
I.J. Modern Education and Computer Science, 2017, 1, 1-14 
Published Online January 2017 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijmecs.2017.01.01 

Copyright © 2017 MECS                                                      I.J. Modern Education and Computer Science, 2017, 1, 1-14 

K-12 Curriculum Research: The Chicken and the 

Egg of Math-aided ICT Teaching 
 

Pia S. Niemelä 
Tampere University of Technology/Pervasive Computing, Tampere, Finland 

Email: pia.niemela@tut.fi 

 

Martti Helevirta 
Tampere, Finland 

 

 

Abstract—In this article, we examine the relationship in 

K-12 education between Mathematics and Information 

and Communication Technology (ICT). The topic is 

reviewed from various angles, based on both a literature 

study and by directly contrasting the Finnish National 

Curriculum (FNC) of 2014 (effective since autumn 2016) 

with the National Curriculums of the UK (UKNC)[3] and 

the US (USCC)[2]. 

Finland has chosen a cross-curricular approach to 

developing the new curriculum for teaching ICT, which 

involves integrating it mainly with math, but also with 

handicraft, and various other subjects. This is in direct 

contrast to the UKNC, for example, which teaches ICT as 

its own field, to be taught through the Computing and 

Design/Technology syllabi. This poses a question for this 

research study, namely, how well do teaching math and 

ICT fit together? The first step towards answering this 

question is to establish which ICT concepts and domains 

are directly supported by math and which are left 

uncovered. As a theoretical research paper, the rationale 

for the inter-connectedness of math and ICT is based on 

the work of many researchers. To illustrate our 

comparison of the two subjects, in this article we 

concentrate on clarifying math’s and ICT’s shared 

concepts of variable and function.  

The results of this study indicate that transfer between 

the subjects happens bi-directionally, which might 

suggest that teaching ICT in combination with particular 

branches of math, notably algebra would be of benefit to 

our students. In order to pursue this approach, extra 

modules for logic, basic linear algebra and set theory 

would also be required. The fundamentals of basic 

algebra, the function and the variable, and their 

significance as synthesizers in both algebra and ICT are 

highlighted. In addition, the use of calculators as function 

tutors is explored in an instructional classroom setting. 

The conclusion of this study is that although there are 

certain benefits to the currently chosen approach of 

teaching ICT in combination with mathematics, these are 

not enough to outweigh the advantages of adopting a 

more versatile dedicated ICT syllabus, such as that 

provided by the UKNC.  

 

Index Terms—ICT curriculum comparison, computing 

fundamentals, variable, function, math-aided ICT, 

transfer, computational thinking 

 

I. INTRODUCTION 

Being able to handle a computer and the internet is not 

only the new norm, but nowadays it is a new necessity. 

Nearly all social and commercial enterprises now conduct 

their business on-line, and the face-to-face meetings 

which our parents went through in order to, for example, 

pay a utility bill or even take out a bank loan are now rare. 

Our society expects and needs every independent citizen 

to be able to function on the internet. ICT has become a 

basic life-skill, and as such it is essential that we 

incorporate ICT skills into our education system at an 

early a stage as is practicably possible.  
All of this necessitates that our schoolchildren have to 

be able to use the net with confidence. In order to be able 

to follow any kind of further education (FE) our school-

leavers have to be able to search for information on the 

net instead of an encyclopedia. Nearly all students have 

to consult e-books and e-articles, which can be ordered at 

low cost, or are even free to read online, unlike in the ‘old 

days’ when a student’s budget for buying study books 

often exceeded their budget for food.  
Much has been made of the negative social effects of 

the net, but encouraging our future citizens to utilize the 

net, and giving them all the skills to do so could actually 

have significant social benefits, let alone the economic 

ones.  People who can use Instagram or Pinterest to store 

their favorite pictures can meet like-minded people (albeit 

virtually), which can encourage them to expand their 

interests and form bonds with others.  The same is true 

for researchers, i.e. Google Scholar, Mendeley and 

RefWorks are not only used to search for and store 

interesting articles for further reading, but they can also 

lead researchers to establish contact with other 

researchers, which gives another facet to the concept of 

networking.  
The demand for an expansion of ICT education at all 

levels of the FNC is clear [1]. The gradual immersion of 

ICT in all areas of society and the need to facilitate new 

innovation and productivity require this [7]. We currently 

have a shortage of skilled manpower to fill the 



2 K-12 Curriculum Research: The Chicken and the Egg of Math-aided ICT Teaching  

Copyright © 2017 MECS                                                      I.J. Modern Education and Computer Science, 2017, 1, 1-14 

employment needs of our burgeoning ICT industry, so we 

need to immerse ICT into all areas of society in order 

bring about a new era of innovation and productivity. 

Two recently published UK House of Commons’ reports, 

The Digital Skills Crisis [8] and The Digital Skills Gap 

[18] in fact quantified the cost of the shortage of skilled 

ICT personnel by stating that the digital skills gap costs 

the British economy £63 billion a year in lost GDP.  
In the U.S., the act ‘No Child Left Behind’ (NCLB) 

was continued in 2015 by the renewed congress bill 

‘Every Student Succeeds Act’ (ESSA). Its goal is to 

leverage the affordability and quality of education, 

especially in STEM subjects. The acts stipulate the 

necessity of improving access to the wealth of freely 

available information which the net has given us by 

equipping schools with up-to-date ICT devices, high-

speed connections and with 100,000 highly-trained new 

STEM teachers. In accordance, the STEM education 

coalition is advocating STEM education as a national 

priority. The economic justification for this is 

summarized in its one-pager [37] that states, for instance, 

that “60 percent of U.S. employers have difficulties 

finding qualified workers to fill vacancies in their 

companies”, and ”Jobs in computer systems design and 

related services – a field dependent on high-level math 

and problem-solving skills – are projected to grow 45 

percent between 2008 and 2018”.  
In Finland, the strategy for the development of the 

information society 2007-2015 emphasizes good ICT-

skills for accessing services, for increasing overall 

productivity and for renewal. However, our industrial 

base is currently going through a period of upheaval as it 

adapts to the stagnation of economy caused by the fall in 

Nokia’s market share, and turmoil in the paper industry. 

This has led to structural changes in the nature of our 

economy, and in some cases, to massive layoffs of skilled 

ICT personnel as well. Because we currently have this 

pool of unemployed ICT-trained personnel there is 

certain reluctance on the part of our economic planners to 

increase the provision of ICT. Rather, the National 

Digital Agenda of 2011-2020 emphasizes of the societal 

impact of ICT, such as organizing public services for 

improving sustainability, transparency and civic 

participation, where social networking contributes to 

strengthening the dialogue between the public and private 

sector. According to this agenda, ICT should be an 

integral part of education. From the earliest age, well-

designed digital services and learning materials (e.g. 

games and simulations) should be developed and 

deployed, and distance learning options should be 

provided for students living in remote areas. 
In addition to individual countries setting out their own 

policies for the promulgation of ICT, several international 

coalitions and organizations, such as the EU and the 

OECD, have stressed the importance of ICT education. 

The EU states that shortages of e-skills in the European 

workforce will result in an excess demand for ICT 

practitioners. In their recent visionary reports in 2016, 

European Committee foresaw the Digital Single Market 

(DSM) growing to its full potential. This would be based 

on common ICT standards and initiatives, such as the 

eGovernment Action Plan, the European Cloud Initiative, 

Public Private Partnerships and the Fourth Industrial 

Revolution. This revolution will utilize the potential of 

integrated cyber-physical systems and technologies in 

which Finnish research and industry is already leading 

the way. We must equip our future workforce with the 

skills and confidence to operate in the world of big data 

and the Internet of Things. Although the EU has 

facilitated the growth of ICT education by funding 

research with its Horizon 2020 programs, many EU 

countries lag behind these initiatives and increasing 

differences in ICT skills are slowing down the 

development of EU-wide standards and procedures. For 

example, as the administrator of the EU-wide PISA tests, 

the OECD is in a unique vantage point for reviewing the 

education systems of various countries. In this context, it 

is worth noting that the OECD’s recent report [28] makes 

it abundantly clear that all students first need to be 

equipped with basic literacy and numeracy skills in order 

to be able to participate fully in the hyper-connected, 

digitized societies of the 21st century. 
This article is not only concerned with showing the 

importance of teaching ICT in schools, but also aims to 

show the importance of ICT for all members of society. 

