reason(s) why you don’t learn

programming in the classroom?: This question was

specifically chanelled towards obtaining information

from the respondents who learnt programming using

other methods other than in the classrooms. The

justification is to gain insights into what the problems

were. However, the analysis presented in Fig. 5 shows

that out of 62 respondents, about 32% (20) of students

admitted lack of quality time to teach and explain

programming concepts in the classroom, lack of

programming infrastructures (e.g. well-equipped

computer laboratories) and experienced programming

teachers. The result obtained here is in line with the study

of [6] and by implication, this could be the reason why

students invented their own ways of learning CP other

than in the formal classroom.

If “lack of quality time” in the classroom is your

reasons why you don’t learn programming formally, how

often are programming classes scheduled in your

institution?: Due to the fact that defficiencies in

classroom studies have been considered as some of the

reasons why students have devised their own approach of

CP learning, this study went further to explore how time

and frequency of CP classes affects them. However, the

analysis obtained indicates that out of the 13 responses

that admitted is lack of quality time, about 54% (7) of the

students went further to admit that CP class is only

scheduled once a week while 46% (6) said CP classes are

scheduled not more than twice a week. (See Fig. 6a)

Fig.6a. No Programming Classes in Each Class

Further analysis indicates that 32% of the students

spent only one hour a day in each CP class while about

21% spent 3 to 4 hours in a class per day. (See Fig. 6b)

With this result, it is so encouraging to see that the

frequency of CP classes and the number of hours spent in

each class is not sufficient for students to acquire the

needed programming skills. Based on this result, the

above fact can be said to be one of the reason some

students have adopted their own approach through reused

codes.

Fig.6b. No Hours Spent in Each Class

C. Software Development Activities

The questions in this section were designed to target

only student developers who have developed software

applications for personal or commercial use. The

rationale is to help the study understand their level of

awareness as regards to professional development with

respect to software quality. The following questions were

then asked:

Have you ever developed a complete working software

application?: This question was geared towards knowing

how many students were actually making progess in

programming and have developed atleast a complete

workable system. However, with the analysis, of whom

104 respondents are programmers, about 52% (53)

admitted they have developed workable applications, 48%

(49) have not while 2 students declined. Additionally, for

those who have developed complete software

applications, analysis indicates that majority of the

students, about 60% (32) have developed complete

systems for personal use such as course assignments,

course projects, and so on, while only 40% (21) have

developed software for their clients based on monetary

contract.(See Fig. 7)

Fig.7. Type of System Students Develop

Lack of
quality

time
21%

Lack of
programm
ing tools

18% Lack of
experience
d teacher

24%

All of the
above
32%

None of
the above

5%

54%
46%

0% 0%

Once More than once Everyday Not at all

0

8

3
2

0 0

2

4

6

8

10

< 1Hrs 1Hr 2Hrs 3-4Hrs > 4Hrs

Commerci
al

40%

Personal
60%

 An Investigation of Software Engineering Knowledge of Undergraduate Students 47

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 12, 42-50

Fig.8a. Software Development Technique

If you have ever developed a commercial software

system, how do you go about developing them?: This

question was designed to discover if students work

individually or in collaborations with others during the

course of development. The essence is that today, the

development of software applications for market

purposes requires joint efforts of members of one or more

teams and not a single person [13]. Unfortunately, the

results obtained shows that only 32% (17 students)

worked in teams while about 68% (36 students) worked

individually. Moreover, 27 students have adopted the

object-oriented development approach while 15 students

combined both procedural and object-oriented techniques

(See Fig. 8a). Significantly, these results indicates that

majority of the students are still not aware of the

importance of working in teams which perhaps, can speed

up the development process and promote knowledge

sharing. The good thing with the result obtained here is

that undergraduate CS students are beginning to use

modern development techniques such as object-oriented

or a combination of both procedural and object-oriented

to develop their applications.

Fig.8b. Software Development Priority

When you develop software, what is your greatest

concern?: This question was aimed at assessing what

comes to the students’ mind when developing software

applications in terms of software quality, cash, deadline,

and so on. The analysis presented in Fig. 8b shows that,

out of the 53 students that can develop full application

commercially, only 15 students are actually concerned

about software quality while 23 students are concerned

about quality, price and deadline. For those with concern

about software quality, further analysis has it that out of

38 students, 55% (21 students) believed a quality

software is one with the right functionalities, satisfies

users’ needs and is maintainable. (See Fig.9) Based on

the result obtained, we can deduced that some UNIVEN

CS students are aware of the importance of software

quality, delivery date and perhaps, being paid for their

time and effort utilized. Moreover, they are well-

informed about software quality but what is not known at

this point is if they actually put it into practice which is

beyond the scope of this study since this study did not

access their developed applications.

