
I.J. Modern Education and Computer Science, 2016, 9, 12-19
Published Online September 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2016.09.02

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 9, 12-19

Implementation of a Simple Document

Repository System

Kazuaki Kajitori

Department of Fisheries Distribution and Management, National Fisheries University, Shimonoseki, Yamaguchi, Japan

Email: kajitori@fish-u.ac.jp

Kunimasa Aoki
Department of Fisheries Distribution and Management, National Fisheries University, Shimonoseki, Yamaguchi, Japan

Email: aoki@fish-u.ac.jp

Abstract—Document repository systems have been

developed actively for decades and have become quite

popular on the internet. Now we can recognize several

typical types of document repositories and find the full-

text-search functionality as a useful search method for

document repositories, so we think it has some

significance to show as a mile stone an implementation

scheme which covers basic types and functionality of the

current document repositories which have full-text-search

functionality.

The basic functions covered by our scheme are: to

create, read, update, delete (so called CRUD) of

documents and a session control with an optional

authentication. We present a description for each part of

CRUD of our scheme.

We implemented a library according to our scheme and

developed small document repositories using the library.

Our repository library and its applications form web

applications whose script language is Perl. The

implementation loosely follows the MVC (Model, View,

Control) model for modularity and each MVC part of the

library and its application named TEST are described.

We also present a description of another application of

our library which the author is conducting in the

department he belongs to. We show some views of these

applications.

We conclude that our library works fine for the needs

of building small repositories in a short time.

Index Terms—Document Repository, Full-text-searching,

Web application.

I. INTRODUCTION

Document repository systems have been developed

actively for decades since the web technology became

available and have become quite popular on the web.

Many universities and institutes have constructed their

site repositories which serve research papers and research

data produced at their sites and others (for instances

[1][2]). The concept 'document repository' also includes

code sharing sites like GitHub [3] and open online paper

archives like arXive [4]. For sites like GitHub and

arXive, it is necessary for users to be able to upload their

files onto the sites.

Experiencing full-text searching on sites like Google

and on document repository sites over the world, we have

noticed that the full-text searching functionality is quite

helpful in searching documents in a large collection. At

the present we have many good choices of OSS full-text-

search engines such as Solr [5] and Elasticsearch [6].

In this paper we focus on a document repository

system with the following features. (1) it uses extensively

OSS so that it is useful to more people who want to

develop their own repositories. (2) it has a full-text-search

function. (3) it pays attention to user uploading, thus has

a user account management. (4) the system is simple and

flexible to fit various needs including the need to build a

small document repositories in a short time.

We hope that proposing a repository system of the sort

is useful to help a plenty of digital resources in

universities and institutes and etc to be used effectively as

those digital resources will get more and more abundant

and may become main resources for study and research in

the near future.

The paper is organized as follows. In the section II we

review some of related works. In the section III we

propose our scheme of a repository system. In the section

IV we present a detailed description of a sample

implementation of the scheme in the section III and in the

section V we present another repository example of

implementing our scheme which is in a practical use. We

state concluding remarks in the section VI.

II. RELATED WORKS

Here we review some of related works. Some of them

pioneered the developments of document repositories and

some of them let us know recent concerns about

improving document repository systems.

As the document repositories have been flourished on

the web, many papers on how to construct document

repositories have appeared [7][8][9][10] [11][12] etc. For

instance, in [7] the authors describe how their famous

DSpace@MIT [1] was introduced and what issues should

be addressed for institutional repositories. DSpace was

first launched in 2002 and since then has been a resource

 Implementation of a Simple Document Repository System 13

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 9, 12-19

of digital research materials for scholarly work taking

place at MIT which now can be recognized as a pioneer

of a typical type of repositories of universities and

institutes. The source code of DSpace was released under

Open Source BSD license and has been adopted by other

universities and institutes for their institutional

repositories. [10] is an empirical case study of adopting

DSpace in National Taiwan University and the authors

describe several modifications and extensions to DSpace

in order to fit their needs for their repository. In [11] the

authors based on their experience of Stanford Digital

Repository (SDR) consider an architecture of 2nd

generation of SDR (SDR2.0). Then the paper focuses on

the technical systems plan and the data specifications for

SDR2.0. These papers suggest important aspects of

repository implementation which implementers of

repositories should consider but these papers do not

present concrete technical descriptions of the way how to

develop their code maybe because their systems are quite

large. The authors think that it is meaningful to present a

simple way of developing a small repository system with

technical details.

