
I.J. Modern Education and Computer Science, 2016, 3, 11-21 
Published Online March 2016 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijmecs.2016.03.02 

Copyright © 2016 MECS                                                    I.J. Modern Education and Computer Science, 2016, 3, 11-21 

A Low Cost High Speed FPGA-Based Image 

Processing Framework 
 

Mohammad Reza Mahmoodi 
Department of Electrical and Computer Engineering, Isfahan University of Technology, 8415683111 Isfahan, Iran 

E-mail: mr.mahmoodi@ec.iut.ac.ir 

 

Sayed Masoud Sayedi 
Department of Electrical and Computer Engineering, Isfahan University of Technology, 8415683111 Isfahan, Iran 

E-mail: m_sayedi@cc.iut.ac.ir 

 

 

Abstract—In this paper, a high-speed and low-cost image 

processing framework based on MATLAB-FPGA 

interface is proposed that can be used in researches 

aiming at developing wide variety of not only image 

processing tasks but also many signal processing 

applications. In addition, this new framework could be 

exploited for several other tasks such as on-chip 

verification, using PC as an enormous external RAM for 

FPGA while preserving high speed data access, 

developing hardware-software co-designs, etc. The 

communication between FPGA and MATLAB is via 

1Gbs Ethernet based on UDP/IP protocol which is very 

promising for high speed data transmission in point-to-

point communications. UDP stack is efficiently designed 

in FPGA based on a fully pipelined architecture with 

minimum level of logic in order to reach high 

performance.. Dynamic data transmission between the 

UDP stack, memory and an arbitrary image processing 

module makes it possible to practically simulate, debug 

and implement most relevant applications. The hardware 

system is relatively low-cost and it consumes a negligible 

area of a Spartan-6 LXT45 Xilinx FPGA. Operating at 1 

Gb/s, theoretically, the system is capable of processing 

132 frames of 640*480 color images in a second. The 

effectiveness of the system is evaluated by means of both 

place and route simulation and practical implementation 

of a skin detection algorithm and a motion detector. 

 
Index Terms—FPGA, MATLAB, Hardware 

Implementation, UDP Stack, Digital Signal Processing, 

Image Processing. 

 

I.  INTRODUCTION 

Digital signal processing has remodeled traditional 

analog signal processing systems as a mature technology. 

Though analog chip designs used to be implemented on 

smaller die sizes, but currently, with the noise associated 

with modern sub-micrometer circuits, digital systems are 

often much more densely integrated than analog designs 

and this has been yielded to a compact, low-power, and 

low-cost designs [1]. DSP (digital signal processing) as a 

subfield of signal processing is used in numerous 

applications such as most of associated threads in 

disparate fields of image processing, audio and speech 

signal processing, digital communications, biomedicine, 

etc. Developing both programmable DSP chips and 

dedicated system-on-chip (SoC) solutions has been an 

active area of development and research over the past 

three decades [2]. Three important factors which have 

undoubtedly affected digital signal processing are 

development of an efficient way of computing DFT in 60s 

[3], commercial production of programmable digital 

signal processors in which calculation of fixed point 

arithmetic operations in one clock cycle became possible 

[1], and, finally introduction of modern FPGAs which 

provides low cost and fast DSP arithmetic implementation 

using a semi-ASIC architecture.  

In order to deal with different design requirements on 

digital signal processing including image processing 

system; e.g., video codec as a paradigm application 

utilized in many real-time applications for which many 

hardware and software implementations are already 

presented in literature [4-7]. Although software 

implementations are easy to realize on general-purpose 

microprocessors, multiprocessors, microcontrollers, or 

digital signal processors, their sequentially executing 

structure is not well suited for fast processing of 

computational applications such as high resolution 

compression/video scaling of motion pictures, satellite 

communication modulator/demodulator, etc [8]. Even 

though the implementations are various and directly 

related to the application requirements, in general, they 

can be grouped in four different categories and also 

compared as shown in Table. I. In the table, the features 

are evaluated comparatively. For example, considering the 

density as a parameter; the 28 nm Virtex-7 Xilinx FPGAs 

(Field Programmable Gate Arrays) are dense enough to 

encompass many DSP based designs; however, compared 

to Application Specific Integrated Circuits (ASICs) (in the 

same technology), mainly due to the high volume of 

configuration circuitry in FPGAs the effective density will 

be much lower (approximately 1 fifth). This difference is 

denoted in the table by using words Moderate and High, 

respectively for FPGA and ASIC platforms. It can be 

deduced from the table that for many applications, FPGAs, 

compared with other platforms, are remarkable solution 
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for implementation of DSP algorithms. A brief discussion 

on this is in the following: 

ASICs seem to be very promising solution in terms of 

both performance and power [9]. However, this type of 

implementation is not a straightforward solution mainly 

because of high cost of prototyping and long time to 

market. FPGAs on the other hand have some features 

which make them very favourable. Their intrinsic parallel 

structure, relatively low cost, relatively lower time to 

market, and finally reconfigurable architecture make them 

remarkable solution for many communicational and 

processing algorithms [10]. In addition, their much higher 

flexibility and lower turnaround time is very attractive 

when comparing these devices with ASICs [11].  

