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Abstract—Cloud computing environments have 

introduced a new model of computing by shifting the 

location of computing infrastructure to the Internet 

network to reduce the cost associated with the 

management of hardware and software resources. The 

Cloud model uses virtualization technology to effectively 

consolidate virtual machines (VMs) into physical 

machines (PMs) to improve the utilization of PMs. 

Studies however have shown that the average utilization 

of PMs in many Cloud data centers is still lower than 

expected. The Cloud model is expected to improve the 

existing level of utilization by employing new approaches 

of consolidation mechanisms. In this paper we propose a 

new approach for dynamic consolidation of VMs in order 

to maximize the utilization of PMs. This is achieved by a 

dynamic programing algorithm that selects the best VMs 

for migration from an overloaded PM, considering the 

migration overhead of a VM. Evaluation results 

demonstrate that our algorithms achieve good 

performance.  

 

Index Terms—Cloud Computing, Virtual Machine, 

Dynamic Consolidation, Migration. 

 

I.  INTRODUCTION 

Cloud data centers host a variety of applications such 

as Internet applications whose workloads continuously 

change. These kinds of applications are the true 

beneficiaries of the elasticity property offered by Cloud 

computing environments. Using elasticity, resources 

allocated to virtual machines (VMs) based on their 

application demands, can be dynamically scaled up or 

down. In fact, after uploading applications onto VMs, the 

Cloud service provider can properly allocate resources 

based on demands of applications on VMs. Therefore, 

users are only charged for what they actually use, 

reducing their cost significantly [1][2]. 

Data centers often provide resources for the peak 

demand so that they can make sure that sufficient 

resources are available; in addition, the performance of 

VMs applications are guaranteed .Needless to say that 

applications are not always in their peak demand; 

therefore, physical machines (PMs) are often 

underutilized since their resources are overprovisioned. 

Studies have found that the average utilization of PMs in 

many Cloud data centers is very low. Real world 

estimates range from 5% to 20%. Using dynamic and 

automatic VM consolidation, the Cloud model is 

expected to increase the overall utilization of physical 

resources in existing data centers [3][4][5]. 

Dynamic VM consolidation approaches leverage 

dynamic nature of Cloud model, both PMs and their VMs 

are periodically monitored. In order to minimize the 

number of active PMs and maximize the quality of 

delivered services, whenever a PM becomes a hot or cold 

spot, its VMs are reallocated using live VM migration. 

According to [6], dynamic VM consolidation problem is 

divided into the following four sub-problems:  

 

1. Deciding what to do when a PM becomes over-

loaded (hot spot); to avoid QOS degradation, some 

of its VMs should be migrated away. 

2. Deciding what to do when a PM becomes under-

loaded (cold spot); to save energy, all of its VMs 

must be migrated to other PMs so that the PM can be 

switched off. 

3. Selecting the best VMs for migration from an 

overloaded PM.  

4. Selecting the best destination PM for migrated VMs. 

 

In this paper we focus on the last two sub-problems. 

We aim to select the best VMs for migration from an 

overloaded PM. To achieve this goal, we first introduce 

an unevenness formula. Using unevenness, memory size 

and granularity of VMs, we quantify the migration cost of 

each VM on an overloaded PM. We then propose a new 

dynamic programming algorithm for selecting the best 

VMs for migration from an overloaded PM. Finally, we 

present an algorithm for selecting the best destination for 

a VM that is a candidate for migration based on our 

unevenness formula. 

 

II.  RELATED WORK 

In recent years, a lot of work has been done in the area 

of VM placement in Clouds. The goal has been to 

optimally exploit available resources, while avoiding VM 
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performance degradation. This problem has usually been 

formulated as a multi-dimensional bin packing problem. 

In this regard, several algorithms have been proposed 

with different objectives such as minimizing the number 

of running PMs [6][7][8][9]. Konstantinos et al. [8] use 

intelligent placement of VMs on PMs by employing user 

provided placement hints. Hints offer desired VM 

deployments for consumer workloads. Their framework, 

however, may ultimately ignore part or all of hints based 

on the overall available physical resources. They did not 

define any trust model. Also, the users might provide 

hints that are not compatible with the Cloud infrastructure 

characteristics.  

Ofer Biran et al. [1] have focuses on network aware 

VM placement and proposed a new solution, Min Cut 

Ratio Aware VM Placement (MCRVMP). They consider 

not only the constraints of local resources such as CPU 

and memory but also the constraints of network resources.  