III. A SCHEME OF A SIMPLE DOCUMENT REPOSITORY

SYSTEM

Before proceeding concrete implementation of our

repositories we had better to set an abstract scheme for

repositories which makes basic ideas clear through

implementation. We propose a simple scheme of a

document repository system as the following:

A. A panoramic view of the system

The system has a library which provides with a

uniform way of constructing various repositories and

managing them under it. As a document repository

library system, the main part deals with so called CRUD

(Create, Read, Update, Delete) [14] of documents. The

system has a uniform way to control the users' access

which consists of session handling and authentication and

'routing'.

Therefore repositories of the system are implemented

as applications of the library collection stated above. The

library and its application repository most likely

constitute a web application.

Since the system utilizes external databases, the system

must have some abstraction to make it easy to change

those databases (as asserted in [11]).

B. CRUD of the system

We assume that we select some engines for full-text-

searching among those which are considered appropriate

for the following scheme.

For document repositories, 'Creating' in CRUD means

uploading a document file to the server and registering

the document to the full-text-search engine and indexing

it in the engine. The users can select the engines to use

so that the CRUD of the system should be appropriately

abstracted.

Indexing a document is done by the full-text-search

engine. The indexing means to extract words to be

searched from the document and record them in the

database of the engine so the engine can find very quickly

the documents which include the indexed words. This is

just a digital version of the indexing for printed books,

but we don't have to select words to be indexed for

ourselves because today's full-text-search engines like

Solr or Elasticsearch do the job for us. A difference

between the indexing for a printed book and the digital

indexing for a digital text is that the digital indexing is

much faster and can gather much more words (almost all

the searchable words in effect) in the text to be indexed.

We call the searching words in the texts of documents

using this digital indexing 'full-text-searching'.

'Reading' in CRUD for our repositories means

searching documents including the full-text-searching by

the engine and downloading the document file if the user

wants it. 'Updating' is just updating the registration of the

document in the system (in the full-text-searching engine

and in the directories where the document files are stored)

and 'Deleting' are just deleting the document from the

system.

Also we have CRUD functionality for user

administration and session handling. This sort of CRUD

doesn't necessarily use the same database engine as the

document searching uses (for example see the next

section).

We suppose that a user can configure his/her

environments such as the shown fields in each search

result. The configured data are perpetual for each user

account so that the user can enjoy the configuration in the

later sessions.

C. User access control

The access control does the following:

(1) To check the user's eligibility to access the

application (authentication). But authentication is not

mandatory.

(2) To determine user's role for each application

repositories of the system.

(3) To store session data so the user can use them in

the later sessions (only when user accounts and

authentication are used).

The superuser called 'admin' should be able to do the

CRUD operations to all the documents in the system. It

is optional that admin can do the system configuration for

the repository system and the user administration (CRUD

of users) from within the application's interface (the web

interface if the application is a web application).

Each document has a flag showing if it is open to

public which means that everyone can read it and the flag

is set when the document is registered to the repository.

The privileged user called 'uadmin' can do the CRUD

operations to all the documents which he/she created or

are open to public. Other users called just 'user' can do

only READ of CRUD (Searching and Downloading)

public documents. See Table 1.

14 Implementation of a Simple Document Repository System

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 9, 12-19

Table 1. Roles of Users

action user uadmin admin

Search docs △ △ ○

Download docs △ △ ○

Add docs × ○ ○

Update docs × △ ○

Delete docs × △ ○

System admin × × ○

In Table I, a triangle means:

(a) For 'user', the activities are restricted to the public

documents only.

