
I.J. Modern Education and Computer Science, 2015, 7, 8-16
Published Online July 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2015.07.02

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 7, 8-16

A Module Coupling Slice Based Test Case

Prioritization Technique

Harish Kumar
YMCA University of Science and Technology, Faridabad, India

Email: htanwar@gmail.com

Naresh Chauhan
YMCA University of Science and Technology, Faridabad, India

Email: nareshchauhan19@gmail.com

Abstract—Regression testing is a process that executes

subset of tests that have already been conducted to ensure

that changes have not propagated unintended side effects.

Test case prioritization aims at reordering the regression

test suit based on certain criteria, so that the test cases

with higher priority can be executed first rather than those

with lower priority. In this paper, a new approach for test

case prioritization has been proposed which is based on a

module-coupling effect that considers the module-

coupling value for the purpose of prioritizing the modules

in the software so that critical modules can be identified

which in turn will find the prioritized set of test cases. In

this way there will be high percentage of detecting critical

errors that have been propagated to other modules due to

any change in a module. The proposed approach has been

evaluated with a case study of software consisting of ten

modules.

Index Terms—Regression Testing, Test Case

Prioritization, Coupling & Cohesion, Software Testing.

I. INTRODUCTION

Regression Testing [9, 13] is the selective retesting of a

system or a component to verify that modifications have

not caused unintended effects and the system or

component is still in accordance with its specified

requirements. The purpose of regression testing is to

ensure that bug-fixes and new functionalities introduced

in a new version of the software do not adversely affected

the correct functionality inherited from the previous

version. To make regression testing easier, software

engineers typically reuse test suites of the original

program, but also new test cases may be required to test

new functionalities of the new version. Regression

Testing is considered a problem, as the existing test suite

with probable additional test cases need to be tested again

and again whenever there is a modification. It involves

lot of efforts, resources and cost. So there is need for a

mechanism to reduce these efforts, resources and cost.

One methodology used for this purpose is the test case

prioritization [9, 13]. Test case prioritization aims at

reordering the test cases based on certain criteria, so that

the test cases with higher priority can be executed first

rather than those with lower priority. A lot of work has

been already done in the area of test case prioritization.

But all the existing prioritization techniques do not

consider the effect of changes in one module being

propagated in other modules of the software. These

techniques are not able to prioritize the modules and their

test cases which are badly affected with the changes.

Most of the prioritization techniques consider all the test

cases, prioritize them with some criterion like risk based

prioritization, coverage based, fault detection rate, etc and

find out the prioritized test cases with the aim of getting

high fault detection. But, it becomes cumbersome to

analyze the prioritization techniques by finding fault

detection rate of all test cases in the test suite. Instead of

this, if the approach is to find out the module/modules

which are badly affected and then prioritize the test cases,

this will provide the high severity bugs very early. With

keeping this approach in mind, a test case prioritization

technique based on coupling effect has been proposed in

this paper.

Section 2 of this paper discusses about the related work

which has been done in the area of test case prioritization,

Section 3 covers the proposed approach and algorithm

used for test case prioritization on the basis of the

coupling information among different modules, Section 4

covers the evaluation and result analysis of the proposed

approach and Section 5 briefs the conclusion.

A. Call Graph

Fig.1. Call Graph

The architectural design for coupling information

between modules can be depicted in the form of a Call

 A Module Coupling Slice Based Test Case Prioritization Technique 9

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 7, 8-16

graph. A call graph [13] is a directed graph that

represents calling relationships between modules in a

program wherein nodes are modules or units and a

directed edge from one node to another node means one

module has called another module as shown in Figure 1.

B. Module Dependency Matrix

Module dependence [14, 15] is primarily affected by

coupling and cohesion. A quantitative measure of the

dependence of modules will be useful to find out the

stability of the design. Different values [14,15] are

assigned for various types of module coupling and

cohesion as shown in Table 1 and Table 2.

Table 1. Coupling

Coupling Value

Content 0.95

Common 0.70

External 0.60

Control 0.50

Stamp 0.35

Data 0.20

A matrix can be obtained by using these two tables,

which gives the dependence among all the modules in a

program. This, dependence matrix describes the

probability of having to change module i, given that

module j has been changed.

Table 2. Cohesion

Cohesion Value

Coincidental 0.95

Logical 0.40

Temporal 0.60

Procedural 0.40

Communicational 0.25

Sequential 0.20

Functional 0.20

Module Dependence Matrix is derived using the

following three steps.