Therefore, we first examine the relevant pedagogical 

literature aimed at justifying combining ICT with math, 

as this is the approach currently favored by the Finnish 

education authorities for the (new) Finnish curriculum. 

The idea is to teach ICT as a cross-curricular subject, 

starting with building hands-on assembly kits and 

electronic experiments in craft subjects at the primary 

school level. However, the bulk of the ICT syllabus will 

be integrated with math. Therefore, the initial and 

primary ICT learning goals, i.e. the generic requirements 

for algorithmic thinking and the ability to write simple 

command sequences, are inserted into the math syllabus. 
In the following chapters we will go through the ICT 

and math syllabi in more detail, viewing their potential as 

a combined syllabus, and as separate ones. In the Results 

chapter, we will evaluate and compare the two 

approaches, either math-aided ICT or ICT as a separate 

subject. This paper’s contribution to the field of 

curriculum research is its focus on the differences 

between the reviewed math and ICT syllabi. The paper 

highlights the expected benefits of each approach to 

teaching ICT, taking into account not only the knowledge 

gained from academic research, but also ICT curriculums 

of other countries.  The paper concludes with a summary 

of our findings and some recommendations for the future. 

A. Research Question 

This study asks:  

 
 How does ICT fit in with the mathematics 

curriculum? 

 What are the fundamental concepts of computer 

science, and how do they interact with the 

corresponding concepts of math? 



 K-12 Curriculum Research: The Chicken and the Egg of Math-aided ICT Teaching 3 

Copyright © 2017 MECS                                                      I.J. Modern Education and Computer Science, 2017, 1, 1-14 

 What ICT topics are left uncovered in the 

current FNC, when compared with the discrete 

computing curriculum of the UKNC? 

 

II. RELATED WORK: PEDAGOGICAL CONSIDERATIONS 

From the pedagogical standpoint, combining math and 

ICT is well justified and can be expected to have a 

positive effect on the learning of both subjects. The 

following sections will describe the links between ICT 

and math in terms of transfer, explicit abstraction, and the 

areas in which ICT can be used as a scaffold for learning 

math skills, and vice versa. 

A. Transfer of Learning 

Transfer of learning is based on the principle of 

transferring a skill from one domain to another [36], in 

our case from math to ICT and vice versa. Learning 

Transfer explains why learning by analogy is easy. For 

example, the driver of a car has many of the skills needed 

to drive a truck, although jumping into the cockpit of an 

airplane would still be quite a challenge. Successful 

transfer correlates closely with the current level of 

acquired expertise: the greater the expertise, the more 

flexible are one’s mental models for adopting new 

knowledge. An expert finds correspondences and 

analogies by exploiting previously constructed schemas, 

identifies without extraneous effort the significant 

features of new material and hence learns easily in new 

situations, whereas a novice is stuck with the amount of 

data and concentrates on irrelevancies. According to 

venerated model building theories, such as Piaget’s 

genetic epistemology [31], learning is perceived as 

modifications to the existing schemata; termed as 

assimilations, if little or no reorganizing is needed, and as 

accommodations, if the existing schema needs re-

construction. In defining the concept of expertise, Gestalt 

psychologists (e.g. [21]) refer to the insight experience 

that helps one find the right solutions intuitively and 

enables the subject to predict outcomes in new situations.  
Transfer may occur either laterally or vertically [17], 

implying hierarchical learning steps. Transfer can also be 

near or far [30] within one nearest domain or extended to 

other further domains. Lateral transfer is more likely to 

occur and quicker to perform than vertical. Transfer 

which occurs at only one level is lateral. For example, in 

math, stepping from addition to subtraction only involves 

a small cognitive gap, whereas jumping to reordering the 

equation is a significant step. In pedagogic terms, one 

level is called a “learning set”, and proper and robust 

learning means progressing consistently from one level to 

another. Stepping to the next level requires complete 

mastery of the previous level, in which case, the 

subsequent vertical transfer can be made without too 

much difficulty. If sudden vertical jumps are made in 

learning, however, the variation in learning outcomes 

among the students grows, and poorer students will suffer.  
There are two options for fostering successful learning 

transfer, and they have been described as the low road 

and the high road of education. The low road prescribes 

strengthening routines by iteration, as a result of which 

responses develop to become more reflexive and 

automatic. The high road means mindful and explicit 

abstraction and an active search for connections [30]. In 

teaching and learning, this requires that teachers should 

explicate the underlying principles and point out 

connections to prior knowledge. As for the learners, they 

should become more aware of concepts, their relations, 

and ultimately, they should metacognitively recognize the 

necessity of making associations in order to enable 

deeper learning. Nowadays, in Finland at least, explicit 

abstraction is the accepted approach to mindful, 

conceptual elaboration which fosters learning transfer. 
Transfer has been studied in the context of learning 

new languages. As a base language, the usefulness of 

teaching Latin is recognized. In addition to the positive 

correlation between knowing Latin and learning 

Romance languages [19][35], the favorable effect also 

applies to learning other, linguistically unconnected 

languages. This shows that if learning transfer is 

successful, a student is capable of finding the common 

underlying conceptual basis of different topics [17]. 

Finding such analogies requires a certain level of 

intellectual maturity at which the student is able to 

elaborate the material conceptually in order to reach a 

deeper understanding. In this respect, a positive 

correlation between ICT and mathematics does appear to 

exist, so learning transfer is a central theoretical concept 

of this study. 

1) Transfer between ICT and Math  

The transfer of learning between languages is 

analogous to that of math and ICT. As Dijkstra [10] 

claims, ‘Programming is one of the most difficult 

branches of applied mathematics’. Syslo and 

Kwiatkowska [38] argue that discrete mathematics is 

central in developing algorithmic thinking, which is one 

of the key skills in ICT, whereas Flatt in the panel 

discussion [42] states that, in fact, programming is an 

extension of algebra. It has long been recognized that 

good math skills are helpful in learning ICT. Conversely, 

ICT is known to benefit algebraic, logic and problem-

solving skills needed in math. The transfer from ICT to 

math is straightforward. For example, a student trying to 

master the basic concepts of function and variable in 

algebra, would be helped if he can practice with an 

interactive ‘shell’ or programming environment and 

writing small programs. On a larger scale, programming 

means solving problems by dividing them into smaller 

solvable elements, often implemented as functions, which 

is similar to problem-solving in math. 
Hello World! Usually, becoming acquainted with a 

programming language is begun with this brisk greeting: 

a programmer calls the simple print function and the 

computer shows the greeting on the screen. One can still 

obtain a lot of information from this short first meeting, 

such as, whether the main() function was needed, how 

parameters were given, how commands were finished, 

whether indents were needed, how errors were 

communicated to the coder etc. “Hello World!” is also 



4 K-12 Curriculum Research: The Chicken and the Egg of Math-aided ICT Teaching  

Copyright © 2017 MECS                                                      I.J. Modern Education and Computer Science, 2017, 1, 1-14 

representative in illustrating the very fundamentals of 

coding. In most languages, the command drawing the text 

on the screen, i.e. print(), is a built-in function that is 

called with a text string as a parameter. The parameter is 

handled as an anonymous variable instantiated for the 

duration of the function call, after which it is passed to 

the function and then destroyed. Even if it is not apparent, 

passing a string parameter gives the first glimpse of a 

variable. Meeting the profoundest programming 

fundamentals, the function and the variable, even in the 

simplest test program, is an achievement that underlines 

the importance of these two concepts. Coincidentally, 

they happen to be the basic concepts of algebra as well. 