Michael Cardosa et al. [10] have introduced VM 

placement algorithms to reduce the overall energy 

consumption in virtualized MapReduce clusters. Their 

algorithms co-place MapReduce VMs based on their 

complementary resource needs in order to fully utilize 

available resources. In addition, they have proposed 

algorithms for co-locating MapReduce VMs with similar 

runtime so that a PM could run at a high utilization 

throughout its uptime. In their approach, once all co-

located VMs have finished, the Cloud operator can 

hibernate the PM to conserve energy. They have made 

some simplifying assumptions. First, they have assumed 

that the completion time of workloads can be estimated 

that does not necessarily hold in real world scenarios. 

They also use a small set of types of VMs.  In our 

approach, there are no assumption about VM types and 

sizes.  

Anton Beloglazov et al. [6] have presented interesting 

algorithms only for PM overload detection and proved 

their optimality. They allow system administrator to 

explicitly set QoS goals in terms of OTF parameter, 

which is a workload independent QoS. In contrast, we use 

a simple heuristic algorithm in our approach to detect 

overloaded PMs. In addition, we propose algorithms for 

selecting the best VMs from an overloaded PM for 

migration. Moreover, we select the best destination PM 

for migrated VMs. 

Work in [4] presents a dynamic resource allocation 

system that strives to avoid the overload of PMs while 

minimizing the number of used PMs. In order to detect 

the potential overloaded PM, they periodically monitor 

the overall status of data center. They also introduce a 

load prediction algorithm that can capture the future 

resource usage of applications and decide how to place 

VMs based on this prediction. In a similar spirit, we 

continuously monitor the existing PMs to determine the 

overloaded PMs but we do not use the prediction 

approaches which may cause wrong placement. 

 

III.  MIGRATION COST OF VMS 

Current virtualization technology offers the ability to 

easily relocate a VM from one PM to another without 

shutting it down called VM live migration. It gives the 

opportunity to dynamically optimize the placement of 

VMs with small impact on their performance [9]. As 

mentioned, live migration opens opportunities for 

dynamic consolidation of VMs, nevertheless; it can 

introduce a significant overhead in the network 

infrastructure and deteriorate the performance of service 

delivered by cloud service provider.  

As mentioned before, our main goal is to keep the 

utilization of existing PMs in the highest level possible. 

Moreover, the performance degradation of VMs must be 

in lowest level possible. To achieve these goals, we will 

quantify the migration cost of VMs so that we can 

measure migration overhead of them. To do that, we 

consider three criterions which have a significant impact 

on migration overhead. These criteria are listed in below.   

 

a) Memory size: we assume all VMs are connected to a 

storage area network (SAN) and each VM image is 

stored on the SAN; hence, the cost of VM live 

migration is mostly determined by its memory 

footprint. Therefore, it can be said, migration time is 

approximately equal to the memory size of a VM 

divided by the network band width. As a result, 

memory size of VMs is a good measure for the cost 

of migration. Thus, in case there are options for 

migration, the VM which has the lowest memory 

footprint is the best. 

b) In order to improve the overall utilization of PMs, it 

is essential to assign complementary workloads to a 

PM In other words, those VMs which their resource 

demands are complement, will be consolidated in the 

same PM. To achieve this goal, we introduce 

unevenness formula that quantifies how much the 

VMs that are consolidated in a PM are complement. 

Equation (1) calculates the unevenness of PMp.  

 

𝑢𝑛𝑒𝑣𝑒𝑛𝑛𝑒𝑠𝑠(𝑝) =
1

𝑛
∑ √(𝑟𝑖 − 𝑟𝑗)2

𝑖≠𝑗          (1) 

 

where n is the number of resource types in  PMp and ri  is 

the overall resource usage for resource type i in PMp. 

Note, in the above calculation, we only consider 

bottleneck resource types such as processor, memory and 

network bandwidth. Actually the major design goal of our 

model is to keep the utilization of physical resources on 

each PM at the highest level while the unevenness of 

them is the lowest possible. In case there is a PM with a 

VM on it that candidate for migration, we select the VM 

whose unevenness of the PM can be reduced the most by 

migrating it. 

 

c) Since we want to keep the utilization of PMs in the 

highest level, if we have to migrate a VM from the 

PM, a VM with lowest granularity is the best case. 