STEP 1. Determine the coupling among all of the

modules in the program. Construct an m*m coupling

matrix, where m is the number of modules in the program.

Using Table 1 fill each element in the matrix C. Element

Cij represents the coupling between module i and module

j. The matrix is symmetric i.e.

Cij = Cji for all i & j.

Also elements on the diagonal are all 1(Cii =1 for all i)

STEP 2. Determine strength of each module in the

program. Using Table 2. record the corresponding

numerical values of cohesion in module cohesion matrix.

STEP 3. Construct the Module dependence matrix D

by the formula1:

Dij = 0.15 (Si + Sj) + 0.7 Cij, where Cij ≠ 0

Dij = 0 where Cij = 0 Dii = 1 for all i. (1)

Prioritization of module can be done by comparing non

zero entries of D matrix (Module Dependence Matrix).

For Example if module number i has been modified then

find all the existing parent modules (j, k, l…) of that

changed module (i) and after that compare first order

dependence matrix entries for particular links viz (i-j, i-k,

i-l & so on). Link having highest module dependence

matrix value will get highest priority & link with low

module dependence matrix value will get low priority.

II. RELATED WORK

Amrita Jyoti, Yogesh Kumar Sharma [4] has proposed

a model that achieves 100% code coverage optimally

during version specific regression testing. The

prioritization of test cases was done on the basis of

priority value of the modified lines covered by the test

case.

Praveen Ranjan Srivastava [3] presented a test case

prioritization technique to compute average faults

discovered per minute. Using APFD (Average Percentage

of Fault Detection) metric results demonstrating the

effectiveness of the algorithm was presented.

R. Kavitha et. al. [1] proposed an algorithm that

performs rate of fault detection and fault impact based

prioritization of test cases. They demonstrated that more

effective severe fault identification at earlier stages of the

testing process could be obtained by the proposed

algorithm for prioritized test cases as compared to non

prioritized test cases.

Md. Imrul kayes [2] proposed a new metric for

accessing rate of fault dependency detection and an

algorithm for prioritizing the test cases. The proposed

technique prioritized the test cases with the goal of

maximizing the number of faults dependency detection

that are likely to be found during the execution of the

prioritized test suite.

Varun Kumar, Sujata & Mohit Kumar [5] proposed an

approach which considered the severity of faults early in

the testing process and hence to improve the quality of

the software according to the customer’s point of view.

They considered TCP at fault severities in order to have

early detection of severe faults in the regression testing

process.

J. Rummel et. al [6] proposed an approach to

regression test prioritization that leverages the all-DUs

(definition-use) test adequacy criterion that focuses on the

definition and use of variables within the program under

test. DU-paths which are variable usage paths are taken

for the test cases prioritization.

Yogesh Kumar, Arvinder Kaur & Bharat Suri [7]

proposed an approach for test case prioritization using

DU path as well as DC (definition clear) paths. The idea

was that the DU paths which may not be DC may be very

problematic as non DC paths may be subtle source of

errors.

Arvinder Kaur, Shubhra Goyal [8] proposed a Genetic

algorithm for prioritizing the test suite on the basis of the

10 A Module Coupling Slice Based Test Case Prioritization Technique

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 7, 8-16

complete code coverage. The proposed genetic algorithm

was also used to automate the process of test case

prioritization.

Thillaikarasi Muthusamy et. al. [12] proposed a

technique which prioritizes the test cases based on four

groups of practical weight factor such as: customer

allotted priority, developer observed code execution

complexity, changes in requirements, fault impact,

completeness and traceability.

M.Kalaiyarasan, Dr.H.Yasminroja [11] proposed a

version specific test case prioritization technique which

uses data flow information. The proposed technique

considered the fault detection capabilities of test cases for

prioritization purpose. They find out four different

categories of software modification and use the data flow

information for prioritization purpose.

A critical study of test case prioritization techniques [9]

discussed above indicates that these techniques do not

consider the effect of changes in one module being

propagated in other modules of the software. These

techniques are not able to prioritize the modules and their

test cases which are badly affected with the changes.