Fig.9. Software Quality Knowledge

Have you ever used software development

methodology?: This question was designed to target

students who have developed complete software

applications. This is important to enable this study assess

if they actually applied SE approach when developing

their software applications. Nevertheless, the results

obtained shows that out of the 53 students, about 75% of

students admitted the usage of SE methodology while

about 25% have not. Furthermore, analysis based on

those who have used SE methodology (40 students)

indicates that about 21 students admitted the application

of SE methodology is for professional software

development.

However, for the students who have used SE

methodology, about 40% (16) have adopted the Waterfall

approach while 23% (9) students have adopted the Reuse-

oriented approach.(See Fig. 10a) To further assess if the

students rightly applied the SE methodology they adopted,

24 students admitted they always starts with requirements

collections before performing the actual development.

(See Fig. 10b) What is interesting in the results obtained

here is that several students have used different

methodologies and majority of them actually knew the

right activity to perform when adopting a particular

methodology in order to be on the right track in meeting

customer’s needs and ensure their satisfaction. However,

what cannot be established is the suitability of the

methodologies they applied.

9

27

15

2

0 5 10 15 20 25 30

Procedural

Object-oriented

Hybrid

I don't know

0 5 10 15 20 25

Quality

Deadline

Price

All of the above

None of the above

15

9

5

23

1

A working
software

26%

Software
with right
functionali

ties
55%

A system
sold in
market

16%

I have no
idea
3%

48 An Investigation of Software Engineering Knowledge of Undergraduate Students

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 12, 42-50

Fig.10a. Software Methodology Adopted and Activities

Fig.10b. Software Methodology Adopted and Activities

If you have used reusable codes, can you align it with

any of the methodologies you know?:This question was

designed to explore the appropriateness of the

methodology used targeting the students who are using

reusable codes from the Internet. However, in an attempt

to align their methods with any of the existing

methodologies, analysis indicates that out of the 81

students who uses online codes, about 31 students

indicated chosed Waterfall model while only 9 students

admitted is reuse-oriented approach. Moreover, when

asked about their perceptions on the use of online codes,

analysis indicates that 58% (47 students) believed using

reuse codes makes the work easy and saves time. (See

Fig.11)

Fig.11. Methodology Alignment and Reuse Codes Benefits

Based on the results obtained here, analysis has

revealed that albeit majority of the students used reuse

codes, only few students can actually align it to reuse-

oriented methodology and as well followed the

appropriate steps to develop a quality product. Thus,

necessary measures have not been taken to ensure the

quality of the product they developed. With this fact, it is

believed that using online code is easy and save

programming time needed to deliver the software

application well as low cost.

D. Interview Transcript

This section discuss the responses documented from

the interview conducted on the third year students

offering COM3620. The interview focused on two key

aspects: programming language/application types and the

issues of teamwork. The interview goes as follows:

What are the types of software applications you

develop and the languages used?: The goal of this

question was specifically to explore the software

applications students developed for their clients and the

type of programming languages they utilized. Based on

the responses obtained, this study found that some

UNIVEN CS students specializes in developing two

kinds of applications: web-based and desktop based

application for their clients. They went further explaining

that:

“…for the web-based applications (e.g websites, portals) we

used technologies such as PHP 5, JavaScript, HTML 5, CSS,

and Mysql, while for desktop applications such point of sales

system, we used Java and Mysql only”.

When further asked why they have used only these

technologies in their development, they responded by

saying:

“…those technologies were the only ones we are good at.

However, technologies such as C++, C#, visual basic, android,

JFX and J2EE, can only be adapted to with the help of reuse

codes online whenever our clients demand applications to be

built with them”.

The transcript represented above is from one of the

interviewee, although they all responded the same way.

However, from this transcript, it is clear that, although the

only programming languages taught at UNIVEN are C++

and Java, some of the students have gone further to learn

other languages such as MySql, C#, PHP, CSS,

JavaScript, etc. on their own. This confirmed that using

online code could been beneficial and productive.

What challenge do you face when developing in teams?:

This question was based on the feedback from the project

task they were assigned to perform in teams. To answer

this question, the students tried to explain the challenges

they faced with some of their semester projects in

particular, COM360. As explained:

“…..in that project, the lecturer allowed us to form teams by

ourselves and during the selection of team members, students

only selected team members based on their relationships rather

than the essential skills/experiences required from each

individual for the project success”.