To achieve this goal, we calculate the granularity of a 

VM by (2). Where 𝑐(𝑣) is the VM CPU utilization, 

m(v) is its memory utilization and n(v) is its network 

utilization. Therefore in case there are multiple VMs 
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for migration, we select the one which has the lowest 

granularity.  

 

𝐺𝑟𝑎𝑛𝑢𝑙𝑎𝑟𝑡𝑦(𝑣) = 𝑐(𝑣) ∗ 𝑚(𝑣) ∗ 𝑛(𝑣)       (2) 

 

Finally, the migration cost of a VM is calculated by the 

(3). 

 

𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡(𝑣) = 𝛼 ∗ 𝑚𝑒𝑚𝑜𝑟𝑦 𝑠𝑖𝑧𝑒(𝑣) + 𝛽 ∗
𝑢𝑛𝑒𝑣𝑒𝑛𝑠𝑠(𝑣) + 𝛿 ∗ 𝐺𝑟𝑎𝑛𝑢𝑙𝑎𝑟𝑡𝑦(𝑣)           (3) 

 

IV.  SELECTING BEST VMS FOR MIGRATION 

Overloaded PM directly influences the delivered QOS 

because when the resource capacity is completely utilized, 

it is high likely that the applications are experiencing 

resource shortage [6]. In order to detect the overloaded 

and under loaded  PM we use hot and cold threshold for 

each resource type in a PM. Whenever the utilization of a 

resource reaches hot threshold, the PM is considered as a 

hot spot. This indicates that the PM is overloaded and 

some of its VMs should be migrated away. In the same 

way, if the utilization of all resources is below the cold 

threshold, the PM is a cold spot, this indicates the PM is 

underutilized and mostly idle; therefore, all of its VMs 

should be migrated somewhere else to turn it off and save 

energy.  

We consider a data center infrastructure composed by 

n distinct physical machines. Each PM is characterized by 

its resources (i.e. CPU, memory and network bandwidth). 

Suppose the utilization of resource r in PM p, is above the 

hot threshold that specified for resource r. Let x be the 

difference between current utilization of resource r and 

the hot threshold. As said earlier, some VMs of PMp 

should be migrated and the aggregate utilization of 

migrated VMs must be greater than or equal to x. 

One solution is to sort the VMs of PMp in descending 

migration cost (note that migration cost of VMs is 

calculated via (3)). Afterward for each VM in the sorted 

list, we see if its utilization from resource r is greater or 

equal to x; if so, it will be selected for migration; 

Otherwise, if we could not find the VM whose removal 

can reduce the utilization of PM p as much as x, we will 

migrate VMs respectively as long as the utilization of PM 

p for resource r becomes less than the hot threshold. 

Although seemingly satisfactory, this solution 

sometimes may not be optimal. It is possible that the VM 

will be selected while there are some other VMs whose 

aggregate utilization is greater than x and the aggregate 

cost of them is less than the one which is selected by this 

solution. Instead of the aforementioned approach, we 

propose an optimal algorithm for this problem that works 

the best in all situations.  

The challenge here is to find the subset of VMs in 

which their aggregate utilization of resource r is greater 

than x and the aggregate migration cost of them is 

minimal. The problem we want to solve is detailed as 

follows: suppose we have PM p that its utilization of 

resource r is greater than the hot threshold specified for 

resource r, the difference between current utilization of 

resource r and the hot threshold is x, the migration cost of 

VM i is ci, the resource usage of VM i is ui and the 

number of VMs running in PM p is n where vi=1 if VM i 

is selected for migration, 0 otherwise. In the following the 

problem is summarized into formulation. 

 

{

𝑣𝑖        1 𝑖𝑓 𝑉𝑀 𝑖 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ,0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
∑ 𝑣𝑖𝑢𝑖 ≥ 𝑥𝑛

𝑖=0                                                    

∑ 𝑣𝑖𝑐𝑖 
𝑛
𝑖=0  𝑚𝑢𝑠𝑡 𝑏𝑒 𝑚𝑖𝑛𝑚𝑎𝑙                        

    (4) 

 

We present a dynamic programing algorithm to solve 

this problem. Tow-dimensional matrix, M [0..n, 0..x], is 

used to hold migration costs. Where M [i, j] is the 

minimum migration cost when there are VMs from 1 to i 

(the VMs are numbered from 1 to n) such that the 

aggregate utilization of selected VMs is greater than or 

equal to j. We need to calculate c[n, x] to find the result. 