Most of the prioritization techniques consider all the test

cases, prioritize them with some criterion like risk based

prioritization, coverage based, fault detection rate, etc and

find out the prioritized test cases with the aim of getting

high fault detection. But, it becomes cumbersome to

analyze the prioritization techniques by finding fault

detection rate of all test cases in the test suite. Instead of

this, if the approach is to find out the module/modules

which are badly affected and then prioritize the test cases,

this will provide the high severity bugs very early.

III. PROPOSED WORK

In this work [10] a new technique to prioritize the test

cases has been proposed .This technique is based on the

module dependence and coupling between the modules.

This technique proceeds in two steps. In the first step, we

find out the highly affected module whenever there is a

change in a module. In the second step we prioritize the

test cases of the affected module found out in the first

step. In both the steps coupling information between the

modules has been taken.

 Whenever there is a change in a module, certainly

there will be some effect on other modules which are

coupled together. Based on the coupling information

between the modules the highly affected module can be

found out. Moreover, the effect is worse if there is high

coupling between the modules causing the high

probability of errors. This may be called as module-

coupling effect. In this way if regression test case

prioritization is done based on this module coupling

effect, there will be high percentage of detecting critical

errors that have been propagated to other modules due to

any change in a module.

For example in Fig.2 the modules 17 and 18 are being

called by multiple modules. If there is any change in

module 17 and module 18, modules 9, 11 and 12, 13 will

be affected respectively. If there is no prioritization, then

as a part of regression testing process, all the test cases of

all the affected modules will be executed thereby

increasing the testing time and effort. Instead, if the

coupling type between modules is known, then a

prioritization scheme can be developed based on this

coupling information. The modules having worst type of

coupling will be prioritized over other modules and their

test cases.

Fig.2. Example Call Graph

After finding out the affected module due to a change

in a module, there is need to execute the test cases of this

affected module. However, there may be a large number

of test cases in this module. Therefore, there is need to

prioritize these test cases also so that critical bugs can be

found out quickly. For this purpose, based on the

coupling information between the changed module and

affected module, a coupling slice can be prepared that

helps in prioritizing the test cases.

The functioning of the proposed technique consists of

the following components (shown in Fig. 3).

Call Graph Producer:

With this component, a call graph can be produced for

the given program. Using this component, the calling

sequence among the modules can be known.

Coupling and Cohesion Identifier:

Using the call graph producer component the type of

dependency among the modules is identified, i.e.

coupling and cohesion.

First Order Dependence Matrix Calculator: This

component performs four major functions which are

described below.

1. Creation of coupling matrix C.

2. Creation of cohesion matrix S.

3. On the basis of C and S create dependency matrix D.

4. Assigning values (non zero and non one entries) to

the edges of the call graph.

Coupling Effect based module level Prioritizer:

The first order dependence matrix provides the

coupling values among the modules. Using these values,

this component identifies the worst affected module due

to the changed module. Thereby we get a prioritized

module among several affected modules.

 A Module Coupling Slice Based Test Case Prioritization Technique 11

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 7, 8-16

Coupling Slice based test case prioritizer:

This component is responsible for prioritizing the test

cases of the prioritized module obtained in the last step.

This component prioritizes the test cases based on the

information produced by a coupling slice.

Fig.3. 2-step process of prioritization

A. Proposed Algorithm for finding out the highly coupled

module

First of all a coupling matrix is created by finding

coupling values among different modules. After creating

a coupling matrix, a cohesion matrix is created by

identifying the type of cohesion in the individual module.

Now, by using these two matrices a module dependence

matrix is created. After this a module which is changing

is identified. Finally the parent module of the changed

module is identified with the help of module dependency

matrix. The module with the highest value is prioritized

over other modules. The proposed algorithm [10] is

shown in Fig.4.

Fig.4. Algorithm for finding highly coupled module

B. Proposed Algorithm for prioritizing test cases of

highly affected module

All the statements numbers present in the execution

history of a program comprises execution slice of a

program. Coupling information can be helpful to decide

which variables are affected in the caller module.

Depending upon this information statement numbers of

affected variables can be found. This may be called as a

coupling slice. In the end match these statements numbers

in the execution slice. After matching it, prioritize test

cases using algorithm shown in fig 5.

Fig.5. Algorithm for prioritizing test cases of highly affected module.

Since there are different types of coupling, there may

be different coupling slices based on the coupling

information about the modules. The various algorithms

for extracting coupling slices have been given in fig. 6 to

fig.9.