Table 1. Different Implementation Platform’s Features 

Platform ASIC DSP 

General 

Purpose 

Processors 

FPGA 

Performance Highest Moderate Lowest High 

Unit Cost 

(Prototyping) 
Highest Moderate Lowest Moderate 

Power Lowest Moderate Highest Moderate 

Flexibility Lowest Moderate Highest High 

Design Effort 

(Complexity) 
Highest Moderate Lowest Moderate 

Time-to-

Market 
Highest Moderate Low Moderate 

Density High Low Highest Moderate 

 

Whenever a system with moderate cost and 

performance is needed, specialized microprocessors can 

be utilized. DSP chips are capable of both fixed-point and 

floating-point arithmetic operations. However, their 

moderate performance is not suitable for implementation 

of all signal processing applications. FPGAs have a 

technical advantage over today’s DSPs for example in 

their silicon technology which can be much more 

advanced [12]. For instance, modern FPGAs use hardcore 

dedicated DSP blocks with comparable performance with 

ASICs. A standard DSP processor (Dual core DSP) 

running at 300 MHz is capable of performing 2 operations 

in one clock cycle leading to (300*2)/1=600 MMACS
1
. 

However, using DSP48A1 dedicated blocks in a Spartan-6 

LX45 device running at 250 MHz, leads to 

58*250/1=14,500 MMACS due to their both fully parallel 

and dedicated (ASIC-like) architecture [13]. Of course, 

whether or not this technical advantage is enough to make 

FPGAs more attractive than DSPs is heavily depend on 

application, budget and technology focus.  

General purpose computers are the most available, 

cheapest and simplest choice of design specifically when 

real-time processing is not in the first priority. Though 

they seem to have lowest performance and highest power 

consumption, they are the most common platform for 

prototyping DSP algorithms mainly due to their simple 

design flow and low cost of developing. Different 

software developing platforms are available in computers 

                                                           
1
 MMACS = Millions of Multiply-accumulate per second (measure of 

DSP performance) 

among which MATLAB (Matrix Laboratory) is a very 

important and commonly used one. MATLAB is a fourth-

generation programming language and it has been a 

critical tool in developing variety of algorithms. It would 

be very useful, and sometimes critical, to have a high 

speed link between general purpose computers and 

FPGAs as it has many applications though the main focus 

of this paper is development of an image processing 

framework. 

Developing a MATLAB-FPGA communication link is 

useful not only in algorithm development, but also in 

applications which are mostly affiliated with fully or 

partially development of FPGA based designs. This 

platform makes it possible to compare two different 

implementation of one algorithm in terms of speed, 

accuracy, etc. Also it is beneficial in tasks such as 

performing on-chip verification, loading parameters or 

coefficients of an algorithm to the FPGA (repeatedly), 

measuring an algorithm’s performance or accuracy based 

on variety of inputs and outputs, etc. For example, in 

biomedical digital signal processing on FPGA (brain-

computer interface or voice processing), various DSP 

algorithms are implemented on FPGA [14-16] which can 

leverage the proposed setup as a high speed controlling 

interface between the master PC and slave FPGA. 

Another application is when it is necessary to transfer a 

huge amount of information and it cannot be stored in 

FPGA or even off-chip SDRAM memories. For example, 

in an intensive searching application [17], FPGAs are 

employed in a highly computational comparison tasks 

between a sample of data (query) and a large size database. 

Another application is related to the capability of 

MATLAB in modeling different digital and analog 

systems. For example, in linearization of RF power 

amplifiers, one big branch in linearization techniques is 

based on digital pre-distorters and in general on digital 

techniques. These digital systems are sometimes 

implemented using FPGAs [18, 19]. Due to the 

MATLAB’s capability in modeling RF amplifiers as well 

as other RF systems, using a high speed FPGA-MATLAB 

interface is a typical solution to test these systems.  

A high speed FPGA-MATLAB connection makes it 

possible to transfer high computational parts of algorithms 

to the FPGAs, as these parallel architecture devices often 

outperform software based algorithms. In other words, the 

system provides a point-to-point FPGA-PC 

communication which can be directly utilized in 

implementation of hardware-software co-designs. For 

example, in a high computational face recognition 

application [20] it is necessary that the processor access 

the computer RAM many times while lots of arithmetic 

operations are executed. But, these algorithms can be 

partially and effectively implemented in hardware. 

