
I.J. Modern Education and Computer Science, 2016, 7, 53-60
Published Online July 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2016.07.06

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 7, 53-60

An Analysis of Performance Testing in

Distributed Software Applications

Muhammad Fraz Malik
Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Islamabad, Pakistan

Email: urd.logic@gmail.com

M. N. A. Khan
Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Islamabad, Pakistan

Email: mnak2010@gmail.com

Abstract—Testing is a crucial step in designing and

implementing software in the distributed environment.

Testing in the distributed applications is not only difficult,

but also a costly method. This Research briefly discusses

the performance testing in the distributed software

environment along with different other testing techniques

proposed in the literature that correspond to distributed

applications. Additionally, we discuss the key testing

challenges faced during the whole process of testing the

distributed applications. Much of the focus of this paper

is on intelligent agent-based testing. Agent based testing

is provide better coordination mechanism between

multiple testers and exert more controllability and

observablility on fault detection. In this study we have

critically analyzed testing methodologies being practiced

in the distributed environment. We have studied the

merits and limitations of these methodologies proposed in

the contemporary literature and have identified the

possible improvements in those methodologies to make

them more robust.

Index Terms—Performance Testing, Distributed

Applications Testing, Agent-based Testing, Random

Testing.

I. INTRODUCTION

Software testing is one of the most difficult tasks to

assure the quality of software and plays a vital role in the

SDLC process to ensure that it adheres to the client or

customer needs. When it comes to the distributed

applications environment, software testing is considered

as backbone for applications. Testing the distributed

software application is much more difficult as compared

to testing standalone software applications, because the

distributed system behaviors are dynamically changed

with respect to time and platforms. There are several key

challenges linked to testing the distributed applications;

e.g., the same test run executed frequently on the same

scenario with same input, may generate different outputs.

This happens due to the non-linear behavior of the

distributed systems i.e., event timing can also affect the

end results. The functional and non-functional

requirements play key role in web applications testing.

Some sort of software package assessment method

describes a few phases in different assessment situations.

The approaches and the testing methods used to

functional requirement for traditional software as well as

used for web application. The non-functional testing

includes performance testing, load testing, stress testing,

compatibility testing, usability testing, accessibility

testing and security testing etc. performance testing is

much important for the insurance of reliability and

efficiency for web application. During implementation,

performance related issues can be resolved is an efficient

way to beat the market challenges as well as client

requirements. Performance testing is used to test the

performance of the application by integrated the software

systems, and it‘s a more effective testing technique as

compared to the functional testing. There are three main

qualities for applying additional reliability, accurate and

efficiency of distributed software testing applications.

Scalability and response time are key attributes for

performance characteristics in distributed software

applications. This study identifies some common issues

that testers face while managing distributed software

system.

Software testing is a process to assess software

behavior according to the desired user specifications and

to ensure quality of the product. The abnormal software

behavior is normally termed as a bug which could be an

error, fault, flaw or failure of a computer program that

causes it to produce unexpected result. The sole purpose

of testing is to find software failures so that the bugs can

be discovered and corrected. Software systems differ in

the manners in which they fail. Mostly, physical systems

fail in a pre-defined set of ways, but a software system

could fail in many different strange ways making it

difficult for the testers to discover all those possibilities.

Therefore, new testing standards and novel testing

techniques are continuously emerging.

Testing has a prime role in software development life

cycle (SDLC) and the overall software system

architecture as it is vital to assure the software quality

before its deployment and during its maintenance. There

are several testing methods which are organized into the

following basic categories:

mailto:mnak2010@gmail.com
https://www.google.com.pk/search?sa=X&espv=2&biw=1366&bih=667&q=define+crucial&ei=BSBSVcSVEISsswGglIDIBQ&ved=0CBwQ_SowAA
https://www.google.com.pk/search?es_sm=93&q=define+frequently&sa=X&ei=yzpWVaXEAsObsAHzioC4AQ&ved=0CB0Q_SowAA
https://www.google.com.pk/search?espv=2&biw=1366&bih=667&q=define+scenario&sa=X&ei=FztWVe-BGYePsgGMwoCQCw&ved=0CCsQ_SowAA

54 An Analysis of Performance Testing in Distributed Software Applications

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 7, 53-60

 Static [Reviews, walkthroughs and inspections]

 Dynamic [Execution of code with test cases]

 White-Box [Testing internal structure or working

of a program]

 Black-Box [Testing only working of the program]

 Visual [Testing the Graphical User Interface]

 Grey-Box [Somewhat in the middle of White-Box

and Black-Box]

Testing can be performed at several levels such as:

 Unit [Testing individual unit of source code]

 Integration [Software modules are combined and

tested as a group]

 Component Interface [Testing data handling

across various components]

 System [Testing complete system against

specifications]

 Acceptance [User of the system will perform

acceptance testing]

A number of application programs have been

developed to automate the testing process to reduce

human error. CODESONAR is one of the tools to

automatically perform static analysis of software

behaviour.