The optimal migration cost can be recursively calculated 

using fallowing formula. (Note that the columns of the 

matrix corresponding to the unit of utilization can be 

changed from 1 to x, and rows corresponding to a virtual 

machine, can be changed from 1 to n). 

 

𝑴[𝑖, 𝑗] = {

∞                                                                    𝑖 = 0 𝑜𝑟 𝑗 = 0

𝑚𝑖𝑛 {𝑀[𝑖 − 1, 𝑗] , 𝑐𝑖 + 𝑀[𝑖 − 1, 𝑗 − 𝑢𝑖]} 𝑗 > 𝑢𝑖 

𝑚𝑖𝑛 {𝑀[𝑖 − 1, 𝑗] ,   𝑐𝑖}                                𝑗 ≤ 𝑢𝑖 
 

                                                                                         (5) 

 

We use an auxiliary array Items [1..n], to store the 

selected VMs. At the end of the algorithm run, Items will 

hold the subset of VMs which selected for migration. 

Time complexity of our algorithm is O(x.n). Where n is 

the number of VMs running on PM p and x is the 

difference between current utilization of resource r and 

the PM hot threshold. The algorithm is shown in below. 

 
Algorithm1: SelectTheBestVmsForMigration(PM p, p[1..n] VMs Costs  , 

U[1..n] VMs utilization of resource r, the_overload)  
 

Let c[0 ..n][0.. the overload] be a empty matrix  

Let Items[1.. the overload] be a empty array of list type  
For u   0   to the_overload  steps the_overload /10 

        c[0][u] ∞ 

End for 

For i  1 to n do 

        c[i][0] ∞ 

         For u1 to the_overload 

                If (U[i]<u) 

                        If (c[i-1,u] ≤ P[i]+c[i-1,u-U[i]]) 

                             c[i,u]=c[i-1,u] 

                        End if 

                        Else 

                                c[i,u] =p[i]+ c[i-1, u-U[i]] 

                                items[u] list of items [u] + item i 

                        End else 

                End if 

                Else 

                        If c[i-1,u] ≤ P[i] 

                                C[I,u]=c[i-1,u] 

                        End if 

                        Else 

                                C[I,u] =P[i] 

                                items[u] item i 

                        End else 

               End else 

       End for 

End for 

Return Items[the_overload] 
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V.  ALLOCATING VMS TO PMS 

In this section we present an algorithm for VM 

placement. VM placement is the topic of many recently 

researches [16][19]. When a VM is selected for migration 

or is initially placed on a PM, we must select the best 

destination based on VM characteristics and overall 

policy of the data center.  

Data centers follow different consolidation polices. For 

example, a data center may consolidate VMs on the 

server with high level of resources utilization to save 

energy. However, this policy may lead to QoS violations 

since VMs may not have access to the sufficient 

resources. On the other hand, a data center may 

consolidate VMs on servers with low level of resources 

utilization to make sure that the VMs have access to the 

sufficient resources and delivered services do not violate 

the predefined service level agreement. 

As mentioned before, we follow energy efficient policy 

which means if there are some PMs as a destination for a 

migrated VM, we choose the one which has high level of 

utilization to reduce the running PMs and save the overall 

energy consumption of the data center. We also 

consolidate VMs in the PMs which have sufficient 

resources so that we can make sure of QoS of delivered 

services.  

As said before, The destination PM must obviously 

have sufficient resources. Among all such severs, we 

select the one which its unevenness reduced the most by 

accepting the VM. (Recall that we calculated the 

unevenness of the PM in section 2 based on (1)). We also 

support green cloud computing by putting idle machine 

into standby or low power mode. Time complexity of our 

algorithm is O(n). Where n is the number of PMs that 

exist in the data center. The algorithm is shown in below. 

 
Algorithm2: BestPM_ForMigration(VM v,list of PMs) 

 

Max=0; 

Selected_PM  NULL 

Foreach PM p in list of PMs 

        If( p has adequate resources for v) 

                Current_unevenness=compute  unevenness of p 

                Let new_unevenness be an unevenness when v is added to p 

                If(new_unevenness- current unevenness ≥max)         

                        Max new unevenness- current unevenness 

                        Selected_PM  p 

               End if 

        End if 

End for                                  

If(Selected_PM is NULL) 

Selected_PM Turn on new physical machine and add v to it 

End if 

Return Selected_PM 

 

 

VI.  EVALUATION 

We first evaluate the effectiveness of our placement 

algorithm. We must place VMs on the data center PMs in 

which the VMs meet their resource needs while the 

number of used PMs is minimum possible. We use our 

unevenness formula to place VMs on the PMs. In this 

way, if there are multiple PMs that have sufficient 

resources for a VM, We select the one which its 

unevenness reduced the most by accepting the VM. 