Another example is implementation of BLAST (Basic 

Local Alignment Search Tool) algorithm [21].  

The aim of this paper is to present a new high speed 

solution to MATLAB-FPGA interface with negligible 

hardware resource consumption to provide enough room 

for execution of other main DSP (particularly image 

processing) algorithms. The rest of the paper is as follows.  
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The design of the system is elucidated in section II and 

two applications of the proposed system i.e. 

implementation of skin detection and motion detection 

algorithms and their practical results are provided in 

section III. Finally, conclusion is provided in section IV. 

 

II.  SYSTEM LEVEL DESIGN 

The MATLAB-FPGA interface is a couple node system 

consisting of a PC and a FPGA. In Fig. 1, the overall 

architecture of the system is depicted focusing on image 

processing applications. By revising in minor parts of the 

FPGA design and input/output external devices, 

implementation of other relative applications is possible. 

MATLAB initiates the entire operation. The Software 

core which is developed in PC is capable of capturing the 

image from either an external device camera or computer 

hard disk and sending it via the communication link in a 

user-friendly manner. These packets are sent over a high 

speed one gigabit Ethernet technology. In the FPGA, input 

packets are received and depend on the content of the data 

and packets, further processes will be executed. Two 

standard protocols are utilized here; the first one is ARP 

(address resolution protocol) and the other one is the UDP 

which carries the main data. The former one is 

prerequisite in order to establish the connection; in fact, 

after global reset of the FPGA applied and execution of 

first MATLAB instructions, PC broadcasts ARP packets. 

ARP protocol is employed in order to convert the IP 

address to a physical address. FPGA should be able to 

transmit ARP request and reply frames to inform the PC 

of its own address. The latter protocol i.e. UDP, due to its 

desirable features, is used for transferring the main signal. 

The main operation starts by loading data into the 

FPGA and it will be stored in an off-chip high dense 

SDRAM. Before buffering the data, it is possible to 

perform particular kind of operations. For example, it is 

possible to implement an in-pixel processor to perform 

specific task (e.g. filtering, edge detection, etc). Most DSP 

applications require large memories for storage and 

buffering data and using FPGA internal RAMs is not 

efficient at all. SDRAMs offer a high capacity (up to a 

number of gigabits) as well as high levels of bandwidth 

for data transmission with the cost of area, power and 

management complexity. The latter one is critical since 

different modules should be able to access SDRAM at the 

same time, and the former is essential as in many 

applications such as image processing algorithms, 

SDRAM should be able to store a huge amount of data. 

SDRAM’s operation is controlled by means of a dedicated 

memory controller inside the FPGA. Any module which is 

required to access SDRAM’s data is associated with the 

memory controller. The main module which is the 

hardware implementation of the DSP algorithm has also a 

dedicated access to the memory controller; thus, the data 

will be written and read back whenever it is needed. A 

controller is provided to control the overall operation and 

manage memory addressing tasks. An optional interface to 

output device (here it is a monitor) is also utilized to 

observe the results if desired, even though it is possible to 

send the processed data back to the software core.  

A.  Ethernet Connection 

In order to provide the PC-FPGA connection, Ethernet 

technology is utilized. The USB 2.0 can provide 

approximately 500 Mb/s transfer rate, but it is not enough 

for many applications and also it is not applicable for long 

length cables. Higher versions such as USB 3.0 and USB 

3.1 provide much higher bandwidth, but they are not 

always compatible with current systems. RapidIO, PCIe 

and Ethernet are other standard choices. Among them, 

Ethernet (defined and standardized in IEEE 802.3-2008) 

seems more preferable. It is fast enough for many 

applications, has low cost, and is available almost 

wherever there is a computer. PCIe is the fastest 

interconnect technology available for FPGA-PC 

connection, but it has several drawbacks [22]. In past, for 

a simple point to point communication, the need for 

additional circuits could increase the overall cost of the 

system and a processor was required to implement a 

network stack [23]. Currently, FPGAs make it possible to 

cost-effectively implement the stack very straightforward. 

Besides choosing a hardware platform, e.g., FPGA, and 

interconnect technology, e.g., gigabit Ethernet, a protocol 

is also chosen to run in upper layers (network and 

transport). Regarding protocols and standards, several 

points should be considered before designing the stack. In 

some usages, the accuracy has strictly the first priority, 

while in many others it is not that important. In data 

streaming applications such as real-time image processing 

systems, most of the time, it is crucial that input interface 

be able to provide several gigabits of bandwidth, but it 

would be okay if some bytes of data get lost. UDP, due to 

use of a least protocol mechanism without any special 

handshaking between the server and clients, seems to be 

an unreliable protocol. TCP, on the other hand, is a 

connection-oriented protocol that provides a safe and error 

free system by sending and receiving acknowledgements 

and by retransmissions and timeouts [24]. Even though 

UDP is not suitable for some applications, there are 

certain situations in which UDP is preferred. According to 

[25], UDP is very suitable for simple query-response 

protocols such as DNS and it is stateless, thus, suitable for 

media streaming applications such as IPTV and video-

conferencing. And also, lack of retransmission delay 

makes this network protocol very useful for real-time 

applications. An important aspect of a UDP structure 

compared with a TCP implementation is its less used 

resources. In fact, due to the more complexity of the TCP, 

more resources and area is needed for its implementation. 