Requirements are actually customer‘s statements of

scope. In requirements finalization process, the

stakeholders play an import role. A stakeholder can be

defined as anyone who is directly or indirectly affected

by the system being developed or deployed. Stakeholders

are broadly categorized into two major classes — user

and customer. User ordinarily uses the system and

customer refers to those persons who have requested for

the development of the system and are responsible for

approving it. There may be a number of people who

participate in the development of a system like business

analysts, designers, coders, testers, project managers,

deployment managers, use case designers, graphic

designers etc. and are customarily considered as

stakeholders. Requirements engineering (RE) is a group

of activities to elicit, analyze, specify, verify, validate and

manage requirements.

To ascertain their quality requirements practices

product managers from Swedish companies were

interviewed. The study found that usability and

performance requirements were being considered as the

most important. The study also identified that a major

challenge with quality requirements was to make it well

specified and quantified so that to make it testable.

Survey in Canada showed that inadequate testing;

training and lack of formal criteria for testing increase the

risk of releasing defects into production and release

versions of software products. The ability to detect

tendencies that lead to reduced quality and to identify the

root causes of reductions in product quality suffer from

the lack of exhaustive testing of the product. There is a

need for improvements for quality assurance.

Organizations that offer training on quality assurance and

testing procedure to their developers improve their ability

to validate quality and correspondingly improve the

likelihood of pinpointing and resolving process and

product defects. Cost and lack of expertise are two major

barriers for adaptation of testing methodology and tools.

Research in Brazil conducted with objective to identify

respondents‘ perception about the relationship between

IT Governance models and quality instruments adoption.

The results obtained through the survey provided an

overview of the impact of IT-related problems in the

organizations, the degree of knowledge and importance

as well as adoption of different quality instruments [14].

A survey on quality models being practiced in Germany

focused on several domains of software development

such as standard software being used, custom

development methodologies, embedded systems and

company size. Exploratory survey on software practices

of software firms in five ASEAN countries show that

software industry was falling short in the four areas: use

of automated estimation tools (Software Project Planning

Practice), use of requirements traceability matrices

(Software Project Tracking and Oversight practice), use

of quantitative quality metrics (Software Quality

Assurance practice), and the use of change control boards

(Software Configuration Management practice).

Organizations that were strong in software quality

assurance practice had in common the best practices of

quality orientation, independent testing teams and

Software Engineering Process Group (SEPGs), peer

reviews, and quality management systems.

The remaining paper distribution is as follows: Section

I provides an introduction highlighting the importance of

distributed software applications. Section II is about

research objective. Section III is about literature review,

in this section we discuss the topic related research paper

which we reviewed. Section IV provides critical analysis,

regarding technical strengths and weaknesses of the

surveyed literature. Section V describes conclusion and

future work.

II. RESEARCH OBJECTIVES

The objective of this research is to discover strengths

and weaknesses of the existing software testing

techniques particularly the ones that support distributed

environment. Based on the merits and demerits of the

existing techniques, specific research gaps would be

identified which could help find possible future directions

in this area. In addition, cloud based testing tools and

services would also be studied. The study will serve as a

survey report highlighting the efficacy, usefulness and

strengths of different software testing techniques

particularly in the distributed environment. In this study, I

will conduct a systematic literature review of the software

testing techniques, their areas of applications, the

approaches used in the formation test oracle and test

cases and SWOT analysis of the existing testing

techniques. The scope of the study is limited to review

and critically analyze the existing software testing

techniques. The study would mainly be a survey report

about the merits, demerits of the software testing

 An Analysis of Performance Testing in Distributed Software Applications 55

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 7, 53-60

techniques. In this study, research method will be kind of

a meta-analysis targeting critical review of the latest

papers published in the domain of software testing. For

this purpose, research papers published during the last

five years in the area of Software Testing in Distributed

Environment will be studied, reviewed and critically

analyzed. In addition, the strengths and limitations of the

proposed techniques in the area of Software Testing will

be determined. The output of this non-empirical research

approach is envisaged to locate research gaps in the thrust

for finding potential future works in this domain.

This paper focuses on the following objectives:

 Discuss the overview of distributed software

Application and testing.

 Describe the main role of performance testing and

identifying some common issues in distributed

software application.

 And identify the common frameworks. Discuss

their merits and de merits and along with future

work.