Fig.6 Algorithm for extracting coupling slice for data coupling

Fig.7 Algorithm for extracting coupling slice for stamp coupling

PRIORITIZATION (P, n)

Begin

(Where P is the complete program and n is number of modules)

1. Identify type of coupling between modules and create

coupling matrix C using coupling values.

2. Identify type of cohesion in the individual module and

create cohesion matrix S using cohesion values.

3. Using C and S Matrix construct first order dependence

matrix D.

4. Identify which module number is changing(c).

5. Identify parent (p) of changed module using first order

dependence matrix (D) values.

 (Highest value module will get priority over other module)

End

COUPLING_EFFECT_EXECUTION_SLICE (p, c)

Where p is the badly affected module and c is the changed

module

Begin

1. Find Execution Slice of each test case of test suite of affected

module (p).

2. Identify statement numbers (s1, s2, s3…) of p which are affected

by modification in c depending upon coupling information.

3. Match (s1, s2, s3…) in execution slice of test cases of p module.

4. Prioritize test cases of p module by considering number of entries

in the execution slice of the test cases.

End

DATA COUPLING (m, s): m denote module number, s

denote statement number
STEP 1 Note down the variables (v1, v2, v3…) present in the

changed statement (s) in module m.

STEP 2 Find out formal parameters, function name and accordingly

reach to actual arguments.

STEP 3 Find out affected line numbers in caller module from the

execution slice in which actual arguments and variables (v1, v2, v3.)

are present.

STAMP COUPLING (m, s): m denote module number, s denote

statement number

STEP 1 Note down the variables (v1, v2, v3…) and objects present

in the changed statement (s) in module m.

STEP 2 Find out formal parameters and accordingly reach to actual

arguments.

STEP 3 Find out affected line numbers in caller module from the

execution slice in which actual arguments, objects and variables (v1,

v2, v3...) are present.

12 A Module Coupling Slice Based Test Case Prioritization Technique

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 7, 8-16

Fig.8. Algorithm for extracting coupling slice for control coupling

Fig.9. Algorithm for extracting coupling slice for Common coupling

IV. EVALUATION & RESULT

To evaluate the proposed algorithm consider a case

study of software [13] consisting of 10 modules has been

taken. The coupling and cohesion information of these

modules are shown in Table 3 and Table 4. The Call

graph for the software is shown in fig.10.

Fig.10. Call Graph of Case Study Software

Table 3. Coupling Information

Type of Coupling No. of modules in

relation

Examples

Data Coupling 3 1-2,1-4,1-6

Stamp Coupling 1 1-3

Control Coupling 4 4-7,4-8,4-9,4-10

Common Coupling 2 2-5,5-9

Message Coupling 1 1-5

Table 4. Cohesion Information

Module Number Cohesion Type

1 Coincidental

2 Functional

3 Communicational

4 Logical

5 Procedural

6 Functional

7 Functional

8 Functional

9 Functional

10 Functional

By using the coupling values among different modules

a module coupling matrix is being prepared as shown in

Table 5.

Table 5. Module Coupling Matrix(C)

1.0 0.2 0.35 0.2 0.95 0.2 0.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0 0.70 0.2 0.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0

0.0 0.0 0.0 1.0 0.0 0.0 0.50 0.50 0.50 0.50

0.0 0.2 0.0 0.0 1.0 0.0 0.0 0.0 0.70 0.0

0.0 0.2 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.2 0.0 0.0 0.0 1.0 0.6 0.0 0.0

0.0 0.0 0.0 0.2 0.0 0.0 0.6 1.0 0.2 0.2

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 1.0

By Using the value of Cohesion among different

modules a Cohesion Matrix(S) is being designed as

shown in Table 6.

Table 6. Module Cohesion Matrix (S)

By using Formula 1, a Module dependence Matrix is

being designed as shown in Table 7. wherein various

module dependence values also have been shown.

Table 7. Module Dependence Matrix (D)

1.0 0.31 0.42 0.34 0.0 0.31 0.0 0.0 0.0 0.0

0.31 1.0 0.0 0.0 0.58 0.0 0.0 0.0 0.0 0.0

0.42 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.34 0.0 0.0 1.0 0.0 0.0 0.44 0.44 0.44 0.44

0.0 0.58 0.0 0.0 1.0 0.0 0.0 0.0 0.58 0.0

0.31 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.44 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.44 0.0 0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.0 0.44 0.58 0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.44 0.0 0.0 0.0 0.0 0.0 1.0

0.95 0.2 0.25 0.4 0.4 0.2 0.2 0.2 0.2 0.2

COMMON COUPLING (m, s): m denotes module number, s

denotes statement number

STEP 1 Note down the variable (Common) present in the changed

statement (s) in module m.