Also, the long header of TCP reduces the protocol 

efficiency compared to that of the shorter UDP header. 

The overall architecture of the proposed stack is 

depicted in Fig. 2. It consists of several sub-modules. The 

PHY implementation is possible either using on-chip 

cores such as SGMII LogiCORE or Ethernet 1000Base-X 

PCA/PMA (offered by Xilinx or other similar cores by 

other vendors) or employing off-chip ICs such as Marvell 

Alaska PHY device. The physical layer is implemented 

4 
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off-chip using BASE-T standard. Marvell Alaska PHY 

device is used as an interface for Ethernet 

communications at 10, 100 or 1000 Mb/s speeds. PHY 

connection to Ethernet cable is through a connector with 

built-in magnetic. PHY connection to upper layers could 

be managed through predefined standards such as GMII, 

RGMII, SGMII, etc which depends on the connection 

features. GMII interface is defined by IEEE802.3 

specification and it is utilized in this stack. When using 

GMII, the FPGA designer should consider a logic circuit 

built in FPGA IO blocks to meet timing requirement. Fig. 

3 shows the circuit which is used to here both in receiver 

and transmission interfaces in IOBs. At the GMII 

transmitter interface, while operating at 1 Gbs, it is 

necessary that user provides 125 MHz clock (placed on 

global clock routing) and feed it to the core, client logic 

and gmii_tx_clk output ports. Of course, this latter signal 

is first inverted using an ODDR primitive to maximize 

setup and hold times. Other output signals are registered 

in IOBs using Double-Data-Rate registers so that the 

clock, data and other control signals arrive at the same 

time. In Fig. 4, the timing diagram of the main signals (for 

an ARP packet including FPGA IP Address) related to the 

Ethernet transmitter interface is depicted. GMII receiver 

logical implementation for Spartan-6 includes several 

IODELAY2 blocks and a BUFIO2 to produce lowest form 

of clock routing delay. The first output of the BUFIO2 

clock (IOCLK) is routed to the IO clock network 

(IODDR2, IODELAY2, IOSERDES2) and the second one 

(DIVCLK) drives BUFGs or Clock manager blocks. 

IODELAY2 blocks should be practically adjusted to fine-

tune the setup time and hold time of IOB flip-flops. 

Delays depend on the routings of the design. Another 

practical constraint is related to the clock regions in which 

RX signals are placed; they should be all placed on the 

same clock region as the RX clock signal. In addition, the 

output of the DIVCLK of the BUFIO2 drives a BUFG; 

hence, this clock will be utilized in entire of the receiver 

part of the UDP stack. 

 

 

Fig.1. Overall Architecture of Proposed System 

 

Fig.2. Overall Architecture of the UDP Stack 
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This layer is designed using TEMAC (Tri-mode 

Ethernet MAC) core, two FIFOs and other peripheral 

circuits. TEMAC is offered by Xilinx in order to take 

care of tasks such as framing, error detection, overflow 

control, padding, etc with high capabilities and in variety 

of operation modes. This core is configured to operate at 

full-duplex (which is faster than half-duplex and it 

consumes less FPGA slices) with minimum possible 

resource consumption and thoroughly suitable for data 

streaming applications. 

 

 

Fig.3. GMII Standard Interface Circuit in Spartan-6 IOBs 

 

Fig.4. Timing Diagram of GMII-TX signals in FPGA IOBs 

After receiving a full Ethernet frame, the related 

information is reported to upper layers regarding the 

condition of the incoming packet; in consequence, the 

decision will be taken more efficiently. The gigabit 

transmitter/receiver device is managed by an 8 bit 

Picoblaze microcontroller. Instead of using MDIO 

interface modules, the core is configured using 64-bit 

configuration vector in the UDP layer making the design 

more efficient.  

Local link client interface is mainly consists of two 

parameterizable FIFOs; One handles receiving tasks and 

the other one handles sending packets. Each of the FIFOs 

is 4096 bytes long which means they can hold a complete 

standard Ethernet frame with maximum allowable length. 

The specific feature of these FIFOs is the simple protocol 

which is considered at both sides of them (client and 

TEMAC). Using several controlling signals, these FIFOs 

are capable of transferring the packets with arbitrary 

length and controlling the overflow (of consecutive 

packets). The transmit data is first buffered in the FIFO. 