A. Distributed Software Application

In distributed software system the different

components located of different locations can

communicate and coordinate their actions by passing the

messages. All processor have equal rights to access

shared memory between the distributed computing for

exchanging their information between the multiple

processors. Distributed software application discussed

below. Examples of distributed applications are:

 Wide Area Network Application(WAN)

 Wireless Sensor Networks

 World Wide Web(WWW)

 Distributed Database Management Systems

 Banking system and Airline reservation system are

key example of Distributed information processing

B. Distributed Software Testing

Software testing is required to check that the

completed application is according to the user

requirement. Developer of software can deliver software

when meet the user expectation and needs. By using the

software testing, we identifying the correctness,

completeness and qualify of software on the Software

Development Life Cycle (SDLC). Software testing

process ensured that software stands well against the

define requirements.

Basically testing is process which is used to investigate

and perform on the behalf of stockholder. The earlier

testing was done after code has been completed but now a

day‘s testing is begin in design the test cases. These test

cases fall on three testing categories. Gray box testing,

Black box testing and White box testing.

III. RELATED WORK

This section is described about different testing

methodologies in different distributed software

application. Based on the literature reviewed in this study,

we categorize the distributed testing approaches into the

following set of domains as described in the subsequent

sections.

Nowadays, many organizations are investing huge

amount of money to improve the quality of their software

and software development process; and are using

different quality assurance processes, methodologies and

practices to improve the quality of their software. Code

reviews, walkthroughs, standards and procedures are

consistently checked through performance monitoring,

product evaluation, inspection, validation, verification,

audits and allied testing activities.

A. Distributed Testing with Agile Methodology

Collins et al [1] combine the characteristics of two

methods: DSD (Distributed Software Development) and

agile software development methods. According to the

authors, the old works did not cover the scenario where

the testing activities are distributed among different teams

which are geographically separated. Based on that study,

the authors advocate which the software development

along with their own testing collaboration will be difficult

if your team members usually are geographically

separated. And also to similar other factors, e.g. work

time, cultural differences, communication gaps and

technical incompatibilities etc. these all factors may

impact the success of the software project. The main

contribution of this research is to highlight the challenges

being faced in the distributed testing environment and

worked out a methodology to conduct distributed

application testing using agile software development

technique. Testing is generally conducted late in the

development process. Testing mainly aims at detecting

the defects. The authors highlight the importance of

preventing the defects. In this research, the authors used

agile development method in distributed software testing.

B. Testing Web-Based Application

Di Lucca et al. [2] Performed analysis of different

testing method for web applications with respect to

functional and nonfunctional requirements. For web

application, the research highlights that functionality

depends on following aspects: testing levels, testing

strategies, test cases, testing models and test processes.

C. Adaptive and Random Partition Software Testing

Adaptive testing is a feedback-based software testing

strategy that has been more effective than Random

Testing (RT) and Partition Testing (PT). A major

concern in the application of AT is its complexity and

computational cost for test case selection. Lv et al [8].

http://en.wikipedia.org/wiki/Wireless_sensor_networks
http://en.wikipedia.org/wiki/World_wide_web
http://en.wikipedia.org/wiki/Distributed_database_management_system

56 An Analysis of Performance Testing in Distributed Software Applications

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 7, 53-60

Propose hybrid approach that uses AT and Random

Partition Testing (RPT) is an alternating manner. The

motivation for this approach is that both strategies are

employed such that the underlying computational

complexity of Adaptive Testing is reduced by introducing

Random Partition Testing (RPT) into the testing process

without affecting the defect detection effectiveness. A

case study with seven real-life subject programs is

presented in the study.

D. A Temporal Agent Based Approach for Testing

Distributed Systems

Coordination and communication are more complex

features of the distributed testing components. For such

general reactions for errors, Time outs, observability,

locks, controllability and synchronization problem are

build. Azzouzi et al. [13] focuses on the temporal

properties that specify the time required for exchanging

messages between the various components of the

distributed test applications. The study introduces new

architecture to avoid the synchronization problem

between different testers. The aim of the study is to

propose better coordination mechanism between multiple

testers and exert more controllability and observablility

on fault detection. Another objective is to check timing

constraints in distributed testing correctly in such a way

that all testers and clocks should be synchronized. This

development with the distributed testing framework is a

difficult process where the testing system must not only

check if the output events have been observed, and also

the time whenever most of these events have been

happened. The project presented within this research

extends result from testing in distributed technique to

deal with testing an implementation under test with some

testing constraint.