In the section Variables and functions as common 

fundamentals, we analyze their importance in more detail. 
Hello Algebra! Among the syllabus areas, students 

struggle most with algebra and functions [23]. Instead of 

plainly giving an answer to a problem, a student should 

examine the properties of a function, such as gradients, 

maxima and minima. Progressing gracefully anticipates a 

shift of paradigms from the arithmetic to algebraic. In 

algebra, not only is the concept of a function causing 

problems, but also getting the variable is difficult. As a 

surrogate concept, the unknown is used as a bridge in 

order to learn the concept of the variable. At primary 

level, the unknown, often represented as a gray box, 

question mark or an empty space in a calculation, is at 

secondary level replaced with ‘x’. However, the unknown 

unlike the variable, is understood as a static value, which 

does not change after it has been figured out. The relation 

of x and y, i.e., a function y = f(x), and analyzing its 

properties both algebraically and graphically, is the new 

core. With a function “machine” each input of a new x 

value will produce one (and only one) output value of y. 
Multiple representations serve as a cognitive aid to 

learning by providing a means to switch the point of view. 

Functional thinking can be defined as a type of finding a 

relation between two varying quantities; hence it has its 

applications in science, especially physics, the core of 

which is to depict the laws of nature. Rakes et al [33] 

have studied the challenges of developing the algebraic 

thinking, and they have found that especially symbolic 

notations and abstract reasoning are causing problems, 

and that students think that they are not properly prepared 

for making the headway in abstract thinking and 

generalizations. Rakes recommends conceptual instead of 

procedural learning for the sake of better transferability 

that would result in more flexible learning.  
Wilkie [44][45][46] discusses the challenges of 

functional thinking and promotes gradual development by 

using multiple presentations and bridging arithmetic and 

procedural knowledge more cautiously. For the primary 

school, Wilkie has illustrated a pathway of 

generalizations of sequences as a preparation for algebra; 

these exercises are labelled pre-algebraic. Development 

steps include figuring out patterns out of geometric 

sequences, growing these patterns by defining next items, 

and visualizing the increase of amounts. In 

generalizations, it is important to gradually grow 

recursively step-by-step to defining the n
th

 term that 

determines the relation and general solution. In sequences 

n implicitly represents a variable. In addition, Wilkie 

emphasizes the linguistic means of describing problems 

by using pronumerals. By a pronumeral she means the 

verbose name of a variable in contrast to one letter 

notation allowed in math. The pronumeral may be called, 

for instance, number_of_tiles. This kind of naming 

complies with ICT coding conventions. In addition to 

textual representation, also the visual representation 

provides a beneficial view of the function. The graph 

gives lots of information for finding the solutions and 

about the behavior of the function, e.g., the maxima and 

minima. In addition, the general knowledge of 

polynomials (continuity, the dominance of the greatest 

degree) and rational functions (optional discontinuities 

and asymptotes) helps in depicting the nature of the 

function.  

2) Transfer between ICT and other subjects 

Deep as the linkage between math and ICT might be, 

the rigorous mastery of one’s mother tongue is a 

prerequisite for graceful performance in academics 

overall. Similarly, reading disability predicts disabilities 

in other subjects and in math, and in the light of this 

comorbidity, poor performance in ICT is to be expected 

[47]. In addition to the one’s mother tongue, knowledge 

of the English that constitutes the base for computer 

languages is an advantage. 
The logic of a sentence in verse is to be parsed before 

understanding algebraic notations in symbols. 

Philosophers dating back to Aristotle have regarded 

language as the source of logic and creativity. The task of 

education would thus be to stimulate all the faculties and 

nourish young minds. In addition to logic contained in 

one sentence, constructing a plot or chain of arguments in 

factual writings should form a logical path. At some point, 

logic has been taught as part of the optional subject of 

philosophy - however, logic overlaps also with language 

and math. As a scaffold of improving logic, a teacher 

could introduce new tools, such as argument mapping [9], 

which belongs to the same mapping family together with 

mind maps and concept maps. 
Modeling and abstraction skills are beneficial for 

‘learning to learn’ purposes. In studying academic 

subjects, concept mapping might become a handy tool. 

Strengthening conceptual learning is never a waste of 

time. In general, study skills are worth investing in: 

knowledge can change and things tend to be easily 

forgotten, but study skills remain. Metacognitive skills 

refer to a student's awareness of his means of learning 

and allow him to plan good strategies for learning, which 

implies that a student possesses strategies to choose from, 

such as concept mapping. However, learning to learn 

should be a cross-curricular goal involving all academic 

subjects. 
In terms of ICT suitability, other STEM subjects 

besides math are also fit for ICT applications, such as the 

simulations and videos of science experiments. For 

example, science demonstrations are sometimes high risk, 

require expensive ingredients, or happen too quickly to be 



 K-12 Curriculum Research: The Chicken and the Egg of Math-aided ICT Teaching 5 

Copyright © 2017 MECS                                                      I.J. Modern Education and Computer Science, 2017, 1, 1-14 

clearly perceived. With simulations and videos, more 

cognitive capacity is available to the student to make 

observations, and an experiment may be repeated as 

many times as feasible. STEM has been recently 

enhanced as STEAM, art included. In the discipline of 

handicrafts and craftsmanship, learning happens through 

doing by hand, which is seen as a way of leveraging 

innovation and creativity. In visual and musical arts, ICT 

provides fancy tools that facilitate and increase 

productivity. Theories, such as intelligent hands and 

learning by doing, are the basis for tactile learning 

language. In ICT, bridging the connection between 

electronics and programming may be achieved with the 

help of different assembly kits (e.g. LEGO MindStorm 

and Robots, Arduino, Lilypad, littleBits). Electronic 

components, such as light emitting diodes, buzzers, and 

couplers can be controlled by executing code commands, 

and they also give a more concrete and clear response 

than visible feedback on a computer screen. 

B. The fittest programming paradigm 

From the three most prominent paradigms of 

imperative, functional, and object-oriented, the 

imperative paradigm is often considered the simplest, 

based on easy-to-explain concepts and a low level of 

abstraction. Also, it is easy to visualize with the help of 

control flow diagrams. Some traditional programming 

languages, such as Basic, FORTRAN and C, are 

examples of an imperative paradigm, and command shell 

scripts employ this paradigm, too. C is by far the most 

popular imperative language today. However, because it 

is a low-level language, it allows direct access to HW 

resources, such as memory and sensors, which forces the 

programmer to pay a lot of attention to memory 

management. This raises the pitfalls of handling memory, 

which is why low-level languages are far from simple for 

beginners. 

Especially in the early history of ICT, imperative 

paradigm was appropriate, since program instructions 

were executed in a sequence and the end result was 

predictable. Functional paradigm and languages were 

being developed in parallel, however. With the advent of 

graphical user interfaces (Mac, Windows), the event-

driven model started to change mainstream programming. 

The imperative programming paradigm was enhanced 

with classes and objects resulting in object-oriented 

paradigm (OOP) that was especially fit for bigger 

systems. Then the web took over the world and 

programming paradigms had to adapt to that. The event-

driven model of programming was extended to web 

applications. Well-defined and often strict programming 

languages were gradually substituted by the looseness of 

internet languages, such as HTML, JavaScript and PHP, 

and finally with all sorts of tag-based extensions (such as 

JSP and ASP) mixing static and dynamic web content at 

will. The latest developments are transferring JavaScript-

based technologies also to the server (Node.js). Thus, the 

worst nightmares of programming purists have become 

true.  

The programming paradigm should support the desired 

style of writing code. While advancing in skills, a student 

is expected to internalize good coding conventions, such 

as modularity, documenting, testing, and, in the later 

stages of studies, also saving HW resources or speeding 

up response times. Modularity is achieved by splitting the 

system into suitable structural components, which can be 

done at different levels in different programming 

paradigms. In the OOP, the system is constructed by 

interfaces and classes, the relations of which may comply 

with design patterns (such as Visitor, Strategy). In 

modelling such a system, UML class diagrams are often 

used. Classes define member variables and methods 

(functions) and hence encapsulate that class related data.  

In regards to transfer between math and ICT, i.e., in 

bridging algebra and programming, lambda calculus is 

the missing link [36]. In its conciseness and execution of 

algebraic operations, such as reductions, lambda calculus 

conforms to the symbolic expression characteristic of 

math. It is also categorized as a functional language. 

Since it possesses the highest purity and hence a 

special added value in pedagogy, it appeals to ICT 

teachers and theoreticians. In addition, being applicable 

in proving and other theoretical studies in ICT, the 

lambda calculus and its pure derivatives are willingly 

used as an introductory university course for functional 

languages. As the first language in the primary and 

secondary school, lambda calculus is definitely overkill.  