STEP 2 Find out line numbers from execution slice in other module in

which that common variable is coming.

CONTROL COUPLING (m, s): m denote module number, s denote

statement number

STEP 1 Note down the variables (v1, v2, v3…) and objects present in

the changed statement (s) in module m.

STEP 2 Find out function name.

STEP 3 Find out now in which case this function is present.

STEP 4 Find out argument (a) of switch statement.

STEP 5 Check the place from where this argument (a) is coming.

STEPS 6 Finally reach to the caller module.

STEP 7 Find out affected line numbers in caller module’s execution

slice in which arguments are present.

 A Module Coupling Slice Based Test Case Prioritization Technique 13

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 7, 8-16

Fig.11. Case Study Software Call Graph with module dependence

values

From the module dependence values obtained from call

graph (See Fig. 11) and from Module Dependence Matrix,

we conclude that change in the Module 4 propagates to

module 7, 8, 9 and module 10.Modules 7, 8, 9 and 10 are

having same value (0.44), so the order of prioritization of

test cases for these modules is same. Similarly the change

in the module 1 propagates to Module 2, 3, 4 and 6 .The

values for these modules shows that the module 3 is more

affected module as compared to module 2, 4 and 6. So the

test cases for the module 3 have to be prioritized first as

compared to module 2, 4 and 6.

A. Demonstration for TCP Using Coupling Slice

Technique

Now aim is to prioritize test cases of affected modules

using execution slice approach. The test cases of all the

modules of the case study software have been designed as

shown in Tables from Table 8 to Table 17. Further, the

execution slice of each test case of each module has been

prepared. After analyzing the coupling information, the

coupling slice produces the prioritized test cases.

Test cases for different modules are given below:

Table 8. Module 2 test cases

Module -2 Input Output

TC No. val1 val2 sum

1 50 50 101

2 0 50 51

3 50 0 51

4 -50 -50 -99

5 0 -98 -97

6 -87 0 -86

Table 9. Module 1 Test cases

MODULE 1 T1 T2

INPUT n1 2 s

 n2 3

 e1.empnum 23

 e1.empname eeeee

 e1.salary 11111 11111

 flag 3 1

 firstn Hk a

 lastn kumar a

 n 2 2

 a 0 0

OUTPUT e1.empnum 1023 1000

 e1.salary 111110 111110

 result 6 -27964

 sum 16 -27966

 s 2 2

Table 10. Module -3 Test cases

Module-3 Input(e1) Output(e2)

TC No. empnum empname

1 1 Aa

2 100 Gfjki

3 80 Gk

Table 11. Module -4 Test Cases

Module -4 Input Output

TC No. F Department

1 1 HR

2 2 FINANCE

3 3 PRODUCTION

4 4 PURCHASE

5 5 Default statement

Table 12. Module -5 Test Cases

Module-5 Input Output

TC No. Firstn lastn sum

1 Gaurav makkar 16

2 1234 23 10

Table 13. Module-6 Test Cases

Module-6 Input Output

TC No. N A S

1 2 0 2

2 2 1 4

3 0 1 0

Table 14.Module-7 Test Cases

Module-7 Input Output

TC No. F Department

1 1 HR

1

2

3

6

7

4

5

10

0.31

0.42

0.58

 0.31

0.44

0.44 0.44

9

 0.34

0.58

8

0.44

14 A Module Coupling Slice Based Test Case Prioritization Technique

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 7, 8-16

Table 15. Moduel-8 Test Cases

Mod

ule-

8

Input Output

Tc

No

f Salaries Infra Maint Dept. Total

1 2 100000 200000 300000 Fin. 600000

2 2 0 200000 300000 Fin. 0

Table 16. Module-9 Test Cases

Module-9 Input Output

Tc No.
f pro_inc Department

1
3 2.35 PRODUCTION

Table 17. Module-10 Test Cases

Module-

10

Input Output

Tc No.
f no cost Department tot

1
4 2 10 PRODUCTION 20

2
4 0 20 PRODUCTION 0

Execution Slice for the test cases of ten modules is

given below in Table 18.