When ensure the reliability and efficiency of Web

Services, performance testing on web services becomes

very important. But the measurement of performance on

Web Services very difficult. Hao et al. [12] introduce the

method of performance testing, and proposed a

framework of agent-based performance testing on web

services, which include the some features e.g. ―Test Flow

Generator ―which is used to generates test cases and test

flows by WSDL (Web Service Description Language)

files and user demand. ―Scenario Creator‖ create scenario

by choose the required schedule and selecting the

required agent test flows and the quantity. ―Test Manager

―It gets real time data from agent and monitors the rest

result by displaying into in chart. ―Load Generator Agent

―is used to balance the pressure of Test manager and

increase the load. And the last ―Test Analyzer‖ this

module is used to analysis test results. The

implementation of kernel Modules introduced specifically

in this framework. To realize the load allocation to

distributed load Generation agents from test manager, and

provide a queue based allocation strategy.

Provide better reliability and efficiency of web services.

Improve the performance of web applications with the

help of agent based testing. The author design a

framework which is used to measure the performance

testing of distributed multi-agent on web service, This

framework is not only provide s a model for the

automated performance testing on web services but also a

general framework for testing of other protocols. This

framework has two interfaces, one is user friendly

interface, test system user (TSU), and the other is system

under test (SUT) interactive with tested system. The

following modules are included, test flow generator,

Scenario creater, test manager, load generation agents.

The key reason of conducting this research because the

performance testing of web services are resolved the

following issues. Operations of multiple concurrent users

are simulated by multiple SOAP message. Concurrent

users should be dispatched and managed centralized by

the master. Concurrent users should send test commands

to tested system in distributed physical nodes.

Dynamicity and adaptiveness that limit the ability of the

tester to determine the web services that are invoked

during the execution of a workflow.

The Strength of research is the framework Analyze

automatically the log and generate test report. And

combine the characteristics of functional testing and

performance testing. Performance testing focus the

efficiency, reliability and accuracy of the framework.

The cost of using a service (for services with access

quotas or per-use basis). This research proposed a

framework of performance testing on web services and

implements the kernel modules including scenario creator,

test manager and load generated agent. This is used to

maintain the consistency of test environment and real

environment and balance load generated by multiple

concurrent threads. The framework will be refined with

more formal definition of Agent based testing, rules, test

plan, and other testing protocols. Moreover, the

mechanism of rule-based test planning and dynamic test

agents will be further explored.

E. Dynamic Testing Tool for Agent-based Systems

Eassa et al. [10] introduce a dynamic testing tool that

use a temporal logic assertion language for detecting run

time errors in agents and agent based systems. This tool

evaluates agent behavior and detect errors related to

agent behavioral constraints, errors related to agents

‗interactions, errors related to user requirements and

security of agent based web applications. The proposed

technique is based on the grammar, the syntax and the

semantic of the temporal logic assertion language. In this

research the dynamic testing tool has been built and

tested for ascertaining its effectiveness against its use as a

dynamic testing tool.

F. Agent Based Software Testing with Role Oriented

Method

Agent oriented software engineering methodologies

provide us a platform to develop agents based systems.

These methodologies mainly focus on development rather

than the testing. It is not possible to map all agent

properties e.g. autonomy, reactivity etc. to object oriented

constructs. Therefore, a proper testing technique for

agent-based software solutions is needed. Sivakumar et al

 An Analysis of Performance Testing in Distributed Software Applications 57

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 7, 53-60

[6]. Propose an effective and specialized testing

technique for agent-based systems. The proposed

technique focuses the main attribute of an agent which is

role. It follows a v-based model which starts from

requirements and ends at role-based acceptance testing.

The proposed approach provides better solution for

industrial, commercial, medical, networking and

educational applications related problems. This research

is based on an effective agent-oriented framework which

provides high quality software development process and

products.

Loffler et al. [14] discussed a method of agile which is

scrum. This method has much customer participation. It

gives ease of techniques that are used in the analysis of

requirements and testing. This model is consists of

different useful techniques which are important in

maintaining the record of users requirements. These

techniques are in the nature models that are already tested.

This model can be used by both testers and developers. It

is easy to adopt and language used in it is simple. Test

scripts derived from this model for fitNesse / selenium.

Scrum focal point is implementation. New and users

preferred features are included in previous design by

using iterative steps. They are known as sprints. When

these sprints are included, they caused deprived and

deficient requirements. As the consequences user feel

trouble to using software. At some stage in sprints the

next problem is continuous addition of new functions and

their implementation. These problems are like latest

functions are not harmful for existing ones. References

[15-48] reviewed different techniques in different

domains and reported their critical evaluations.

IV. CRTICAL ANALYSIS

In this section we critically analyze our research topic

completely: with respect to their key strength, as well as

discuss their Limitations and the future improvements.

This is basically comparative study related to literature

review.

Table 1. Summary of testing in distributed software application.