Regarding the functional programming paradigm, the 

complexity issues have been addressed in educational 

initiatives targeting at primary and secondary levels. The 

functional programming camp has tried to satisfy the 

wishes of ICT educators and provided suitable courses 

and material: WeScheme, TeachScheme!, Logo Turtles to 

practice algorithms [16] for example, and DrRacket and 

also Bootstrap which uses the Racket programming 

language (prev. PLT Scheme) [23][24][36]. The 

Bootstrap course targets ultimately at game design. In 

using Bootstrap, promising results among K-12 students 

have been reached, Felleisen and Krishnamurthi [13] 

state boldly that “Bootstrap provides the strongest 

evidence yet that teaching functional programming 

directly affects the mathematics skills and interests of K-

12 students”, and along with them researchers have long 

regarded programming as a mightifier in learning 

mathematical concepts (e.g. [35]). Moreover, Schanzer 

[36] highlights the low threshold of transfer, “Bootstrap 

uses algebra as the vehicle for creating images and 

animations. That means that concepts students encounter 

in Bootstrap behave exactly the same way that they do in 

math class. This lets students experiment with algebraic 

concepts by writing functions.”  

Levy [24] implemented the Racket course for 

elementary mathematics teachers by adding the 

consecutive principles of algebra of images and targeting 

good coding conventions and discipline through using 

test-first design and documentation. Algebra of images 

uses images as variables in function calls and prepares for 

mathematical variables and functions in an entertaining 

and creative way. 



6 K-12 Curriculum Research: The Chicken and the Egg of Math-aided ICT Teaching  

Copyright © 2017 MECS                                                      I.J. Modern Education and Computer Science, 2017, 1, 1-14 

Complexity-wise OOP sets a certain threshold for 

learning as well. Inheritance, polymorphism and virtual 

functions, for example, are regarded to belong to the Top-

10 most difficult items [27]. Object oriented paradigm is 

an extension of the type concept found in procedural 

programming languages. Furthermore, it is hard to 

understand methods without first understanding functions. 

Therefore, OO-paradigm is not appropriate as a first 

programming paradigm. However, some visual 

programming tools, for example Scratch may be 

interpreted as object-oriented, after which the paradigm is 

not complex at all. Got this way, sprites are objects, 

whose methods and events are defined, as well as 

variables set by dragging and dropping. 

C. BYOD (Bring-Your-Own-Device) and forget not to 

BYOB (Bring-Your-Own-Brains)  

Teaching mathematics in Finland is in a transitional 

stage due to the use of symbolic calculators (allowed 

since 2012), and shortly also computers, in the 

matriculation examination. Symbolic calculators bring an 

excessive competitive advantage to their users. In the 

spring of 2016, the exam was split in two parts: run with 

and without a calculator, and the gain of having a 

symbolic calculator was compensated by making some 

problems more difficult. In the spring of 2019, the math 

exam will become electronic as last of the exams. The 

applications allowed at the work station are the following: 

LibreOffice for text editing, spreadsheets, vector graphic, 

GIMP, Pinta, InkScape, Dia, wxMaxima, Texas 

Instruments N-spire, Casio ClassPad Manager, Geogebra 

and LoggerPro [49]. Especially scriptable tools are 

interesting in regard to ICT teaching. 

According to the Finnish curriculum 2016, calculators 

and computers are first to be familiarized with during Y3-

Y6. In Y7-Y9, they are applied as learning, assessment 

and creativity tools. Regarding function keys, the first 

math concepts are squaring operation x
2
 and powers of 10 

(e.g. when typing a standard format), since powers and 

indexes are taught in Year 7. If we consider the squaring 

operation x
2
 as a function, x is a variable or a function 

parameter. The user enters the value of x, after which the 

calculator prints the value of the function (f(x) = x
2
) on 

the screen. Does the student understand that he is using a 

function? It is unlikely, if this is not especially 

emphasized, otherwise its meaning is simply reduced as 

an action button. By pressing it a student gets the desired 

result, a number squared, as a procedural outcome.  

The affordances provided by calculators could be 

exposed and the function behavior explicated, e.g., the 

teacher could point out the existing function key f(x), and 

as a concrete example demonstrate the use of the simple 

function of x
2
, first assign the x value and retrieve the 

value of y as the end result of squaring. As a visual hint, 

the point (x, y) could be positioned to the coordinate 

plane. By inputting sequential integers (1, 2, 3 …) and 

plotting points to the plane, the quadratic curve starts to 

be recognizable. The same exercise may be reused to 

deduct next numbers of the quadratic sequence. 

Visualizations of functions with the calculator are 

beneficial as multiple representations without additional 

computational overhead. For instance, Desmos as an on-

line tool and Mathematica, Maxima and Maple as 

installable ones are handy in building and exploring 

functions. However, neither calculators, nor tools nor 

games are necessary in teaching mathematics. Actually, 

adapting to the use of a certain device implies a risk of 

conceptual welding [35], after which a user is not capable 

of fully functioning without the device. Expediently, a 

calculator should remain an optional tool and not a 

necessity. 

Not even learning ICT requires using computers. Many 

complementing skills necessary in ICT may be practiced 

well without them, such as computational thinking (CT). 

Abstraction is one of the three ‘a’s of computational 

thinking according to Jeannette Wing [48], who launched 

the term. The remaining ‘a’s are automation and analysis. 

As Wing puts it, “Computer science is not only computer 

programming. Thinking like a computer scientist means 

more than being able to program a computer. It requires 

thinking at multiple levels of abstraction.” Abstracting 

systems may be sharpened with mind mapping / concept 

mapping exercises; in particular, tighter-syntax concept 

mapping approaches the UML class diagrams used 

extensively in OOP system design in the industry. 

Automation, in turn, merges mastering control structures, 

divide-and-conquer of the problem domain and finding 

the right algorithms [22]. 

 

III. RESULTS 

In order to facilitate comparisons, the ICT syllabi of 

FNC and UKNC are illustrated as concept maps. As maps, 

the approaches of math-aided ICT versus ICT as a 

separate subject are more easily comparable. We first 

focus on the computational thinking that is common for 

both syllabi, and after that evaluate the importance of 

areas that are omitted from math-aided ICT compared to 

the dedicated ICT syllabus. 

A. Math-aided ICT teaching 

Mathematics as a subject is constructed based on spiral 

progress to more advanced topics. The iterative visits at 

each math topic at different levels will deepen the 

knowledge and add details. In merging ICT with math, it 

is justified to follow the well-established order of math 

and include corresponding ICT topics where feasible. We 

took the Finnish math syllabus as the basis, and Figure 1 

demonstrates how mathematics as a subject is constructed 

chronologically and how it expands in a cyclic manner. 

The concentric gray circles demonstrate different school 

levels from primary to high school. The further away the 

subject is located from the center, the later it will be 

introduced. The figure appears to divide the math 

syllabus into four major subject areas: arithmetic, 

geometry, algebra, and the newest addition, 

computational thinking (CT). CT will lead students to 

learn how to decompose and solve problems by dividing 

them into smaller sub-problems, as well as algorithms 

and modelling.  



 K-12 Curriculum Research: The Chicken and the Egg of Math-aided ICT Teaching 7 

Copyright © 2017 MECS                                                      I.J. Modern Education and Computer Science, 2017, 1, 1-14 

The Red parts represent topics that are considered 

especially opportune for ICT teaching: the darker the 

color, the stronger the emphasis.  In addition to CT 

(algorithms, logic, modelling), the variables and functions 

of algebra are marked in deep red. Topics marked with 

lighter red are optional, and proposed as nice-to-have 

features.  For instance, statistics and probability could 

lead students towards the fields of data visualizations and 

data science. In addition to these red-scale areas, the 

reader should note the UK and US flags. The Flags 

represent those math additions that are missing from FNC 

but present in UKNC or USCC, and are anticipated to 

prepare the students for ICT. Such key areas include sets 

and matrices. Interestingly, USCC explicitly also defines 

modeling as one syllabus area that is helpful for both 

math and ICT.  