Waterfall
40%

Prototypi
ng

17%

Incremen
tal

12%

Reuse-
oriented

23%

Extreme
program

ming
5%

None
3%

0 5 10 15 20 25 30

Coding immediately

Payment

Get requirements

Start with design

Hard to
understan

d/time
wastage

21%

Easy to
use/saves

time
58%

As good as
starting

from
scratch

17%

I can't tell
4%

 An Investigation of Software Engineering Knowledge of Undergraduate Students 49

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 12, 42-50

Moreover,

“…students have no respect for their fellow students because

we are all mates in the same level of study …they found it

difficult to show respect for one another. Also, most students

don’t trust each other when it involves performing a task

together”.

From these responses, it be seen that most of the team

members who have more skills and experience than

others do not want to share their knowledge with their

colleagues. Instead, they want to work alone and be the

only ones known with such skills. They students further

stressed that, all these factors affected their projects

negatively and consequently, they prefer to develop their

application individually other than in teams. Though, this

is a good solution for the students, it is highly against the

ethics of professional software development. Hence, steps

should be taken to address these challenges in future

semester projects.

VI. VALIDITY THREATS

In this study, there are two threats which could affect

the results discussed: internal and external validity threats.

Threats to the internal validity of this survey could be as a

result of lack of seriousness on the part of some students.

During the course of administering the questionnaire, few

students were found discussing with friends while

responding to the survey. Thus, care must be taken when

generalizing the results. In addition, this survey is

voluntary and there is the possibility that the results may

be biased. The undergraduate students sampled in this

study may not represent the actual interest of the entire

population of CS students in UNIVEN. In the same vein,

a threat to the external validity could be that this study

was done at one rural university and the results may not

apply to all institutions either in rural or urban areas.

VII. CONCLUSIONS

This paper explored software development activities of

undergraduate CS students in an attempt to gain insights

into how they learn and proficient in programming

despite the difficulty and cognitive activities associated

with CP. The study also investigated their knowledge of

software engineering methodology and their application

during the process of development. It was conducted

because today, several undergraduate students can

develop commercial applications even in the face of

insufficient programming courses, teachers,

infrastructures, and so on. Furthermore, software quality

has been a great concern due to the cost of software

failures. Therefore, it is important to know whether

knowledge was gained in their studies and if the products

students develop are of quality or not. Based on the

questionnaire survey (for entire students) and interview

(for subset of third year students) carried out, data

collected from student programmers were analyzed and

results presented quantitatively and qualitatively

respectively. From the results obtained, this study found

that students learning was effective as most students were

able to apply the knowledge acquired to their

development activities. Other findings are as follows:

 Several CS students in UNIVEN are developers

who have been programming for a year or two

with average basic skills and found programming

to be interesting.

 Students consider online source codes, in addition

to formal programming classes and textbooks as

the best approach to learn programming. They

spent a significant amount of time on the internet

practicing programming with reusable codes.

 Students are discouraged by the time spent in the

classroom during programming classes, lack of

infrastructures and insufficient programming

teachers. Programming classes are schedule

mostly once in a week with a maximum of one

hour each.

 Several UNIVEN CS developers have developed

commercial applications for their clients and are

not motivated by cash but to solve real-world

problems, add value to the IT industry and to get a

good job after graduation.

 Majority of the students enjoyed working

individually rather than in teams due to issues of

respect, trust, knowledge sharing and so on.

 Students have applied different software

development methodologies in their work but

unfortunately, majority of them could not align

their work to the appropriate methodology, though

followed the right activities.

 Majority of the students confirmed the benefits of

reuse codes, expressed concern about Internet

security but most are not concerned about

intellectual property rights as well.

Based on the above stated findings, here are some of

the recommendations this study believes should be

considered:

 More has to be done to keep the students

completely on the right track of preparing and

equipping them with the effective and professional

programming skills. We believed this will assist

them to impact the world of software development.

Though students can learn from reuse code on the

Internet, real understanding requires learning

which is active in the laboratory environment with

teacher’s guidance for ensuring reflection on the

experience obtained from problem solving

purposes, otherwise passive programming learning

will result in failure.

o Programming classes schedule in a week and the

number of hours spent in a day in the class

should be reviewed and revised since they could

discourage students from learning programming

formally.

50 An Investigation of Software Engineering Knowledge of Undergraduate Students

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 12, 42-50

o When teaching software development models in

SE, more emphasis should be placed on reuse-

oriented approach in order to equip students with

required skills of using reuse code or

components for software quality.

 Course teachers should educate students more on

the importance of teamwork/trust and encourage

them to practice it so that students who are going

to work in the software development firms will not

be found wanting. Professional software is

developed in teams rather than by individual

bodies. In this case, the formation or selection of

team members should be the sole responsibility of

the teacher and not the students due to issues of

trust, respect as well as knowledge sharing.