In this experiment we first created a number of VMs 

with different sizes and then placed them onto the PMs. 

Then we increased the number of VMs from 500 to 4000 

and repeated the experiment. The number of used PMs 

every time was kept. In the next step we used random 

VM to PM mapping. In this case if a PM has sufficient 

resources for a VM is selected as a destination PM. We 

did the previous experiment with random method. The 

results of these experiments are shown in Fig. 1, As it can 

be seen, our method in comparison with random method 

decreases the final active PMs. 

 

 

Fig. 1. Number of final active VMs using unevenness formula. 

Next we evaluate the effectiveness of our approach 

when a PM is overloaded. Recall that our scheduler is 

invoked periodically, and whenever a PM is overloaded, 

some of its VMs should be migrated away. In this 

experiment we first placed a certain number of VMs on 

the PM according to our unevenness formula. Afterword 

we gradually increased the CPU demand of the half of 

existing VMs to emulate a situations such as flash crowd 

in the internet applications. The CPU demand of VMs 

was increased by 10%. Typically some PMs became hot 

spot. Consequently; some of their VMs must have 

migrated somewhere else. At first, we used memory size 

as the migration cost for VMs. later our migration cost 

formula was used to calculate the migration cost for each 

VM. 
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In this experiment we defined 80% as the hot threshold 

for the CPU resource type. Similar to previous 

experiment, we increased the number of VMs form 500 

to 4000. Each time after demand increasing, the number 

of active PMs was kept. The results of the experiment are 

shown in Fig. 2, as mentioned, we did the previous 

experiment with the same VMs. but, we only considered 

the memory size of VMs as a migration cost. As it can be 

seen from Fig. 2, our approach reduces the number of 

final active PMs.  

 

 

Fig. 2. Number of final active VMs using migration cost formula. 

In the next experiment we used our dynamic 

programing algorithm to evaluate its effectiveness. As 

said before, when a PM is overloaded, some of its VMs 

must be migrated to other PMs to avoid QoS degradation. 

In the previous experiment, we use our migration cost 

formula to select candidate VMs for migration. In this 

experiment we use our dynamic programing algorithm to 

select candidate VMs. The experiment is detailed in 

below.   

We first placed a certain number of VMs on the PMs 

and then increased the CPU demand of half of existing 

VMs. Like other experiment we increased the CPU 

demands of VMs by 10%. As expected some of the 

existing PMs became hot spot. Therefore some of their 

VMs should be migrated. Note that we defined 80% as 

the hot threshold which means if the CPU utilization of a 

server is more than 80%, the server is considered as a hot 

spot. 

We use our dynamic programing algorithm presented 

in section 2 to select the best VMs for migration. We also 

use the migration cost formula to calculate migration cost 

of VMs in an overloaded PM. Similar to the previous 

experiment, we increased the number of VMs form 500 

to 4000. Each time after demand increasing, the number 

of active PMs was kept 

As expected we could improve the earlier results. 

Finally, the number of active PMs was less than the 

number of active PMs in the previous employed methods.  

The results are shown in Fig. 3. As it can be seen from 

Fig. 3, we decrease the average final active PMs of data 

center by 2.3%. This also indicates that the overall energy 

consumption of the data center is reduced by 2.3%.  

 

VII.  CONCLUSION 

In this paper, we presented a new approach for the 

problem of dynamic VM consolidation of virtual 

machines in Cloud computing environments. We first 

defined the migration cost of each VM based on their 

memory, CPU and network utilization. Afterward we 

presented a dynamic programming algorithm to select the 

best VM for migration based on VM migration cost from 

an overloaded PM. Moreover, we presented an algorithm 

to select the best destination for migrated VMs. 

Simulation results demonstrate we achieve good 

performance and significantly reduce the overall energy 

consumption of the cloud data center.  The research work 

is planned to be followed by development of our 

algorithms in support of elasticity property of Cloud 

Computing Environments. 

 

Fig. 3. Number of final active VMs using unevenness dynamic 

programming algorithm.
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