1) Logic, sets and matrices 

The initial “hello worlds”, programming evolves into 

writing control structures such as if-then-else sentences 

and loops. An if-sentence requires the truth value of its 

condition to be evaluated, thus presuming skills such as 

propositional and Boolean logic. The same skill applies in 

handling iterations when reaching the loop termination 

condition – typically an equivalence or end of an 

inequality. These are just the simplest cases where logic 

in programming is needed. Logic primitives, including 

truth values as computational entities, seem to be missing 

in every math syllabus. However, in the UKNC, Boolean 

logic is currently included in the computing curriculum 

[3]. Considering the importance of logic to all computer 

science, this is a distinct lack. The basics of logic, 

including Boolean logic (true, false, AND, OR, NOT) 

could very well be included in the math syllabus. 

When the amount of data increases, bigger data stores 

are needed as instead of single variables arrays and other 

collection types will be introduced. The set is the basic 

mathematical construct for containment. Sets are highly 

relevant for programming, as they are the basis for 

abstract data types called collections and the relational 

database, among other things. An array may be 

introduced as a set, a vector or a matrix, and the same 

operations apply. Therefore, set theory would be useful in 

any mathematics curriculum designed to support ICT and 

programming. Currently, set theory is part of UKNC, but 

is absent from USCC and FNC.  

Linear algebra is included in the USCC as matrices and 

as the syllabus domain of vectors and transformations in 

UKNC, but matrices and transformations are missing 

from the FNC. We consider it important for computer 

science, as matrices enable easy manipulation of data and 

often simplify computational logic. Matrices are 

extensively exploited, e.g. for 2D- and 3D-

transformations in game development and in data analysis 

and pattern recognition. 

All suggested new math syllabus areas remain at the 

preliminary level in UKNC and USCC and we propose 

the same: in logic truth tables and Boolean logic in order 

to simplify several simultaneous conditions; in sets, Venn 

diagrams and basic operations of union, intersection and 

cut with at most three sets; and in matrices, 

transformations of translation, reflection, rotation and 

enlargement and finding an inverse matrix. This new 

math knowledge should be carefully bridged with the 

prior knowledge with lots of visual exercises and by 

starting early enough. 

Table 1 illustrates in which order these topics, logic, 

sets and matrices are handled in the UKNC and the 

USCC. 

Table 1. Math syllabi of uknc and uscc 

 UKNC  USCC 

Logic (in Computing Syllabus) 

KS2: logical reasoning to explain 

how simple algorithms work  
KS3: simple Boolean logic 

(AND/OR/NOT) and its applications 

in circuits and programming 

- 

Sets KS3: enumerate sets, 

unions/intersections, tables, grids and 
Venn diagrams 

KS4: data sets from empirical 

distributions, identifying clusters, 
peaks, gaps and symmetry, 

expected frequencies with two-way 
tables, tree diagrams and Venn 

diagrams 

G6: data sets, 

identifying clusters, 
peaks, gaps, symmetry 

G7: random sampling 

to generate data sets 
HS: interpret 

differences in shape, 
center and spread of 

distribution 

Matrices KS4: (in Geometry) translations as 
2D vectors, addition and subtraction 

of vectors, multiplying with a scalar, 

diagrammatic and column 

representations  

GCSE: Transformations & Vectors 

HS: add, subtract, 
multiply matrices, 

multiply with a scalar, 

identity matrix, 

transformations as  

2x2 matrices 

 

B. ICT as a separate subject 

Instead of teaching ICT together with math, it can be 

taught as a separate subject, as has been shown by the 

way computing is taught in the UKNC. The computing 

syllabus was reviewed to discover uncovered topics of 

the math-aided approach to FNC, see the blue nodes in 

Figure 2. The Red nodes illustrate overlapping topics 

found both in UKNC and FNC, where the all-

encompassing skill of computational thinking that 

consists of such sub-domains as algorithms, logic, 

problem-solving and abstraction is well represented. 

Algorithms and problem-solving start from the very 

beginning, whereas abstraction and modelling is from 

Key Stage 3 upwards in the form of pseudo-coding and 

flow charts, for instance. Modularity as a good coding 

practice is highlighted.  

In addition to computational thinking, the thread of 

security and safety starts already from Key Stage 1 and 

deepens throughout the different stages. In UKNC 

Computing, safety and security areas culminate as cyber 

security e.g. identifying possible attack types and system 

vulnerabilities. The safety and security domain includes 

the ethics aspect covering a person’s own behavior 

regarding his own and others’ privacy and covering 

respect issues as well. 

In Key Stages 1 and 2 of the UKNC Computing, the 

subject content is divided into two parts, first ICT from 

the perspective of a user and secondly of a programmer. 

In the user part, the fluent use of technology aims at  



8 K-12 Curriculum Research: The Chicken and the Egg of Math-aided ICT Teaching  

Copyright © 2017 MECS                                                      I.J. Modern Education and Computer Science, 2017, 1, 1-14 

storing and manipulating digital content. The goal is to 

understand the digital nature of stored media, text, music, 

videos. In Key Stage 2, networks are included and their 

properties, e.g. types and connectivity, are studied. From 

the perspective of programming, new control structures, 

sequences and repetition are introduced, as well as such 

fundamentals as variables and I/O. 

 

 

Fig.1. Combined Math syllabus, based on FNC with additions, computing related items in shades of red,  additions from UKNC marked with  

and from USCC with  

 



 K-12 Curriculum Research: The Chicken and the Egg of Math-aided ICT Teaching 9 

Copyright © 2017 MECS                                                      I.J. Modern Education and Computer Science, 2017, 1, 1-14 

 

Fig.2. ICT as a separate subject based on UKNC.  The parts that are overlapping with the UKNC and FNC syllabi are marked in red, uncovered items 
in blue. 

From Key Stage 3 onwards, new data structures such 

as lists, tables and arrays will strengthen the 

programming skills. Boolean logic (AND, OR, NOT) is 

brought in and students are familiarized with the binary 

presentation. Computer systems are reviewed more in 

depth by introducing HW and SW components and 

various storages, and the way in which data is stored in 

memory. In Key Stage 4, the skills are strengthened and 

analytic thinking and creativity are fostered and applied 

to one’s own interests [4][5]. Students may implement e.g. 

small applications, portfolios or hypermedia e-books [32] 

and hence provide material for assessment.  

Learning algorithmic and computational thinking is 

considered as part of mathematics education in FNC as 

well. On the other hand, issues such as computer and 

internet architecture, internet of things, robots, big data, 

cloud computing, artificial intelligence, augmented reality, 

social media and data privacy and security, are currently 

omitted. In addition to possible mathematical aspects, 

these issues involve technical, psychological, societal and 

legal viewpoints, among others. As Facebook, Twitter, 

Angry Birds and Pokémon Go phenomena have 

demonstrated, we live in a world where new ICT 

inventions can very rapidly take over the whole world - 

and it would be irresponsible not to give our pupils and 

students necessary skills to survive in this technological 

era of wonders. Fluck et al. [14] argue, "Computer 

science is rapidly becoming critical for generating new 

knowledge, and should be taught as a distinct subject or 

content area, especially in secondary schools". 

C. Variables and functions as common fundamentals 

In this section, we analyze the variable and function 

concepts in more detail. Variables and functions are the 

very heart of modern mathematics and science. 

According to Menger [26], in the development of 

mathematics and natural science, perhaps the most 

characteristic concept is that of a variable. Tarski [39] 



10 K-12 Curriculum Research: The Chicken and the Egg of Math-aided ICT Teaching  

Copyright © 2017 MECS                                                      I.J. Modern Education and Computer Science, 2017, 1, 1-14 

states that the invention of variables constitutes a turning 

point in the history of mathematics. Kleiner [20] sees the 

function concept as a distinguishing feature of modern 

mathematics. In computer science, variables and 

functions have been an essential part of programming 

from the very beginning. As computing necessarily 

involves computer memory, a symbolic reference to a 

memory location, i.e. variable, is a necessity. Functions 

were also introduced very early: the second FORTRAN 

implementation (Fortran II, 1958) already included them. 