(b) For 'uadmin', the activities are not allowed for non-

public documents except for those he or she registered

and the actions updating and deleting are restricted to the

only docs that he or she registered.

(c) The action 'System admin' (abbrev. of the system

administration) in the table means the system

administration such as system configurations and user

administration. Since web interfaces for 'System admin'

is optional, 'admin' may have to do the jobs using the

system tools for each server.

IV. A SAMPLE IMPLEMENTATION

Now that we have a basic scheme of our repositories

we show a sample implementation of a repository using

the scheme. The sample is first described by an overview

which is followed by the details according to the so called

MVC model.

A. An Overview

We implemented a library collection for repositories in

accordance with the scheme described in the previous

section. We refer this library as repo or repo library

which is used to construct repositories in accordance with

our scheme. We implemented the repo system so that the

repo library and a repository using the repo library

constitute a web application and the web scripts are

written in Perl language. We use Linux as OS and

Apache as the web server and the other software tools we

use are also OSS as shown in the following.

We implemented a repository for demonstration by

using the repo library and we refer this repository as

TEST. We demonstrate the TEST repository on an

internet site [17] which will be maintained with some

improvements.

As designated above, TEST is a web application whose

web scripting language is Perl.

To give an overview of how an application of the repo

library handles its sessions, we show in Fig.1 a UML like

activity diagram for TEST around the session loop.

Fig.1. An activity diagram around the session loop

At each time TEST gets a request from the user, TEST

checks the user's eligibility for the request at the 'Check

Access' node in the diagram. If the check is ok, then

TEST routes the request to some actions of our CRUD

library (in the repo library) and show the next user

interface. See Fig.2 and Fig.3 for interface examples.

Fig.2. A view after login for a uadmin user of TEST

 Implementation of a Simple Document Repository System 15

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 9, 12-19

Fig.3. A view of a search result for a uadmin user of TEST

The Fig.2 is the first screen a 'uadmin' user sees after

login. The Fig.3 is the screen which shows the result of

the search by the query 'repo' which means to search the

documents whose texts include the expression 'repo'. In

these figures, the column 'snippet' shows the matched

word in the query with the text around it in the document.

The last two columns of the search result table show that

in these pages this uadmin user can update or delete only

the document named 'solr.txt' which he/she registered,

which means the other documents in the tables are

registered by other users and set public.

In Fig.2 the search result table is splitted into two

tables by the pager. At the bottom-left of the page there

are links to each of the splitted pages. The maximum

number of rows in the table is user-configurable (in

Fig.2,3 it is 3 but usually more). In these figures, on the

top of each page is a tab menu which has the three tabs

'add doc' , 'logout' and 'config'. If the tab 'add doc' is

clicked, then the page with a form for adding documents

appears. The 'logout' tab is for logging out. If the 'config'

tab is clicked, then the configuring page appears to

configure the search engine and the fields and the

maximum number of rows in the table (and possibly

more).

To show the file structure of TEST, let the base

directory of the application TEST be written as

APP_HOME which is set as an executable directory

under the web home.

TEST is just an application of our repo library which

consists of the files:

APP_HOME/test

APP_HOME/repo/repo_model/*

APP_HOME/repo/repo_crud.pm

APP_HOME/repo/repo_view.pm

APP_HOME/repo/repo_view_template.pm

APP_HOME/template/*

APP_HOME/mylib/mysession.pm

APP_HOME/mylib/mysession/repo.pm

APP_HOME/mylib/myupdown.pm

APP_HOME/mylib/myroutine.pm

APP_HOME/repo/* files constitute the core of our

repo library and APP_HOME/mylib/* files are generic

libraries used in our TEST. APP_HOME/template/* files

are HTML templates used in repo_view_template.pm.

TEST uses these libraries via the Perl program file

APP_HOME/test which controls an access of users and

'routes' users' requests to functions of these library

modules. So we can say Fig.1 is the activity diagram of

the program file 'test'. The file 'test' determines how to

use our repo library and so defines a repository

application of the library. So we call a file like 'test' an

'app' file of our library.