When the TEMAC is ready to transmit that, the FIFO will 

be emptied; consequently, header, trailer and padding 

bytes if it was necessary are included. Also, the minimum 

interframe gap is considered when sending consecutive 

packets.  

The UDP core comprises of two independent units, the 

transmitter and receiver units. The receiver unit, upon 

receiving an ARP request packet, informs the transmitter 

which sends a reply frame as soon as possible. The 

schematic view of the UDP layer is depicted in Fig. 5.The 

transmission is performed by TX controller. It controls the 

priority of the data and the type of ARP (request or reply, 

broadcast) which should be sent. RX controller deals with 

TX controller, application IF (interface), and Local Link 

FIFO. These controllers are mainly used to control the 

overall operation of the core. The ARP transmitter 

consists of an FSM, two simple 45 bytes distributed 

RAMs to store data, and some other basic logic blocks. 

This module is designed pipelined. ARP transmitter 

begins sending data when the output line is free to offload 

data, a request is asserted by TX controller, and local link 

TX FIFO is ready to accept data.  

 

 

Fig.5. The Structure of the UDP Core 

IP transmitter consists of a control unit to manage the 

whole data sending operation, i.e. to control a checksum 

calculator to calculate the UDP checksum, a BRAM FIFO 

to store the data while the checksum is calculated, a ROM 

to store headers, and finally a multiplexer to choose the 

data which should be transmitted, i.e. the payload, the 

header or the checksum bytes. User can simply modify the 

ROM and change the IP addresses, the length of the 

payload, etc. RAM is a simple dual port RAM 

implemented using a dedicated FPGA BRAM. It is large 

enough to hold 2048 bytes of data, considering that the 

length of an Ethernet frame is limited to 1538, with 

maximum payload size of 1500 bytes (1472 bytes of data, 

20 bytes of IP header and 8 bytes of UDP header). BRAM 

is connected directly to the control unit which provides 

enable signals and the addressing during both “read” and 

“write” operations. The multiplexer works with the select 

signals that come from the control unit and the input 

signals from the BRAM, ROM and checksum register. In 

this scheme, the stream of data is downloaded to the local 

link FIFO accurately in accordance with the protocol. 

Each byte of the data is offloaded at the rising edge of the 

clock.  

The controller block in the transmitter unit includes 

some sub-blocks, mainly an FSM in its heart that controls 

timings, input and output signals, addressing of BRAM 

and ROM, selecting proper signals for multiplexers and 

handshaking with upper and lower layers. It is a 7-state 

finite state machine with 16 transitions, 5 inputs, 9 outputs, 

and a synchronous reset. It is implemented by using 

FPGA LUTs based on one hot encoding. The transmitter 

unit is in idle state when there is no information to send. 

5 
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When an application requests to send information, a state 

transition happens and the core starts buffering the 

incoming bytes. Meanwhile, the checksum unit calculates 

the incoming packet’s checksum. When the whole data 

buffered, the controller inquires the local link interface to 

check if data transmission is possible, and by receiving 

acknowledgement, transmission will start in the next state. 

To do that, first header bytes and then payload will be 

placed into the TX FIFO of the local link interface. In this 

state, there is a possibility that another packet is on the 

line to be transmitted by a similar (or different) 

application. In this case, transmitter while sending data to 

the local link can accept the incoming payload since the 

BRAM is dual port. Since the length of the payload is 

fixed, transmission will be finished sooner than data 

receiving. Hence, controller waits till rest of the data from 

application arrives (to complete checksum calculation) 

and then it will start sending headers. Checksum is 

calculated whenever a segment should be transmitted. The 

design has high performance and speed, and this has been 

achieved by using FPGA dedicated blocks, employing 

high level of pipelining, breaking and reordering long 

critical paths to meet timing constraints, and also by using 

advance HDL coding techniques specific to Spartan-6 

structure. 

The receive unit similarly consists of several sub-

modules and one is the controller. The controller manages 

all the incoming and outgoing signals of the unit. The data 

is sent out directly, but an indicator signal triggered by 

controller determines its validity. The controller contains 

an FSM, a couple of counters and buffers and some low 

level peripheral blocks. The FSM has six states. In its idle 

state, the circuit is waiting for trigger from lower layer to 

start transmission. In the next state, the MAC-add-

buffering state, 14 bytes of sender and receiver MAC 

address and the type/length of protocol are checked. 

Appropriate reactions are done after that. The IP buffer is 

next state in which bytes of data in IP header or ARP 

header are received. The UDP buffer state is based on 8 

bytes of UDP header. In statistic state, the results of the 

UDP checksum calculation and header comparisons are 

sent to the application. The application decides to ignore 

or use incoming bytes based on these validation signals.  