Ref

Research

topic

Strengths Limitation Suggested Improvements

[1] Distributed
testing with

Agile
methodology.

The proposed solution reduces the
impact of communication issues on

the software project.

The communications and
coordination are key factors of

distributed testing environment and
absence of these two factors would

lead to failure of the proposed

approach.

The probable improvement could be to
calculate testing efforts required to

perform such type of testing to evaluate
its true worth.

[2] Testing in

Web-based

applications

By composing different hardware for

heterogeneous execution

environments which includes the
network connections, operating

system, web server and web browser.

The main problem to evaluate the

performance of web application is

that users always expect that
services response on time and users

usually don‘t waits for long
requests.

The possible improvement could be

discovering effective approach web

services testing due to the introduction
of ‗Agile‘ methods in web application

testing process

[3] Testing is

used to
maintain

scientific

software

This study is conducted in real

environment and provides concrete
statistics in terms of efficiency,

effectiveness and cost estimation

(manpower, time, etc).

This scientific software used

Regression testing. This testing is
less effective when new features

are introducing to the software. The

implication of the study is limited
to the scientific software only.

Regression tests are normally

performed at higher level (at input and
output level) and this can be automated.

[4] Distributed in

vivo testing of
software

applications.

When the couple of applications

worked together may chance to
increase the probability that an

instance will be finding the erroneous

states easily.

A major limitation of in vivo

testing is the high performance cost
it insure as the unit tests are

executed in parallel with the

application.

To overcome huge cost of replicating

the process, one way to limit the
numbers of tests which are run together

by assigning portions of test suite to

different members of the community.

[5] Distributed
testing in

Database

software
applications.

In this research the authors used
sanitize information in centric objects

to make it difficult for attackers to

infer sensitive information. The
PISTIS technique runs faster and thus

can be applicable in real world testing
scenarios.

Many data anonymization
algorithm seriously degrade test

coverage of database-centric

applications.

The possible improvement for
implementation of PISTIS is to reduce

the analysis time and other bottlenecks

while using data mining approach
which are computationally intensive.

[6] Agent

Oriented
Software

Testing–Role

Oriented
approach

The proposed approach provides

The determination of efficiency in
different testing techniques and this

efficiency is used to generate the

quality of software.

This approach does not provide a

proper testing framework for
testing the agent based software.

This approach enhanced with agent

based system was tested using with
object-oriented testing method. And the

result provide with tabulated form.

[7] Incremental
test generation

for software

product lines

Introduce new approach for classical
testing domain in which tailoring the

practices with respect to the

requirements of the software product
lines.

For the lack of space considerations
the lager scope of experiments

results are not presented.

The possible improvement of
incremental approach for software

products line to hold promises in lager

software testing context e.g., for
refining tests for regression testing.

[8] Adaptive and

Random

While choosing the test cases, the RT

and RPT are efficient testing strategies

The disadvantage of RT is its

defect detection effectiveness as

The future improvement of this

methodology could include different

58 An Analysis of Performance Testing in Distributed Software Applications

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 7, 53-60

Partition

Software
Testing.

with respect to the computational

overhead and cost.

much effort has been invested to

improve the effectiveness of RT
and RPT

heuristic methods, a theoretical analysis

on balancing defect detection and
testing efficiency, and optimal

parameter settings for different subject
programs under testing.

[9] Code

coverage of
adaptive

random
testing

The Adoptive random testing provides

a higher effectiveness of software
application with respect to reliability,

and a higher confidence. And
reliability of the software under test

even when no failure is detected.

In ART and RT the selection

process depends on tester
knowledge and experience for

different test cases. It means that a
tester needs to identify appropriate

categories and choices for the

program under test.

There are various ART algorithms

proposed in the literature which evenly
distribute random test cases in different

ways. A possible future work could be
the code coverage measuring and

comparing by different art Algorithms.

[10] Dynamic

Testing Tool

in Agent-
based Systems

The proposed technique used mobile

agents for software testing tasks. And

provides the abstract model that is
used to generate abstract test cases.

Those test cases are then concretized

and addressed to the system under

test. Another key reason is to a test

automation framework for multi-agent
system that enables developers to

build and run test scenarios.

This testing is naturally bound to a

limited testing time and to provide

a small number of execution
conditions.

The proposed technique can be

enhanced to account for detecting the

interaction errors between mobile
agents and all communication errors

between agents and environments.

Another future work could be to

enhance the dynamic testing tool to

detect other security vulnerabilities
such as of ―attacker access to the flaw‖

in agent-based web applications

[11] By using
different

methods for
debugging the

multi-agent

system
software tests.

This paper proposes the use of
relational database (a very powerful

tool for querying data) server as a
central storage mechanism.