Since then, functions have been part of all major 

programming languages and have had a major role in 

various programming paradigms, such as structured 

programming, procedural programming, and functional 

programming. Function is the basic means of software 

decomposition [29], a generally accepted software 

engineering practice. It directly supports the principles of 

separation of concerns [11], information hiding, 

encapsulation and software reuse. 

Variables are usually introduced in school mathematics 

long before functions, e.g. according to the Common 

Core standard, variables are presented at grade 6 and 

functions at grade 8. Table 2 summarizes the differences 

of variable in school mathematics and in programming. 

To link variable in math and ICT, Epp [12] advises 

instructors to draw analogies. 

Table 2. Variable in math vs. ICT 

 Math  ICT 

use case unknown in equation, a general 
number,  assignment 

“bucket”/ memory store, 
assignment, scope: 

global/local  

alt. use 
case 

function parameter  function parameter 
passed by value or 

reference 

type of 
variable 

typically numeric (integer, 
fraction, real number) 

numeric or more 
complex type 

Table 3. Function in math vs. ICT 

 Math  ICT 

description relationship between two 
quantities (usually x and y) or 

between elements of two sets  

a subroutine that 
calculates a return value 

based on input 

parameters or 

accomplishes a specific 

task 

number of 
parameters 

typically 1 in elementary math 
and increasing in advanced 

math  

0 ... n 

type of 

parameters 

typically real numbers numeric or more 

complex types 

number of 

return values 

1 typically 1 (0 ... n 

depending on language) 

return type typically real number numeric or more 
complex type 

 

Tables 2 and 3 illustrate the interconnectedness of the 

function and the variable in mathematics and ICT. 

Especially in ICT, functions and variables are hard to 

separate from each other - you need both at the very early 

stage. If functions in mathematics were introduced earlier, 

together with variables, the mathematical function 

concept could be used as a starting point for introducing 

functions in programming languages. Furthermore, the 

student probably uses some form of calculators, which 

typically exhibit quite strongly the concept of function in 

their interface.  

In analyzing the concepts of variable and function, 

different meanings were discovered. For example, the 

model of three uses of variable [41] lists variable as an 

unknown, a general number, and mutable value of x in a 

functional relationship. As unknown, once the value is 

solved, no reassignment is usually done, so variable is 

understood as a constant. When the process of 

generalizing begins, a student starts to transfer from 

arithmetic towards algebra by identifying patterns [40], 

e.g. Wilkie [44] uses sequences to facilitate using 

variables as a pattern generalizer in identifying functional 

relations. The general number is a midway to actual 

variables, which are full-blown in functions illustrating 

the interplay as a relation of the two, x and y. 

Furthermore, in formulae, the location and naming of 

the variables define the identity either parametric as a 

coefficient (constants) or variable as an unknown, for 

example: 

 

 dczbyxazyxf  32),,(  (1) 

 

a, b and c are understood as parameters or general 

numbers, whereas x, y and z are actual variables. 

 

By the mathematical definition of a function, the 

ambiguity of output values is not allowed i.e. a function 

results only one output value per each input. In addition, 

a domain must include only such input values that 

produce an output. In programming, the ambiguity of a 

variable creates confusion. The variable is not its value 

only, but also comprises a physical location. The address 

of the variable in a memory is called a pointer in ICT 

vocabulary. Variable x is referenced by a pointer p, see 

Figure 3, and these two representations are 

interchangeable by using certain operations. In the 

following, we use the C-language notations. 

 

 

Fig.3. The duality of variable x and pointer of p  



 K-12 Curriculum Research: The Chicken and the Egg of Math-aided ICT Teaching 11 

Copyright © 2017 MECS                                                      I.J. Modern Education and Computer Science, 2017, 1, 1-14 

Note the operators &, which is the address-of, and *, 

which is the dereferencing operator. Even if you are using 

variable x, by adding ‘&’ in front, the address of the 

variable will be exposed. Analogically, the reference p 

may be de-referenced to get hold of the value of x. 

Related memory aspect is the data type of the variable 

influencing the space reserved. For an unsigned integer 

the space requirement is much less than for a decimal 

number (float, long). When declared, variable and pointer 

are not necessarily assigned a value. In lower level 

languages, for example in strongly-typed C language, the 

user is responsible for allocating the memory (malloc) of 

the required data type for the pointer p, for example: 

 
int *p; 

   p = (int *)malloc(sizeof(int)); 

 

an operation, which is often forgotten. Both the value and 

the address may be changed later: a value may be 

reassigned and the pointer may be redirected to another 

location. Without special caution, these changes and their 

side effects may be subtle, go unnoticed and cause nasty 

and hard-to-trace error situations. Pointers and dynamic 

memory allocations are among of the hardest ICT topics 

[27]. In order to fully grasp the concept of variable, 

unveiling underneath HW structures, i.e., a memory stack, 

is necessary. Figure 4 demonstrates that in UKNC at the 

GCSE level, book publishers do not hesitate. 

 

 

Fig.4. The GCSE book illustrating variable and its address [15] 

Similarly, the concept of function is multifaceted and 

depends on the used programming paradigm; see the 

summary of both fundamentals below, in Table 4. 

Table 4. Variables and functions in selected programming paradigms 

 Variable Function 

Imperative Global and local variables. 

Pointers exploited in code 
 (in some languages) 

Function (returns a value) 

Procedure (no return 
value) 

both may cause side 

effects 

Functional Variables as constants or 

unknowns. Once assigned a 

value is not meant to be 
changed 

Both pure and impure 

implementations that rely 

heavily on recursion, 
sequences and algebraic 

manipulation 

OOP Member variables 

encapsulate data inside the 

object, visibility controlled 

by access modifiers (private, 

protected, public) 

Object methods that need 

an instance vs. static 

methods that need not. 

Parameters may be passed 

by value (no changes) or 
by reference (changes) 

 

Math rules may be violated in all other paradigms but 

pure functional, which has inspired functional 

programming advocates to promote its use for teaching 

algebra as well. 

In the adjacent Figure 5, the first function illustrates a 

valid function in the mathematical sense that takes an 

input and produces a single output. The next two 

functions do not follow the rules, e.g. the middle case 

forks in two different result options based on the inner 

state of the program. The bottommost case illustrates a 

procedure: in an imperative paradigm subroutines are 

split into functions and procedures based on whether they 

return of value or not. 

 

 

Fig.5. A pure and an impure function and a procedure 

 

IV. CONCLUSIONS 

How does ICT fit in with the mathematics curriculum? 

Programming is heavily based on mathematical 

concepts. It may be seen as problem solving that requires 

dividing a problem into smaller solvable sub-problems, 

modelling a solution and applying algorithmic thinking 

and logic, as in math. Orientation of problem solving and 

automation is called computational thinking (CT), which 

is the most recent addition to the Finnish math syllabus in 

the 2014 edition. In addition to CT, we recognize algebra, 

linear algebra and set theory as prerequisites for ICT.  

From different programming paradigms, functional 

programming has been found to scaffold learning algebra 

in particular. Thus using e.g. Racket exercises with image 

algebra will benefit students, as the move from algebraic 

function and variable to their computational counterparts 

complies with the near transfer of learning.  

As algebra tutors, calculators and other mobile devices 

should be exploited to their full potential. Moreover in 

Finland, transferring into electronic matriculation exams 

in the spring of 2019 mandates using ICT at earlier 

school levels. A bunch of ICT tools, such as the computer 

algebra system wxMaxima, will be available [49]. 

Practicing with these tools should be started as early as 

feasible. Math could, for example, be split into normal 



12 K-12 Curriculum Research: The Chicken and the Egg of Math-aided ICT Teaching  

Copyright © 2017 MECS                                                      I.J. Modern Education and Computer Science, 2017, 1, 1-14 

and laboratory lessons, which would be held in the ICT 

lab. 

What are the fundamental concepts of computer science, 

and how do they interact with the corresponding 

concepts of math? 

The basic computing fundamentals are function and 

variable, which a novice programmer will meet even in 

the simplest “Hello World” example. In math, algebra 

and particularly functions are the areas that students find 

most challenging. Functions should be introduced 

gradually and by bridging them more closely with prior 

knowledge. For bridging purposes, Wilkie uses multiple 

presentations, for example, sequences and visual graphs 

[44].  