The structure of 'test' is shown as follows;

(we only show the comments.)

#!/usr/bin/perl

Initial set up

 # Set a session object

 # Check access

 # Set an object of the full-text-search engine

 # Set other session data

Routing

 # Logout

 # Search

 # Add docs

 # Update docs

 # Delete docs

 # Configurations by users

 # Exception handling

Subroutines

The 'Set a session object' part includes setting a CGI

object for helping handle the web session and the

application specific information such as the categories of

documents. If you don't need user authentication, then

just comment out or delete the 'Check access' part which

only calls the check_access() method in mysession.pm

module in just one line (so the change is easy). The part

'Set other session data' includes setting the fields and the

maximum number of rows to be shown in a search result

table which the user configures at the part 'Configurations

16 Implementation of a Simple Document Repository System

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 9, 12-19

by users' in the 'Routing' part. For more details of the

file 'test', see 'Model part' and 'Controller part' in the

following.

We can write another repository application by just

writing another app file similar to 'test' which is as small

as having just more than 250 lines and setting a database

in the full-text-search engine (which we will explain

later).

For the modularity of our repo library, we loosely obey

an MVC (Model, View, Controller) architecture for a

web application (for example [18]).

B. Model part

The model part includes repo_model class files:

repo/repo_model/solr.pm

repo/repo_model/elastic.pm

etc

Each file under the directory repo_model executes

CRUD of the full-text-search engine like Solr and

Elasticsearch. Solr and Elasticsearch both have HTTP

API. For web applications HTTP API is quite useful

because HTTP API is certainly available for a web

application (the web server and the web scripting

language you choose both talk HTTP) and so you have a

convenient web browser interface to the full-text-search

engines and you don't need a driver for the full-text-

search engines written specifically for the web scripting

language you want to use. Here is a Solr example of

HTTP API which deletes the document with id=abc :

SOLR_URL/update?commit=true&stream.body=<dele

te><id>abc</id></delete>

(Here, SOLR_URL is the Solr server url for HTTP

access which usually has the port 8983)

So far we have implemented solr.pm only as the

repo_model class files and elastic.pm is just the same as

solr.pm except for the module name.

For Solr, we adopt Solr5.4 for enough features and

stability. Solr manages each database as a 'core'. We set

a core 'test' for TEST in Solr and define the fields for the

core test as in Table 2.

The fields could (should?) be chosen so that they fit to

the sort of documents the repository assumes. But in

many cases we can not decide precisely the types of

documents we will accept to the repository. So the above

list of fields are quite generic and we think that this

generic list fits many cases of repositories.

We set each of these fields be indexed in Solr. The

field type "text_general" means that the indexing uses an

analysis typically suitable for English texts. The field

type "text_ja" means that the indexing uses a

morphological analysis [15] for Japanese texts. For

Japanese texts there is also a field type “text_cjk” which

uses n-gram [15] analysis. The morphological analysis is

one decent way to get words to be indexed from Japanese

texts. The type 'text_ja' could be used for texts in other

languages like English. The field "year" is meant to be

the year the document was made.

Table 2. Solr fields for TEST

field name type multivalued

id string FALSE

title text_ja TRUE

author text_ja TRUE

category text_ja FALSE

year int FALSE

subject text_ja FALSE

description text_ja FALSE

comments text_ja FALSE

keywords text_ja FALSE

links text_general FALSE

content_type string FALSE

text text_ja TRUE

resourcename text_ja FALSE

last_indexed date FALSE

public boolean FALSE

resgisterer text_general FALSE

The field 'category' determines which category the

document belongs to. There should be a selection for

category. For TEST we set the selection to be 'Perl

program', 'Perl module', 'article', 'other' because sample

documents in TEST are files related to the repo library.

The selection can be set for each application of the repo

library in its 'app' file. The field “public” determines

whether the doc is open to public or restricted to the

registerer of the document and the superuser admin and

so the type of the field is boolean which takes 'TRUE' or

'FALSE' as value.