The infrastructure of MAS requires
costly maintenance. Every change

in code of MAS infrastructure
would be very costly because it

needs to be replicated.

Reducing the faults automatically in the
MAS for collaboration, order and

abstract graphs are possible future work
Which involves the to define the

expected results into a specific

languages.

[12] Framework
for testing the

performance
on distributed

agent based

web services.

The proposed approach analyzes the
log automatically and then generates

test report. It also combines the
features of performance testing as well

as functional testing and focus on the

reliability and accuracy of the system.

Dynamicity and addictiveness limit
is based on the ability of the tester

to decide the web services invoke
during the execution of the

workflow.

The framework also enhanced by
refining the formal definition of agent

based testing‘s rules, test plan and other
testing protocols. The mechanism of

dynamic test agents and rule based test

planning can be further explored.

[13] A temporal

agent based

approach for
testing open

distributed
systems

In timing constraints prospective, the

distributed testing process not only

checks different output events, but
also records the timestamps when

these events have occurred.
The correctness of testing in

distributed systems depends not only

on the logical result of a computation,
but also keeping tracks of the time

when the result was delivered.

Sometime serious coordination

issues occur among different testers

when they communicate.
Many problems influencing fault

detection during the conformance

testing process arises if there is no
coordination between distributed

testers. This problem is known as
controllability and observablility

fault detection.

possible future extension to this work

could be adding a timing constraint

V. CONCLUSION AND FUTURE WORK

This study focuses on different testing methodologies

in distributed software applications. The contributions of

the study include: identifying the possible techniques for

testing distributed software applications followed by

identifying the challenges faced during the testing in

software application. In addition to the identification of

key challenges related to application testing in the

distributed environment, we also provide the possible

solution to overcome these challenges. As a future

dimension to this study, we intend to focus on agent-

based testing in the distributed environment. Agent based

testing is provide better coordination mechanism between

multiple testers and exert more controllability and

observablility on fault detection it might automatically

create and by organizing test agents which they

decompose the task into subtasks for testing of entire

distributed application; and this servers as an impetus to

conduct IS-2 research on this topic. This study also finds

that better coordination and communication among

different test agents can reduce the cost and several other

issues such as scalability and reliability in the distributed

testing environment.

REFERENCES

[1] E. Collins, G. Macedo, N. Maia., and A. Dias-Neto,‖ A

Industrial Experience on the Application of Distributed

Testing in an Agile Software Development Environment‖,

In Global Software Engineering (ICGSE) on IEEE Seventh

International Conference, pp-190-194,2012.

[2] G.A Di Lucca, and A, R Fasolino,‖ Testing Web-based

applications: The state of the art and future trends‖on

Information and Software Technology, vol 48, pp-1172-

1186, 2006..

[3] T. Clune, M. Rilee, and D. Rouson, ―Testing as an

essential process for developing and maintaining scientific

software‖.on In The 2nd Workshop on Sustainable

Software for Science: Practices and Experiences, 2014.

[4] M. Chu, C. Murphy, and G. Kaiser, ―Distributed in vivo

testing of software applications. In Software Testing

Verification, and Validation”, on 1st International

Conference on, pp. 509-512, 2008

[5] B. Li, M. Grechanik, and D. Poshyvanyk, ―Sanitizing and

minimizing databases for software application test

outsourcing. In Software Testing, Verification and

 An Analysis of Performance Testing in Distributed Software Applications 59

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 7, 53-60

Validation (ICST)” on IEEE Seventh International

Conference on, pp. 233-242,2014.

[6] N. Sivakumar, and k. Vivekanandan, ―Agent Oriented

Software Testing–Role Oriented approach‖ on

International Journal of Advanced Computer Science and

Applications, vol 3, 2012

[7] E. Uzuncoava, S.khurshid,, and D. Batory, ―Incremental

test generation for software product lines‖ on Software

Engineering, IEEE Transactions, vol 36, pp. 309-322,2010.

[8] Lv, J., Hu, H., Cai, K. Y., & Chen, T. Y. (2014).

Adaptive and Random Partition Software Testing.

[8] J. Lv, H. Hu, K. Y. Cai, and T. Y Chen,‖ Adaptive and

Random Partition Software Testing‖,2014.

[9] T. Chen, F., Kuo, H., Liu and E. Wong,‖ Code coverage of

adaptive random testing‖, on IEEE Transactions on

Reliability, vol 62, pp. 226-237.2013.