By proceeding towards functions and variables in the 

zone of proximal learning [43], calculators may be used 

as variable/function tutors by explicitly highlighting the 

connection between variable x as an input and function 

keys as functions producing an output of y. Probably a 

student encounters an explicit variable the first time when 

he is looking at ‘x’ in a calculator keyboard. To deepen 

the understanding of variables, one needs information 

about the memory architecture of a computer. ICT 

education should contain the basics of computer 

architecture including data storage and memory. In this 

context storing variables in memory should be evoked. 

Even if syntactic nuances exist, a variable in math is a 

straightforward concept compared with a variable in ICT, 

where the dual nature (a value - an address) complicates 

it. Furthermore, a variable in programming may be of the 

non-numeric type, such as a string. In mathematical 

functions, one input value that is typically a real value 

results in one and only one output value, also a real value. 

On the other hand, functions in programming have a 

wider variety. First, they inherit the ambiguity due to 

variables as parameters that may be passed by value or by 

reference, or are of a non-numeric type. Secondly, 

functions may return a different value with the same input 

based on the internal state. Thirdly, they may return no 

value at all. 

What ICT topics are left uncovered in the current 

FNC, when compared with the discrete computing 

curriculum of the UKNC? 

Compared with UKNC computing syllabus there is a 

multitude of computer-related skills that are left 

uncovered without a dedicated subject and teacher. For 

example, security issues, the basics of computer and 

network architecture and overall fluency with technology 

are nowadays comparable with civic competences. In 

addition, computers may also be used as creativity tools, 

e.g. design and web-based authoring (blogs, vlogs), and 

they provide lots of options for developing multi-literacy, 

for example, content creation, media editing and digital 

literacy skills. Overall, preparedness for further studies 

may be strengthened by intelligent searches, source 

criticism, data analysis and data visualization skills. 

Explicit knowledge building might be done with mapping 

tools. Lonka [25] petitions, "Besides fun and practical 

activities, it is crucial to facilitate deep learning through 

guided engagement in scientific inquiry, expert-like 

designing; in short, students’ deliberate efforts to build, 

create, and synthesize knowledge." 

Computer science needs skills taught in other subjects 

as well; mathematics alone is not enough. Still, many 

areas and new developments in ICT do not fit in to 

traditional school subjects. It is to be expected that the 

pace of innovation will continue to speed up in the future 

– for example, cloud based artificial intelligence is 

rapidly emerging as a production quality provider of 

applications of a totally new kind. Since the world is 

rapidly being digitized, including ICT as a separate 

subject should be seriously considered. Furthermore, it 

would also serve as a placeholder for future needs and 

new developments in technology education.  

Future considerations 

Whether ICT should be taught alongside extended 

math, as a separate subject, or as a combination, it should 

be studied in practice with various learning experiments. 

As Lonka [25] points out, “In Finland and many other 

countries the availability of technology is adequate, but 

the primary challenge to overcome is the readiness 

deficiency for the pedagogically meaningful use of ICT. It 

is imperative to develop innovative pedagogies that 

simultaneously support the acquisition of a deep 

knowledge base, understanding, and 21st Century skills.” 

In addition, different programming paradigms and 

languages should be compared with novice students in 

order to find the pedagogically sound and working 

alternative. For instance, the UKNC curriculum leaves 

these open and just talks about “low-level” and “high-

level” languages and learning at least two of them [6]. In 

addition, the short-term hypes of certain programming 

languages and applications should not influence 

curriculum planning. Instead, it ought to rest on the 

fundamentals common to all programming paradigms, 

whether imperative, functional, or object-oriented.  

To lessen the cognitive load in the beginning, visual 

programming languages such as Scratch, and interactive 

environments using interpretive languages, should be 

favored [34]. We advocate progressing from a more 

disciplined to a looser direction only after orthodox 

coding conventions, such as modularity, have been 

internalized. Functional languages are highly disciplined 

and hence promoted by a few of the ICT establishment. 

However, the Racket coding school (2016 spring) held in 

Finland received contradictory feedback from the 

participating teachers as it was regarded as being too 

complex [28]. In the UK, the CAS community 

recommends the path of Scratch-JavaScript-Python, 

which, for the sake of coding discipline, should 

preferably be Scratch-Python-Racket. Even if JavaScript 

were removed to prevent students from developing 

inappropriate coding conventions, web programming 

would mandate it. However, if the object-oriented nature 

of Scratch were recognized and used as a bridge to the 

most popular object-oriented language to maximize the 

benefit, then this sequence would stand as Scratch-



 K-12 Curriculum Research: The Chicken and the Egg of Math-aided ICT Teaching 13 

Copyright © 2017 MECS                                                      I.J. Modern Education and Computer Science, 2017, 1, 1-14 

Python-Java. If it ain’t chickens, it’s feathers - the golden 

egg of ICT teaching is yet to be determined. 

REFERENCES 

[1] Finnish National Board of Education. 2014. “Finnish 

national curriculum 2014”, [Online].Available: 

http://www.oph.fi/download/163777_perusopetuksen_opet

ussuunnitelman_perusteet_2014.pdf [Accessed: 01- Aug- 

2016]. 

[2] “Mathematics Standards | Common Core State Standards 

Initiative”, Corestandards.org, 2016. [Online]. Available: 

http://www.corestandards.org/Math/. [Accessed: 02- Aug- 

2016]. 

[3] “National Curriculum in England: Secondary Curriculum - 

Publications - GOV.UK”, Gov.uk, 2013. [Online]. 

Available: 

https://www.gov.uk/government/publications/national-

curriculum-in-england-secondary-curriculum. [Accessed: 

02- Aug- 2016]. 

[4] “Department for Education Computing Programmes of 

study: Key Stages 1 and 2”, [Online]. Available: 

https://www.gov.uk/government/uploads/system/uploads/at

tachment_data/file/239033/PRIMARY_national_curriculu

m_-_Computing.pdf. . [Accessed: 02- Aug- 2016]. 

[5] “Department for Education Computing Programmes of 

study: Key Stages 3 and 4”. [Online]. Available: 

https://www.gov.uk/government/uploads/system/uploads/at

tachment_data/file/239067/SECONDARY_national_curric

ulum_-_Computing.pdf. [Accessed: 02- Aug- 2016]. 

[6] Department for Education of the United Kingdom. 2014. 

“Computer science GCSE subject content”, [Online]. 

Available: 

https://www.gov.uk/government/uploads/system/uploads/at

tachment_data/file/397550/GCSE_subject_content_for_co

mputer_science.pdf [Accessed: 02- Aug- 2016]. 

[7] Berger, T.,Frey, C. 2016. “Digitalization, Jobs, and 

Convergence in Europe: strategies for closing the skills 

gap”, [Online]. Available: 

http://www.oxfordmartin.ox.ac.uk/downloads/reports/SCA

LE_Digitalisation_Final.pdf.  

[8] Blackwood, N. 2016. “Digital skills crisis: second report of 

Session 2016–17”, House of Commons.  

[9] Billings, D. 2008. “Argument mapping”, The Journal of 

continuing education in nursing. 39(6), 246-247.  

[10] Dijkstra, E.W. 1982. “How do we tell truths that might 

hurt?”, in Selected Writings on Computing: A Personal 

Perspective. Springer. pp. 129-131.  

[11] Dijkstra, E.W. 1982. “On the role of scientific thought”, in 

Selected writings on computing: a personal perspective. 

Springer. pp. 60-66.  

[12] Epp, S. 2011. “Variables in mathematics education”, in: 

Tools in teaching logic (ed.). Springer. pp. 54-61.  

[13] Felleisen, M. & Krishnamurthi, S. 2009. “Viewpoint Why 

computer science doesn't matter”, Communications of the 

ACM 52, 7, pp. 37-40.  

[14] Fluck, A., Webb, M., Cox, M., Angeli, C., Malyn-Smith, J., 

Voogt, J. & Zagami, J. 2016. “Arguing for computer 

science in the school curriculum”, Educational Technology 

and Society 19, 3, pp. 38-46. 