Here the test cases of module 3 have to be prioritized

as it is the highly affected module. There is stamp

coupling between module 1 and module 3. By using

algorithm for extracting coupling slice for stamp coupling,

the test cases of module 3 have to be prioritized. There

are three test cases for module 3 and execution slice for

the same in shown in table 18.

By analyzing the execution slice it is clear that in test

case 3 more no. of lines in execution history gets affected,

in which actual arguments, objects and variables are

present. So this test case will expose more faults as

compared to other two test cases. So the test case 3 has

the highest priority. In the remaining two test cases, equal

no. of lines in execution history gets affected. So their

order of prioritization is same. The final order of

prioritization of test cases of highly affected module i.e.

module 3 is TC3, TC1, and TC2.

Table 18. Execution Slice

Module 1

TC

No.

Execution Slice

1 {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22

,23,24,25,26,27,28,29,30,31,32}

2 {1,2,3,4,5,6,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,2

3,24,25,26,27,28,29,30,31,32}

Module 2

TC N0. Execution Slice

1 {1,2}

2 {1,2}

3 {1,2}

4 {1,2}

5 {1,2}

6 {1,2}

Module -3

TC No. Execution Slice

1 {1,2,5,6,9}

2 {1,3,4,5,7,8,9}

3 {1,3,4,5,7,8,9}

Module-4

TC No. Execution Slice

1 {1,2,3,4,5,17}

2 {1,2,6,7,8,17}

3 {1,2,9,10,11,12,17}

4 {1,2,9,10,11,12,17}

Module-5

TC No. Execution Slice

1

{1,2,3,4,5,6,7,8,9,10,11,14,15,16,17,18,19,22,23,24,2

5,26,27,28}

2

{1,2,3,4,5,6,7,8,9,10,12,13,14,15,16,17,18,20,21,22,2

3,29,30}

Module-6

TC No. Execution Slice

1

{1,2,3,4,5,6,7,8,9,10,11,12,16,17,18,8,9,10,11,12,16,

17,18,8,19,20,21}

2

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,8,9,10,

11,12,13,14,15,16,17,18,8,19,20,21}

3 {1,22,23}

Module -7

TC No. Execution Slice

1 {1,2,3}

Module-8

TC No. Execution Slice

1 {1,2,3,4,5,6,7}

2 {1,2,3,8,9,10,11,12}

Module -9

TC No. Execution Slice

1 {1,2,3,4}

Module-10

TC No. Execution Slice

1 {1,2,3,4,5,6,7,8,9}

2 {1,2,3,4,5,10,11,12,13,14}

To show the efficacy of the proposed work some faults

in module 3 were intentionally introduced. After this, all

three test cases were executed. The table19 shows the

faults exposed by the corresponding test cases.

 A Module Coupling Slice Based Test Case Prioritization Technique 15

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 7, 8-16

Table 19. Test cases and faults

Faults TC1 TC2 TC3

F1 * *

F2 * *

F3 *

F4 * * *

F5 * *

Now the APFD value for the random order of test

cases and for the prioritized order is calculated using the

APFD metric[3].

T=Test suite under evaluation

N =no. of test cases

M=total no. faults

TFi=Position of first test in T that exposed fault i

APFD=1-(TF1+TF2…….TFm) /N*M +1/2N

APFD value for random order (TC1, TC2, TC3) is as

follows:

1-(2+1+3+1+1)/(5*3)+1/(2*3)=30.60%

APFD for the prioritized order (TC3, TC1, TC2) is as

follows:

1-(1+1+1+1+1)(5*3)/1(2*3)=50.66%

So, the APFD value calculated by applying the

proposed approach is more as compared to random

approach. It indicates that the prioritized order given by

the proposed approach exposes more number of faults as

compared to random order of test cases (see Fig. 12).

Fig.12. Comparison of random and proposed work

V. CONCLUSION

In this paper a new technique for the test case

prioritization has been proposed. The proposed technique

has been based on the coupling information among the

modules of the program. This has been termed as

module-coupling effect based test case prioritization

technique. The proposed technique is able to find the

critical module with the probability of having critical

bugs as compared to other techniques. A sample program

[13] consisting of 10 modules has been taken for the

analysis purpose of the proposed approach thereby

showing the efficacy of the proposed technique.