User data (account names, password, configuration

data by users etc) are stored in an RDB (not one of the

full-text-search engines) for some reasons. One reason is

that we are accustomed to RDB than full-text-search

engines for tasks like administrating user data. Another

reason is that at least for now the security does not seem

to be a primary concern for full-text-search engines. For

example, Solr5.4 does not have security controls on the

web admin interface other than the Basic Authentication.

We use MariaDB as an RDB engine and define the

database 'user' which has the tables created by SQL's

CREATE sentences of MariaDB as follows.

CREATE TABLE `account` (

 `account` varchar(20) NOT NULL,

 `password` varchar(20) NOT NULL,

 PRIMARY KEY (`account`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE `app` (

 `name` varchar(20) DEFAULT NULL,

 `code` int(11) NOT NULL,

 PRIMARY KEY (`code`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE `repo_role` (

 Implementation of a Simple Document Repository System 17

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 9, 12-19

 `account` varchar(10) NOT NULL,

 `app_code` int(11) NOT NULL DEFAULT '0',

 `uadmin` tinyint(1) DEFAULT NULL,

 `admin` tinyint(1) DEFAULT NULL,

 PRIMARY KEY (`account`,`app_code`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE `session` (

 `session_id` varchar(40) NOT NULL,

 `account` varchar(10) DEFAULT NULL,

 `login_datetime` datetime DEFAULT NULL,

 PRIMARY KEY (`session_id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

CREATE TABLE `session_data` (

 `account` varchar(10) DEFAULT NULL,

 `name` varchar(20) DEFAULT NULL,

 `value` text,

 `dumped` tinyint(1) DEFAULT '0',

 KEY `account` (`account`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

The tables 'account' and 'session' are used for

authentication. The tables 'app' and 'repo_role' are used

to determine the roles of users for each application of the

repo library. The table 'session_data' stores user

configuration data. Since data in the table 'session_data' is

perpetual in the sense that it is not lost when the session

ends. So the name of the table could be 'user_data' or

something but we chose the name because it means the

data be valid through the sessions.

As in [13], authentication during a session (after login)

is done by checking the (account,session_id) pair in the

table 'session' being the same as the cookie pair from the

client. Also as suggested in [13], for security we delete

the record on the 'session' table on logging out and delete

the uploaded document file in APP_HOME/repo/doc on

deleting documents.

As in [16], session data are kept during a session. In

[16], session data are connected to the session id using

the supergloval $_SESSION of PHP. In our case, the

(account, session_id) pair is saved in the table 'session'

but other session data are saved in the table 'session_data'

and connected to the user 's account (not to the

session_id) so that they can be used in the later sessions.

The table 'session_data' can be used typically as the place

storing user configuration data such as the choice of full-

text-search engine or the choice of fields or the maximum

number of rows to be shown in the search result tables.

We can save almost any data structure of Perl as session

data by serializing data to a string using a Perl module

like Storable[20] or Sereal[21]. If the field 'dumped' in

the table 'session_data' has the boolean value TRUE,

then the data in the field 'value' is a serialized string so

has to be restored (de-serialized) by the same tool (e.g.

Storable, Sereal) we use to serialize it.

C. Controller part

The controller part is carried out by two files. One is

repo/repo_crud.pm which sends user requests to the

CRUD functions of the model part and get responses. The

add method in repo_crud.pm transforms the HTTP form

data into JSON data and pass it to the corresponding

method of repo_model::* class (many full-text-search

engines accept JSON data when adding a document) and

saves the uploaded document file into a directory under

APP_HOME/repo/doc. Similar for the update method.

The delete method just calls the corresponding method of

repo_model::* and deletes the uploaded document files.

The search method transforms the query if necessary and

send it to the corresponding method of repo_model::* and

get the result in JSON format which is transformed into

HTML table by the methods in repo_view.pm.

The other file in Controller part is the app file 'test'

which like we said before is called at each access of the

user and do the following jobs:

1. Session handling, including authentication if needed.

2. Routing which calls actions of repo_model or

repo_crud in response to HTTP requests from the user.