[10] F.E, Eassa., L.J Osterweil, M. A, Fadel, S. Sandokji and A

Ezz,‖ DTTAS: A Dynamic Testing Tool for Agent-based

Systems‖on Pensee Journal, vol 76. 2014

[11] E. Serrano., A. Munoz,. And J. Botia.‖ An approach to

debug interactions in multi-agent system software tests.‖

On Information Sciences,vol 205, pp. 38-57,2012

[12] D. Hao, Y., Chen., F. Tang, and F. Qi. ―Distributed agent-

based performance testing framework on Web Services‖

In Software Engineering and Service Sciences (ICSESS)

on International Conference on, pp. 90-94, 2010.

[13] S. Azzounzi., M., Benattou, and M.E.H Charaf,‖ A

temporal agent based approach for testing open distributed

systems.‖ on Computer Standards & Interfaces, vol 40, pp.

23-33.2015.

[14] R. Loffler, B. Guldali, & S. Geisen, (2010). Towards

Model-based Acceptance Testing for Scrum. Software

technik-Trends, GI.

[15] S. Iqbal, M. Khalid, M. N. A. Khan, ―A Distinctive Suite

of Performance Metrics for Software Design‖,

International Journal of Software Engineering & Its

Applications, vol. 7, no. 5, (2013).

[16] S. Iqbal and M. N. A. Khan, ―Yet another Set of

Requirement Metrics for Software Projects‖, International

Journal of Software Engineering & Its Applications, vol. 6,

no. 1, (2012).

[17] M. Faizan, S. Ulhaq, M. N. A. Khan, ―Defect Prevention

and Process Improvement Methodology for Outsourced

Software Projects‖, Middle-East Journal of Scientific

Research, vol. 19, no. 5, (2014), pp. 674-682.

[18] M. Faizan, M. N.A. Khan, S. Ulhaq, ―Contemporary

Trends in Defect Prevention‖, A Survey Report.

International Journal of Modern Education & Computer

Science, vol. 4, no. 3, (2012).

[19] K. Khan, A. Khan, M. Aamir and M. N. A. Khan, ―Quality

Assurance Assessment in Global Software Development‖

World Applied Sciences Journal, vol. 24, no. 11, (2013).

[20] M. Amir, K. Khan, A. Khan, M. N. A. Khan, ―An

Appraisal of Agile Software Development Process‖,

International Journal of Advanced Science & Technology,

vol. 58, (2013).

[21] M. Khan and M. N. A. Khan, ―Exploring Query

Optimization Techniques in Relational Databases‖,

International Journal of Database Theory & Application,

vol. 6, no. 3, (2013).

[22] M. N. A. Khan, M. Khalid and S. UlHaq, ―Review of

Requirements Management Issues in Software

Development‖, International Journal of Modern Education

& Computer Science, vol. 5, no. (1), (2013).

[23] M. Umar and M. N. A. Khan, ―A Framework to Separate

NonFunctional Requirements for System Maintainability‖,

Kuwait Journal of Science & Engineering, vol. 39, no. 1 B,

(2012), pp. 211- 231.

[24] M. Umar and M. N. A. Khan, Analyzing Non-Functional

Requirements (NFRs) for software development. In IEEE

2nd International Conference on Software Engineering and

Service Science (ICSESS), (2011), pp. 675-678).

[25] M. N. A. Khan, C. R. Chatwin and R. C. Young, ―A

framework for post-event timeline reconstruction using

neural networks‖, digital investigation, vol. 4, no. 3,

(2007), pp. 146-157.

[26] M. N. A. Khan, C. R. Chatwin and R. C. Young,

―Extracting Evidence from File system Activity using

Bayesian Networks‖, International journal of Forensic

computer science, vol. 1, (2007), pp. 50-63.

[27] M. N. A. Khan, ―Performance analysis of Bayesian

networks and neural networks in classification of file

system activities‖, Computers & Security, vol. 31, no. 4,

(2012), pp. 391-401.

[28] M. Rafique and M. N. A. Khan, ―Exploring Static and

Live Digital Forensics: Methods, Practices and Tools‖,

International Journal of Scientific & Engineering Research,

vol. 4, no. 10, (2013), pp. 1048-1056.

[29] M. S. Bashir and M. N. A. Khan, ―Triage in Live Digital

Forensic Analysis‖, International journal of Forensic

Computer Science, vol. 1, (2013), pp. 35-44.

[30] A. Sarwar and M. N. A. Khan, ―A Review of Trust

Aspects in Cloud Computing Security‖, International

Journal of Cloud Computing and Services Science

(IJCLOSER), vol. 2, no. 2, (2013), pp. 116-122.

[31] A. H. Gondal and M. N. A. Khan, ―A review of fully

automated techniques for brain tumor detection from MR

images‖, International Journal of Modern Education and

Computer Science (IJMECS), vol. 5, no. 2, (2013), pp. 55.