The IPv4 checksum calculator operates only on the 

IPv4 header by start and finish signals from the controller. 

The UDP checksum calculator operates on pseudo IP 

header, UDP header and data. A simple small RAM (32 

bytes) is considered in the design to store those bytes of 

the IP header that included in pseudo IP header. In 

controller, the output of the counter that count the number 

of incoming bytes of IP header is decoded to the addresses 

of the simple RAM to write the incoming bytes correctly 

into its cells. Soon after finishing data transmission, the 

checksum operation is performed with the bytes coming 

from the controller. The final checksum value will be 

calculated and based on this value, a warning signal will 

be sent to application by the controller. 

 

 

 

B.  MCB Interfaces 

Memory controller block (MCB) is a dedicated 

embedded block; a multi-port memory controller that 

simplifies the task of interfacing FPGA devices to the 

most popular memory standards. The FPGA’s hard 

memory controller is used for data transfer across the 

DDR3 memory interface’s 16-bit data path using SSTL15 

signaling. In the proposed architecture, the MCB is fed 

with a 400 MHz differential clock. In addition, 3 

unidirectional and 2 bidirectional 32-bit ports 

configuration is established accompanying with an 

arbitration scheme which maximizes the performance. A 

PLL is employed to supply this block with the memory 

system clock and the calibration clock. The schematic of 

the MCB interface with other blocks is depicted in Fig. 6. 

Each module that aims to access the external RAM is 

required to burst a command. In each of the system 

memory clock cycle (i.e. 3000 Ps), MCB checks the 

availability of any command in each port’s command 

FIFO based on the arbitration priority. Depend on the 

burst length of that command and FIFO statues, data will 

be transferred.  

Considering an image processing application, Ethernet 

data bytes are merged to form 3-byte data words. The data 

received from UDP/IP unit is checked in terms of 

accuracy in IP addresses, MAC addresses, checksum, etc. 

If the data is correct, the 3-byte data word will be shifted 

into the other block accompanying with a valid signal. 

This valid signal is asserted 1 time in every 3 cycles. Of 

course, this scheme is not critical for all applications. In 

present design, each pixel consists of Red, Green and Blue 

bytes and each of these bytes arrive in order (i.e. pixel rate 

is 1 third of 125 MHz). In addition, the end of receiving a 

full frame of an image (considered 640*480) is also 

indicated in this part and used in controller to provide 

address updating.  

MCB Interface blocks are units through which the 

memory controller is accessed. Two MCB Ethernet 

interface blocks are considered in the design scheme; one 

is to buffer the incoming Ethernet data packets into the 

external SDRAM and the other is to fetch data from 

external RAM and send it over Ethernet to the PC. The 

architecture is simple and efficient. Writing the incoming 

data directly into the DDR3 via MCB is quite inefficient 

since this may waste a significant portion of MCB’s 

bandwidth; hence, when using the system in full operation, 

achieving real-time operation will be not practical. In 

order to avoid this, data which is fetched from Ethernet 

stack is first buffered in an interface FIFO which is 

specialized by its independent read and write clocks. The 

data is written in FIFO as soon as it received with exactly 

the frequency of incoming bytes (pixel rate); however, in 

order to read data, a relatively higher frequency should be 

chosen depend on the device characteristics, the design 

constraints mostly related to the PAR result and also the 

effective bandwidth which is needed. Whenever the 

number of pixels in the FIFO reaches a threshold, the 

process of vacating FIFO embarks on. Using this scheme, 

the maximum efficiency is obtained. Peripheral circuits 

are required for controlling the whole operation.  

6 
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Fig.6. MCB and Connected Blocks in Proposed System 

The Output-MCB interface block heavily depends on 

the application. If the DSP algorithm is an image 

processor, then this block should be an interface to 

monitor. Here, the output interface is based on two main 

units. One module is directly connected to the MCB and is 

responsible for reading processed pixels from the SDRAM 

while the other one consists of sub-circuits designed 

mainly for controlling monitor synchronization signals, 

communicating with the DVI encoder and handshaking 

with former module. The unit which is directly connected 

to the MCB is comprised of two FIFOs for storing image 

lines according to the protocol which is described in the 

following. An FSM sub-block controls the entire 

operation which is performed on 5 states. The idle state in 

which the system is waiting for the first image frame to be 

ready; the first line state in which the FSM waits so that 

the first line of image is stored in the odd FIFO; the 3
rd

 

and 4
th
 states that will be consecutively repeated and 

switched whenever there is a change in lines; and the 5
th
 

state which is dedicated to the retrace time between two 

consecutive frames. The idea is that when one of FIFOs is 

receiving data from MCB, the other is sending the former 

line of image to the output. The write and read frequency 

for both FIFOs are independent and different. The read 

depends on the refresh rate of the output video (here is 25 

MHz), and the write clock is much higher to compensate 

the MCB delay and to utilize its limited bandwidth 

efficiently.  