[15] Frankin, J. (ed.). 2015. “OCR GCSE Computer Science 

3rd Edition”, 3rd ed. Axsied.  

[16] Futschek, G. 2006. “Algorithmic thinking: the key for 

understanding computer science”, International 

Conference on Informatics in Secondary Schools-Evolution 

and Perspectives, Springer. pp. 159-168.  

[17] Gagne, R.M. 1965. The Conditions of Learning. New York: 

Holt, Rinehart and Winston. Inc., l970  

[18] House of Commons. 2016. “Oral evidence: Digital skills 

gap”, [Online]. Available: 

http://data.parliament.uk/writtenevidence/committeeeviden

ce.svc/evidencedocument/science-and-technology-

committee/digital-skills/oral/27865.html 

[19] Jarvis, S., & Pavlenko, A. 2008. Crosslinguistic influence 

in language and cognition. Routledge. 

[20] Kleiner, I. 1989. “Evolution of the function concept: A 

brief survey”, The College Mathematics Journal 20, 4, pp. 

282-300.  

[21] Köhler, W. 1970. Gestalt psychology: An introduction to 

new concepts in modern psychology. WW Norton & 

Company.  

[22] Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., 

Erickson, J., Malyn-Smith, J. & Werner, L. 2011. 

“Computational thinking for youth in practice”. ACM 

Inroads 2, 1, pp. 32-37.  

[23] Lee, R. 2013. “Teaching Algebra through Functional 

Programming: An Analysis of the Bootstrap Curriculum”.  

[24] Levy, D. 2013. “Racket Fun-fictional Programming to 

Elementary Mathematic Teachers”.  

[25] Lonka, K. & Cho, V. (ed.). 2015. Report for EU 

Parliament 2015: Innovative Schools: Teaching & 

Learning in the Digital Era: Workshop Documentation. 

[26] Menger, K. 1954. “On variables in mathematics and in 

natural science”, The British Journal for the Philosophy of 

Science 5, 18, pp. 134-142.  

[27] Milne, I. & Rowe, G. 2002. “Difficulties in learning and 

teaching programming—views of students and tutors”, 

Education and Information technologies 7, 1, pp. 55-66.  

[28] Organisation for Economic Co-operation and Development. 

2016. “Skills for a Digital World”.  

[29] Parnas, D.L. 1972. “On the criteria to be used in 

decomposing systems into modules”, Communications of 

the ACM 15, 12, pp. 1053-1058.  

[30] Perkins, D. & Salomon, G. 1988. “Teaching for transfer”, 

Educational leadership 46, 1, pp. 22-32.  

[31] Piaget, J. & Duckworth, E. 1970. Genetic epistemology. 

American Behavioral Scientist 13, 3, pp. 459-480.  

[32] Portugal, C. 2014. “Hypermedia E-book as a Pedagogical 

Tool in a Graduation Course”, International Journal of 

Modern Education and Computer Science, Vol. 6(9), pp. 8. 

[33] Rakes, C.R., Valentine, J.C., McGatha, M.B. & Ronau, 

R.N. 2010. “Methods of Instructional Improvement in 

Algebra A Systematic Review and Meta-Analysis”, Review 

of Educational Research 80, 3, pp. 372-400.  

[34] Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, 

N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E., 

Silver, J. & Silverman, B. 2009. “Scratch: programming 

for all”, Communications of the ACM 52, 11, pp. 60-67. 

[35] Rich, P.J., Leatham, K.R. & Wright, G.A. 2013. 

“Convergent cognition”, Instructional Science 41, 2, pp. 

431-453.  

[36] Schanzer, E.T. 2015. “Algebraic Functions, Computer 

Programming, and the Challenge of Transfer”.  

[37] STEM education coalition One-Pager. 2016. “STEM 

Education, Good Jobs, and U.S. Competitiveness”, 

[Online]. Available: http://www.stemedcoalition.org/wp-

content/uploads/2016/01/STEM-Factsheet-Updated2.pdf.  

[38] Syslo, M.M. & Kwiatkowska, A.B. 2006. “Contribution of 

informatics education to mathematics education in 

schools”, International Conference on Informatics in 

Secondary Schools-Evolution and Perspectives, Springer. 

pp. 209-219. 



14 K-12 Curriculum Research: The Chicken and the Egg of Math-aided ICT Teaching  

Copyright © 2017 MECS                                                      I.J. Modern Education and Computer Science, 2017, 1, 1-14 

[39] Tarski, A. 1994. Introduction to Logic and to the 

Methodology of the Deductive Sciences. Oxford university 

press.  

[40] Usiskin, Z. 1988. “Conceptions of school algebra and uses 

of variables”, The ideas of algebra, K-12 8, pp. 19.  

[41] Ursini, S. & Trigueros, M. 2001. “A model for the uses of 

variable in elementary algebra”, PME CONFERENCE, pp. 

4-327.   

[42] Van Roy, P., Armstrong, J., Flatt, M. & Magnusson, B. 

(2003). “The Role of Language Paradigms in Teaching 

Programming”, Proceedings of the 34th SIGCSE Technical 

Symposium on Computer Science Education, ACM, New 

York, NY, USA, pp. 269-270.  

[43] Vygotskij, L.S. 1978. Mind in society the development of 

higher psychological processes. Cambridge, Harvard 

University Press. 

[44] Wilkie, K.J. & Clarke, D.M. 2016. “Developing students’ 

functional thinking in algebra through different 

visualizations of a growing pattern’s structure”, 

Mathematics Education Research Journal 28, 2, pp. 223-

243.  

[45] Wilkie, K.J. 2016. “Learning to teach upper primary school 

algebra: changes to teachers’ mathematical knowledge for 

teaching functional thinking”, Mathematics Education 

Research Journal 28, 2, pp. 245-275.  

[46] Wilkie, K.J. 2016. “Students’ use of variables and multiple 

representations in generalizing functional relationships 

prior to secondary school”, Educational Studies in 

Mathematics pp. 1-29.  

[47] Willcutt, E.G., Petrill, S.A., Wu, S., Boada, R., Defries, 

J.C., Olson, R.K. & Pennington, B.F. 2013. “Comorbidity 

between reading disability and math disability: concurrent 

psychopathology, functional impairment, and 

neuropsychological functioning”, Journal of learning 

disabilities 46, 6, pp. 500-516.  

[48] Wing, J.M. 2006. Computational thinking. 

Communications of the ACM 49, 3, pp. 33-35 

[49] Ylioppilastutkintolautakunta, ”SÄHKÖINEN 

YLIOPPILASTUTKINTO – MATEMATIIKKA”, 

[Online].  Available: 

https://www.ylioppilastutkinto.fi/images/sivuston_tiedostot

/Sahkoinen_tutkinto/fi_sahkoinen_matematiikka.pdf 

 

 

 

Authors’ Profiles 

 
Pia Niemelä works currently as a project 

researcher in the Finnish Academia funded 

project “Social media supporting 

Vocational Growth”, being a doctorate 

student in Pervasive Computing Dept. 

Previously, she participated Helsinki 

University research projects, Systemic 

Learning Solutions (SYSTECH) and (TUTLI), which developed 

educational learning solutions and commercialized them. Her 

background is in the industrial software development, the 

longest with Nokia, e.g. as a Java spec lead of Sensor API, JSR-

256, and ServiceConnection API, JSR-279, which specifies 

RESTful web services for the mobile edition. She graduated 

from the Helsinki University of Technology in 1995, from the 

department of technical physics, completed pedagogical studies 

in Tampere University in 2015 and has worked as a STEM 

teacher both in Finland and Cambodia. 

 

 

Martti Helevirta received his M.Sc. 

degree in Software Engineering from 

Tampere University of Technology, 

Finland in 1986. He has an extensive career 

of over 25 years in ICT industry as a 

software developer in the private sector and 

as a systems analyst/project manager in the 

public sector. 

 

 

 

How to cite this paper: Pia S. Niemelä, Martti Helevirta,"K-12 Curriculum Research: The Chicken and the Egg of 

Math-aided ICT Teaching", International Journal of Modern Education and Computer Science(IJMECS), Vol.9, No.1, 

pp.1-14, 2017.DOI: 10.5815/ijmecs.2017.01.01 