The URL to access the repository TEST is

APP_WWW_HOME/test/PATH_INFO where

APP_WWW_HOME is the web home of TEST (which is

the same directory as APP_HOME for TEST) and

PATH_INFO should be some concrete string of letters

which is used for the routing. For example if

PATH_INFO is the empty string, then the app file 'test'

calls actions to show the search form and the search result

table for the empty query (Fig.2). The routing is

controlled also by 'action' parameter designated by <input

type="hidden" name="action" value="***"> tag which

can be used in the 'app' file instead of PATH_INFO for

routing.

D. View part

The view part is handled by the files repo_view.pm

and repo_view_template.pm.

The module repo_view.pm generates a search form and

add, update, delete forms and a search result table in

HMTL format. Then each of those HTML data is

handed over to a corresponding method in the module

repo_view_template.pm where the HTML data is poured

into an appropriate template in the directory

APP_HOME/template and an HTML page is generated

by the Perl module HTML::Template::Pro. HTML

templates are used to make it a lot easier to generate

similar HTML pages at times.

For example, right after the user logins we show a page

with a search form and the search result table of the

empty query "" (Fig.2) where we use an HTML template

APP_HOME/template/search.tmpl and

'print_form_result' method in the repo_view_template

module for which the search form is made by the

method 'search_form' and the search result is HTML

formatted by the method 'search_result' in the repo_view

module.

V. A PRACTICAL IMPLEMENTATION

The department of the college the authors belong to is

now operating a repository system which was developed

18 Implementation of a Simple Document Repository System

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 9, 12-19

in the way similar to TEST in the previous section.

Actually, this repository uses a slightly old version of our

repository library and more stable than TEST. We refer

this system as SOTU which was named after japanese

word 'sotugyo' meaning graduation and the purpose of

our repository was to provide the faculties of our

department with an easy access to graduation theses of

the students of our department. Before operating SOTU,

we could read the theses in a book style in the library of

our college and anybody can still read them there. So we

decided not to set SOTU open to public. SOTU could be

easily configured to be open to public as described in the

previous sections but for the time being we use the login

scheme because we take some security considerations

about digital data into account and theses are still open in

the college library. (Of course the login scheme is not

only for security but also useful to maintain user data as

described in the previous sections.)

The theses in our repository SOTU are written in

Japanese and stored as PDF files. A search view looks

like Fig.4.

Fig.4. A search view of SOTU

Fig.4 is a view for 'user' and so 'update' and 'delete'

columns are invisible. Actually for SOTU there are just

one 'user' and one 'admin' which are enough for our

purpose. Namely the first author adds and updates and

deletes theses when necessary and the other faculties in

the department are just comfortable to be just 'user'. In

Fig.4, 'config' tab is invisible too but this can be made

visible by using the new version of the repo library we

use for TEST. In Fig 4, the field 'year' represents the year

the thesis was written. The fields for the full-text-search

engine of SOTU is set to be the same as TEST. SOTU is

a thesis repository and mono-categorized and so we could

set a single selection for the category field but we set it as

Paper', 'Thesis', 'Report', 'Other' for possible future

purposes. As in TEST, the only engine we can use now

in SOTU is Solr and Solr does a good job for the both

repositories.

VI. CONCLUSIONS

The library repo works fine for TEST and SOTU and

we think our small repo library is quite convenient to

build a repository in a short time.

The digital resources are increasing their significance

and amount compared to non-digital resources. The

library repo can help small organizations like colleges or

each department utilize their digital resources.

Repositories built with the repo library can allow all users

to upload documents and the repo library can be

developed further so that it will be able to support some

easy-to-use e-portfolio [19] for students and faculties in

the future.

The library repo can manage many repository

applications under it. So it is more convenient to have a

simple interface to browse and select repositories under it

which we don't have now. We don't have any admin

interfaces to administrate from within the repo

applications other than CRUD of all the documents. Web

interfaces for 'admin' to manage applications'

configuration and others is an optional feature of our

scheme described in the section II. But building web

interfaces for administration needs an extreme care to

security to prohibit non-eligible persons from accessing

the admin interfaces. So we will take time to implement

those 'admin' interfaces in the future.