C.  Addressing and Memory Partitioning 

Dedicated MCBs also simplify the task of addressing as 

the processing module could perform byte-byte addressing 

(similar to the SRAM based systems). In other words, 

MCB converts the input addresses into either Row-Bank-

column or Bank-Row-Column which is mainly utilized in 

DDR memories. In order to manage the memory space, it 

is divided into non-overlapping regions; each of which is 

large enough to encompass a full frame of an image. 

Considering this, a controller is considered at the top level 

of the design which manages the addressing of each 

module. Regardless of the unit which is accessing the 

RAM, an address is divided into two parts; a dynamic part 

which is specified by the unit itself, and a static part which 

is determined by the controller. In fact, the static part 

specifies an image region (a division of RAM and it is 

constant for all of pixels of an image) and the dynamic 

part locates the exact location of the pixel in that image. 

There are three major modules with direct access to the 

external RAM; the Ethernet unit, image processing unit, 

and finally, output unit (monitor interface). Thus, in 

steady state of operation, one unit writes an image into the 

RAM while the other is processing the former frame and 

the last one is reading the last processed image. 

When the FPGA is receiving the first frame of video, 

only the Ethernet interface writes the image into the RAM 

and the other two units are inactive. When the last pixel of 

the first frame was written, the image is ready in the 

SDRAM to be processed though receiving all of the pixels 

of a frame is not always necessary. Nevertheless, when the 

processing trigger is activated by the controller, the main 

image processing task begins. Similarly, when processing 

of one frame is over, the output interface reads the 

processed data and sends them to the monitor (shown in 

Fig. 7). The whole operation will continue until either the 

camera is disconnected or the device is turned off. In the 

first case, the system is designed in such a way that the 

last successfully processed frame will be shown in 

monitor (fixed). One important fact which should be 

considered is that the throughput of processing data must 

be equal or more than the throughput of storing the data 

into the DDR3 and the throughput of reading the 

processed data must be more than both of them so that 

loss of data will be zero.  

 

 

Fig.7. Memory Partitioning And Simultanous Storing, Processing and 
Reading Data
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D.  Clock Network Infrastructure  

In the design of this system, various clock signals with 

frequencies in the range of 25 MHz up to 250 MHz are 

considered. The structure of the clocking infrastructure is 

depicted in Fig. 8. The IBUFGDS block is a clock buffer 

for differential input signals which is used here to generate 

a single 200 MHz signal in order to derive a DCM and a 

PLL. The DCM generates clock signals which are 

required in Ethernet unit (three 125 MHz signals; one not 

buffered and two buffered with opposite phases, a 200 

MHz signal for MCB interface and a 25 MHz to supply 

the microcontroller which is connected to the Gigabit 

transceiver), the video logic (a 125 MHz signal for general 

logic circuitry, a 25 MHz signal to derive the monitor and 

its synchronization signals and a 200 MHz clock for the 

MCB interface), and finally the processing unit with a 200 

MHz and a 125 MHz signals. In case, the main image 

processing requires higher or lower frequencies depending 

on its design specifications, additional DCM blocks are 

available for usage. A PLL is to generate required clock 

signals for the MCB; hence, the one with the nearest 

physical distance to the MCB is employed. Due to the fact 

that DCMs do not have access to the I/O clock network, it 

is not possible to use them. The due signal clocks are 

buffered in the physical layer of the interface and also, 

two additionally strobe signals (which are required by the 

MCB) are generated using BUFPLL primitive. For MCB 

calibration, a clock signal must be routed from the so-

called PLL and in phase with clk400. A typical value for 

the frequency of this signal is 100 MHz.  

 

 

Fig.8. Clock Network Infrastructure 

 

III.  EXPERIMENTAL SETUP AND RESULTS 

In Section II, the overall architecture of this general 

system has been described. Considering this, practical 

implementation of variety of image processing 

applications is possible. In order to corroborate the 

validity of the system, two image processing algorithms 

namely a skin detection and a motion detection is 

designed. For the former, the aim is to group all the pixels 

into two classes of skin and non-skin pixels for any image 

[26, 27]. This has numerous applications in surveillance, 

content based coding, and face detection [28, 29, 30], etc. 