[32] A. Zia and M. N. A. Khan, ―Identifying key challenges in

performance issues in cloud computing‖, International

Journal of Modern Education and Computer Science

(IJMECS), vol. 4, no. 10, (2012), pp. 59.

[33] K. U. Rehman and M. N. A. Khan, ―The Foremost

Guidelines for Achieving Higher Ranking in Search

Results through Search Engine Optimization‖,

International Journal of Advanced Science and

Technology, vol. 52, (2013), pp. 101-110.

[34] M. Khan and M. N. A. Khan, ―Exploring query

optimization techniques in relational databases‖,

International Journal of Database Theory & Application,

vol. 6, no. 3, (2013).

[35] R. Shehzad, M. N. KHAN and M. Naeem, ―Integrating

knowledge management with business intelligence

processes for enhanced organizational learning‖,

International Journal of Software Engineering and Its

Applications, vol. 7, no. 2, (2013), pp. 83-91.

[36] S. U. Haq, M. Raza, A. Zia and M. N. A. Khan, ―Issues in

global software development: A critical review‖, Journal

of Software Engineering and Applications, 4(10), 590,

2015.

[37] A. S. Shah, M. N. A. Khan and A. Shah. An appraisal of

off-line signature verification techniques. International

Journal of Modern Education and Computer Science, 7(4),

67-75, 2015.

[38] A. Zia and M. N. A. Khan, ―A Scheme to Reduce

Response Time in Cloud Computing Environment‖,

International Journal of Modern Education and Computer

Science (IJMECS), vol. 5, no. 6, (2013), pp. 56.

[39] M. Tariq and M. N. A. Khan, ―The Context of Global

Software Development: Challenges, Best Practices and

Benefits‖, Information Management & Business Review,

vol. 3, no. 4, (2011).

60 An Analysis of Performance Testing in Distributed Software Applications

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 7, 53-60

[40] A. Shahzad, M. Hussain and M. N. A. Khan, ―Protecting

from Zero-Day Malware Attacks‖, Middle-East Journal of

Scientific Research, vol. 17, no. 4, (2013), pp. 455-464.

[41] A. A. Khan and M. Khan, ―Internet content regulation

framework‖, International Journal of U-& EService,

Science & Technology, vol. 4, no. 3, (2011).

[42] K. Ullah and M. N. A. Khan, ―Security and Privacy Issues

in Cloud Computing Environment: A Survey Paper‖,

International Journal of Grid and Distributed Computing,

vol. 7, no. 2, (2014), pp. 89-98.

[43] A. A. Abbasi, M. N. A. Khan and S. A. Khan, ―A Critical

Survey of Iris Based Recognition Systems‖, Middle-East

Journal of Scientific Research, vol. 15, no. 5, (2013), pp.

663- 668.

[44] M. N. A. Khan, S. A. Qureshi and N. Riaz, ―Gender

classification with decision trees‖, Int. J. Signal Process.

Image Process. Patt. Recog, vol. 6, (2013), pp. 165-176.

[45] S. S. Ali and M. N. A. Khan, ―ICT Infrastructure

Framework for Microfinance Institutions and Banks in

Pakistan: An Optimized Approach‖, International Journal

of Online Marketing (IJOM), vol. 3, no. 2, (2013), pp. 75-

86.

[46] A. Mahmood, M. Ibrahim and M. N. A. Khan, ―Service

Composition in the Context of Service Oriented

Architecture‖, Middle East Journal of Scientific Research,

vol. 15, no. 11, (2013).

[47] M. A. Masood and M. N. A. Khan, ―Clustering

Techniques in Bioinformatics‖, I. J. Modern Education

and Computer Science, vol. 1, (2015), pp. 38-46.

[48] Ur Rehman, T., Khan, M. N. A., & Riaz, N. (2013).

Analysis of Requirement Engineering Processes,

Tools/Techniques and Methodologies. International

Journal of Information Technology and Computer Science

(IJITCS), 5(3), 40.

[49] Ahmed, R., & Khan, M. N. A. (2013). An Analytical

Review of Stereovision Techniques to Reconstruct 3D

Coordinates. International Journal of Information

Technology and Computer Science (IJITCS), 5(7), 80.

Authors’ Profiles

Muhammad Fraz Malik is pursuing for

MS degree in Software Engineering at

Shaheed Zulfikar Ali Bhutto Institute of

Science and Technology, Islamabad. His

research areas include software

engineering and data mining techniques.

M.N.A. Khan obtained D.Phil. degree

from the University of Sussex, UK. His

research interests are in the fields of

software engineering, cyber administration,

digital forensic analysis and machine

learning techniques.