These recommendations should be taken seriously and

be considered to ensure that undergraduate students of CS

are equipped with the effective and professional software

development skills expected of them to fit into any

software firm and excel in their respective workplace

after graduation.

REFERENCES

[1] Chris M.Y., Victor C.S. & Lee Y.T. Yu. 2010. Learning

motivation in e-learning facilitated computer

programming courses. Computers & Education 55, pp.

218–228.

[2] Jenkins, T. (2002). On the difficulty of learning to

program. In: 3rd annual conference of LTSN-ICS.

[3] Gomes, A., & Mendes, A. J. (2007). Learning to program

– Difficulties and solutions. In International Conference

on Engineering Education – ICEE 2007, Coimbra,

Portugal.

[4] Sommerville, Ian. 2011. Software Engineering (9th

edition). Pearson Education. ISBN-13: 978-0-13-703515-

1.

[5] Lam, M. S. W., Chan, E. Y. K., Lee, V. C. S., & Yu, Y. T.

2008. Designing an automatic debugging assistant for

improving the learning of computer programming.

Lecture Notes in Computer Science, 5169, 359–370.

[6] Robins, A., Rountree,J., Rountree, N. 2003. Learning and

teaching programming: A review and discussion.

Computer Science Education. Vol. 13, No. 2, pp.137-172.

[7] Deek, F.P., & McHugh, J.2003. Problem Solving and

Cognitive Foundations for Program Development: An

Integrated Model. Proceedings of the Sixth International

Conference on Computer Based Learning in Science

(CBLIS), Nicosia, Cyprus, pp. 266- 271.

[8] Lui, A. K., Kwan, R., Poon, M., & Cheung, Y. H. Y.2004.

Saving weak programming students: Applying

constructivism in a first programming course. SIGCSE

Bulletin, 36, pp.72–76.

[9] Foster, A. 2005. Student interest in computer science

plummets. Chronicle of Higher Education.

http://chronicle.com/free/v51/i38/38a03101.htm.(Accesse

d on August 31, 2006).

[10] Brito, M.A. and Sá-Soares, F. (2013). Assessment

frequency in introductory computer programming

disciplines, Computers in Human Behavior, 2013.

[11] Wulf, T. (2005). Constructivist approaches for teaching

computer programming. In Proceedings of the 6th

conference on information technology education, Newark,

NJ, USA: ACM.

[12] Law, K. M. Y., Sandnes, F. E., Jian, H., and Huang, Y

(2009). A comparative study of learning motivation

among engineering students in South East Asia and

beyond. International Journal of Engineering Education,

25(1), pp.144–151.

[13] Thomas, P.S., Fernández, R.F. & Manjón, B.F.2009.

Learning teamwork skills in university programming

courses. Computers & Education 53, pp. 517–531.

Authors’ Profiles

Isong Bassey received B.Sc. degree in

Computer Science from the University of

Calabar, Nigeria in 2004 and M.Sc. degrees

in Computer Science and Software

Engineering from Blekinge Institute of

Technology, Sweden in 2008 and 2010

respectively. Moreover, he received a PhD

in Computer Science in the North-West

University, Mafikeng Campus, South Africa in 2014. Between

2010 and 2014 he was a faculty member of the University of

Venda, South Africa and a Lecturer of Computer Science and

Information Systems. Currently, he is a Lecturer in the

Department of Computer Sciences, Mafikeng Campus, North-

West University. His research interests include Software

Engineering, Requirements Engineering, Software

Measurement, Maintenance, Information Security, Software

Testing, Mobile Computing and Technology in Education.

Dominic Afuro holds B.Sc. (Hons)

degrees in Computer Science from the

University of Calabar, Nigeria in 2004 and

Computer Science and Information

Systems from the University of Venda,

South Africa in 2014 respectively. He is

currently studying for his Masters degree in

Computer Science. His research interests

include Software Engineering, Mobile Cloud Computing and

Web Service Discovery.

Munienge Mbodila holds B.Sc. (Hons)

degree in Computer Science at the

University of Fort Hare and M.Sc. degree

in Computer Science in 2013 at the North-

West University, South Africa. Currently,

is a PG Diploma in Higher Education

student in Teaching and Learning at

Stellenbosch University, South Africa. He

joined the Department of Computer Science and Information

System of the University of Venda as a faculty member and as a

Lecturer in 2009. His research interests include Computer

Networks, Wireless Sensor Networks, Software Engineering,

ICTs and Web Technology in Teaching and Learning.