One specific method of skin segmentation called explicitly 

defined method [28] is implemented to observe the 

accuracy of the setup. In addition, a motion detection 

algorithm is also implemented based on frame 

differencing technique which can be used either as a 

standalone application or preprocessing for many image 

processing algorithms. MATLAB as a high level 

application provides raw data for the FPGA as well as 

receiving and processing the output data. In MATLAB, 

DSP system toolbox is used to send and receive UDP 

packets. Here, a network node is developed to 

communicate with FPGA. The software core also utilizes 

the connected camera in order to capture the video (24-bit 

color images) with the rate of 30 fps. Each frame of the 

video constitutes a number of Ethernet packets and then it 

is transmitted to the FPGA via the network node. In 

addition to the MATLAB, a network protocol analyzer, 

The Wireshark, is exploited in order to observe the 

network traffic in debug and verification phases. The 

operation starts when MCB calibration is finished. After 

executing initial necessary connection commands, PC 

sends an ARP request to the FPGA. Other data packets 

based on other protocols may be transmitted to the FPGA 

via other applications in PC; however, they will be filtered 

out in FPGA. Through image transmission process each 

frame of image (a single image or still video) will be sent 

to the FPGA for further processing. 

Table 2. UDP/IP Utilization Ratio 

------- [38] [23]** [23]* [22] Proposed 

Device Sp3 Sp3 Sp3 Sp3 Sp6 

Slices 111 1022 517 184 123 

BRAM 0 3 3 0 0 

DSP 0 0 0 0 1 

Length 1472 256 256 1472 1472 

ARP No Yes no no Yes 

F-max 132 60.3 90.7 128.8 239.3 

Table 3. System’s Resource Utilization Ratio 

Block 
Utilization 

without skin module 
Utilization 

with skin module 

Utilization 

with skin and motion 

module 

Available on 

XCSL6LX45T 

Slice Reg 2,460 2,530 3325 54,576 

Slice LUT 2,531 2,606 2876 27,288 

Bonded IOBs 101 103 105 296 

RAMB16BWERs 8 9 14 116 

RAMB8BWERs 2 3 2 232 

DCM/DCM_CLKGENs 1 1 2 8 

MCB 1 1 1 2 

PLL_ADV 1 1 1 4 

DSP48A1 1 4 4 58 
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Xilinx Integrated Software Environment, ISim and 

ChipScope analyzer were used for implementation, 

simulation and debugging purposes respectively. The 

resource utilization for UDP/IP stack is provided in Table. 

II and it is compared to that of previous works. Also, in 

[31-36], the design of a network stack is provided; 

however, they are incomparable with the present work as 

the design objectives are not the same. The resource 

utilization for the proposed method is based on the output 

of PAR. The resource utilization ratio of the whole system 

is provided in Table. III that shows the system consumes a 

low percentage of resources and that there is still 

sufficient amount of resources for implementation of 

variety of DSP algorithms. In addition, denser devices can 

be used for implementation of more resource demanding 

algorithms. Since data is dynamically transmitted through 

FPGA and high dense SDRAM, by efficiently designing 

DSP modules in FPGA, a small number of BRAMs will 

be required in implementation of many algorithms while 

preserving the speed needed in many applications. In Fig. 

6, the result of the performing skin detection using both 

FPGA and MATLAB are compared for a single image. 

The result of skin segmentation for video is depicted in 

Fig. 7 while Fig. 8 represents the implementation of 

motion detector. In both of Fig. 10 and Fig. 11, the live 

video which comes from the camera is shown in the left 

monitor and the result of applying the algorithms is 

depicted on the other one. Finally, in Fig. 9, the routed 

design including both the skin detection and the motion 

detection modules are depicted.  

 

 

Fig.9. Experimental Setup(Left: Original, Middle: MATLAB 
Simulation, Right: FPGA Implementation) 

 

Fig.10. Implementation of a Skin Detection Algorithm 

 

Fig.11. Implementation of a Motion Detection Algorithm 

 

Fig.12. Routed Design 

 

IV.  CONCLUSION 

DSP applications have been numerously developed in 

recent years, and MATALB is a strong tool in prototyping 

different algorithms with simple, cheap and fast design 

flow. However, in many practical systems, using general 

purpose computers will lead to poor performance. In this 

case, FPGAs are one of the best choices as the 

implementation platforms. In this paper, a new high speed 

and low cost FPGA-MATLAB interface is proposed that 

can be used in developing and prototyping many FPGA 

based DSP algorithms and it provides a remarkable 

solution to FPGA-MATLAB communication for variety 

of applications particularly image processing systems. The 

proposed system operates on a 1Gbs Ethernet link 

between PC and FPGA and it is based on UDP protocol. 

The incoming packets are stored in an off-the-shelf 

SDRAM and dynamic data transmission between FPGA 

and memory will be the rest of FPGA design. This 

proposed system consumes negligible amount of FPGA 

resources which can be very important in many 

applications. The entire system can be implemented using 

a low cost FPGA. The validity of the system was 

successfully confirmed by implementing a skin detection 

algorithm and a motion detection system. 
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