 Implementation of a Simple Document Repository System 19

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 9, 12-19

REFERENCES:

[1] DSpace@MIT, https://dspace.mit.edu/.

[2] Stanford Digital Repository,

https://library.stanford.edu/research/stanford-digital-

repository.

[3] GitHub, https://github.com/.

[4] ArXiv, https://arxiv.org/.

[5] Apache Solr, http://lucene.apache.org/solr/.

[6] Elasticsearch, https://www.elastic.co/.

[7] P. Baudoin, M. Branschofsky, Implementing an

Institutional Repository: The DSpace Experience at MIT,

Science & Technology Libraries, Volume 24, Issue 1/2,

June 2004, p.31-45.

[8] L. Sokvitne, J. Lavelle, Implementing an Open

Jurisdictional Digital Repository - the STORS Project, D-

Lib Magazine, Vol.10, 6, 2004.

[9] M.Borchent, J. Richardson, G. Mitchell, Implementing

HarvestRoad Hive Digital Repository, Queensland Univ.

of Tech. ePrints Archive, 2005.

[10] C. Tsai, J. Hsiang, H. Chen, Implementing an institutional

repository for digital archive communities: experiences

from National Taiwan University, Proceedings of the 2006

international conference on Dublin Core and Metadata

Applications: metadata for knowledge and learning.

Dublin Core Metadata Initiative, 2006.

[11] T. Cramer, Designing and Implementing Second

Generation Digital Preservation Services: A Scalable

Model for the Stanford Digital Repository, D-Lib

Magazine, Vol.16, 9/10, 2010.

[12] bepress, Building a Framework for IR Success: A

Roadmap, Research on Institutional Repositories: Articles

and Presentations, 2014.

[13] I. Purushottam, V. Thakare, Designing Efficient Security

Technique for Data Storage in Cloud Computing, IJCA

Proceedings on National Conference on Recent Trends in

Computer Science and Engineering, MEDHA 2015(4).

[14] CRUD,https://en.wikipedia.org/wiki/Create,_read,_update

_and_delete

[15] Steve Cohen, Morphological Analysis searched for you,

http://www.basistech.com/whitepapers/n-gram-vs-

morphological-analysis-EN.pdf, 2011.

[16] Y. Jiang, Zhan Huang, Zhanhong Huang, Design and

Implementation of a General Web-based Course Teaching

Management System, I.J. Education and Management

Engineering, 2012, 11, 1-7 (2012).

[17] http://mantiq.fish-u.ac.jp/pp/test

[18] MVC, https://zeekat.nl/articles/mvc-for-the-web.html

[19] e-portfolio,

https://en.wikipedia.org/wiki/Electronic_portfolio

[20] Storable, http://search.cpan.org/~ams/Storable-

2.51/Storable.pm

[21] Sereal, http://search.cpan.org/~yves/Sereal-

0.330/lib/Sereal.pm

Authors’ Profiles

Kazuaki Kajitori, Ph.D, is a professor of

the Department of Fisheries Distribution

and Management at National Fisheries

University in Japan. In teaching, he has

been in charge of classes of mathematics

and statistics and computer sciences. In

his classes, he has been utilizing IT

methods extensively. He wrote online texts and courses' home

pages and conducted many online exams and let students do

online exercises as the preparation of online exams. In research,

he has studied mathematical logic which led him computer

related fields like data mining and databases and e-learning. He

has developed several web applications including one treated in

this paper.

Kunimasa Aoki is an associate professor

of the Department of Fisheries

Distribution and Management at National

Fisheries University in Japan. In teaching,

he has been in charge of classes of

mathematics and statistics and computer

sciences. In his classes, he has been

utilizing IT methods extensively. He wrote online texts and

courses' home pages and conducted many online exams and let

students do online exercises as the preparation of online exams.

In research, he has studied mathematical logic, especially theory

of computation which led him computer related fields like data

analysis. He co-authored papers of other fields in which he is in

charge of data analyses.