REFERENCES

[1] R.Kavitha, Dr. N. Suresh Kumar” Test Case Prioritization

for Regression Testing based on severity of fault”

International Journal on Computer Science & Engineering,

2010.

[2] Md. Imrul Kayes “Test Case Prioritization for Regression

Testing based on fault dependency”, IEEE 2011.

[3] Praveen Ranjan Srivastava “Test Case Prioritization”

Journal of Theoretical and Applied Information

Technology, pp. 178-181, 2005-2008.

[4] Amrita Jyoti, Yogesh Kumar Sharma, Ashish Bagla, D.

Pandey, "Recent Priority Algorithm In Regression

Testing”, International Journal of Information

Technology and Knowledge Management, Volume 2, No.

2, pp. 391-394, July-December 2010.

[5] Varun Kumar, Sujata and Mohit Kumar, “Test Case

Prioritization Using Fault Severity”, International Journal

of computer science and technology, Vol. 1, No. 1, pp. 67-

71, 2010.

[6] Matthew J.Rummel, Gregory M.Kapfhammer and

Andrew Thall, “Towards the prioritization of regression

test suites with data flow information”. Proceedings of the

2005 ACM symposium on Applied Computing New York,

NY, USA.

[7] Yogesh Kumar, Arvinder Kaur & Bharti Suri “Empirical

Validation of variable based Test Case Prioritization /

Selection Techniques.” International Journal of Digital

Content Technology and its applications Vol.3, Number

3.September 2009.

[8] Arvinder Kaur & Shubhra Goyal, “A genetic algorithm

for Regression test case Prioritization using code

Coverage” International Journal on Computer Science and

Engineering (IJCSE).Vol.3,No.5 May 2011.

[9] “Identifying and analyzing the research challenges in Test

case prioritization” published in International Journal of

Computer Science & Engineering System, pages 88-98,

Volume No. 6(2012) Issue No. 3(2012), Serial

publications.

[10] Harish Kumar and Naresh Chauhan “A Coupling effect

based test case prioritization technique” accepted for

publication in 9th INDIACom 2nd international conference

on computing for sustainable global development, 2015.

[11] M.Kalaiyarasan, Dr.H.Yasminroja, “Version Specific Test

Suite Prioritization using Dataflow Testing” International

Journal of Recent Engineering Science (IJRES), ISSN:

2349-7157, volume 1 issue 4 April, 2014.

[12] Thillaikarasi Muthusamy, Seetharaman.K, “A New

Effective Test Case Prioritization for Regression Testing

based on Prioritization Algorithm”, International Journal

of Applied Information Systems (IJAIS) – ISSN: 2249-

0868 Foundation of Computer Science FCS, New York,

USA Volume 6– No. 7, January 2014.

[13] Dr. Naresh Chauhan, “Software Testing – Principle and

Practices”, Oxford university press, 2010.

[14] K.K. Aggarwal, Yogesh Singh, Software Engineering,

New Age International (P) Ltd., 2001.

[15] K.K. Aggarwal, Software Engineering, edition 3, New

Age International publisher.

16 A Module Coupling Slice Based Test Case Prioritization Technique

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 7, 8-16

Authors’ Profiles

Harish Kumar is pursuing his Ph.D. in

Computer Engineering from YMCA

University of Science & Technology. He

has completed his M.Tech (CE) and

B.Tech. (CE) from M.D.U. Rohtak in the

year 2006 and 2004. He has 8 years of

experience in teaching .Presently he is

working as an Assistant Professor in

department of Computer Engineering in

YMCA University of Science &Technology, Faridabad,

Haryana, India. His research areas include Software Testing,

Project Management, Software Engineering & Computer

Programming.

Dr. Naresh Chauhan received his Ph.D in

Computer Engineering in 2008 from M.D.

University, M. Tech (IT) from GGSIT,

Delhi in year 2004, B.Tech (CE) from

NIT Kurukshetra in 1992. He has 20 years

of experience in teaching as well as in

industries like Bharat Electronics and

Motorola India Pvt. Ltd. Presently he is

working as a Professor and Chairman in

the department of Computer Engineering, YMCA University of

science & Technology, Faridabad, Haryana India. His Research

areas include Internet Technologies, Software Engineering,

Object-Oriented Technologies, Operating Systems, Software

Testing, Software Quality Management and Real Time Systems.

