
I.J. Modern Education and Computer Science, 2017, 11, 1-12
Published Online November 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2017.11.01

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 11, 1-12

Generating Code for Simple Dynamic Web

Applications via Routing Configurations

Kazuaki Kajitori

Department of Fisheries Distribution and Management, National Fisheries University, Shimonoseki, Yamaguchi, Japan

Email: kajitori@fish-u.ac.jp

Received: 04 August 2017; Accepted: 04 September 2017; Published: 08 November 2017

Abstract—A dynamic web application tends to have

many sorts of routine code which are essentially common

in most dynamic web applications.

By the routing for a web application we mean mapping

URLs (requests) to actions (responses) of the application.

In this paper, we show that by configuring the routing for

a web application together with preparing static libraries

and modifying dynamic templates to generate the

modules which are needed by the application, we can

generate most of the routine code necessary for the

application. Configurations for the routing and other

settings for an application are written uniformly in JSON

format. Then, reading the JSON configurations our

scripts set up static libraries and generate necessary

modules from templates and write files which conduct the

routing.

Our system sets up everything you need to run a web

application from the web directories for the application

and the basic libraries to the modules for the application

and the files for routing. You can add another web

application to the web setting for the web application you

have generated.

To show by example the applicability of our web code

generating system we first construct a book request page

with a very little configuration on the application. Next

as a more complicated example, we apply our system to a

web application which involves a specific function i.e.

reading a marksheet for which the system cannot generate

code, showing how the system can generate a web

application which utilizes the code not generated by the

system.

Index Terms—Web application, Code generation, JSON,

Routing, Configuration

I. INTRODUCTION

When we write a dynamic web application, we have to

code a lot of routine processes which are essentially

common in most dynamic web applications. Examples of

such routine processes include authentication, session

handling, constructions of some of CRUD (Create, Read,

Update, Delete) interfaces to databases, uploading and

downloading files and so on.

These common processes can be implemented by using

static libraries or by code generated dynamically

depending on parameters of the application. The former

type of 'common code' often are provided as modules or

packages in many languages. But those existing libraries

are written rather in low level e.g. (for Perl) HttpAgent,

CGI, RDB drivers, etc. Higher level helpers for web

programming come as CMS (Contents Management

System) like Movable Type, WordPress, etc, and web

frameworks like CakePHP, Ruby on Rails, Spring, etc

and other web code generation methods (including the

method of this paper).

CMSs are handy to make a visual web site and are

quite effective for static web sites whose main purposes

are providing with static information.

For making a dynamic web site, one might choose a

web framework. But for using a web framework, one

needs to learn an elaborate mechanism for handling the

framework which might as well be thought as yet another

complex higher level language (which is valid only for

the framework). Web frameworks may be indispensable

for some big programming projects conducted by a group

of programmers where the versatility of the programming

scheme and a common background to every programmer

are vital where the cost of learning the complex

framework is regarded as reasonable.

For rather simple dynamic web applications like those

the author and others have developed [1][2] for

educational purposes where visual effects do not have the

first priority and data model is simple, one may prefer to

a more inexpensive scheme that may be restricted to

simple web applications but allow simpler handling of it.

Compared with other web code generation systems we

will review in the next section, our system is web specific

and is simpler and more practical in the sense that it

constructs a concrete and complete environment and code

for a dynamic web application.

By the routing for a web application we mean mapping

URLs (requests) to actions (responses) of the application.

The routing is the place where user requests, inner

methods to handle requests and response methods

(usually printing methods of an HTML page) gather and

incorporate and thus for a web programmer can be the

best place to overview the application. In this paper, we

show a way to configure the routing of a dynamic web

application in JSON (JavaScript Object Notation [10])

format to generate code for a dynamic web application.

The paper is organized as follows. In section II we

2 Generating Code for Simple Dynamic Web Applications via Routing Configurations

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 11, 1-12

review some of the related works. In section III we

propose our scheme of generating code for a dynamic

web application. In section IV we present an application

of our code generating system to show how simple the

configuration for a web code generation can be. In

section V, as a more complicated example, we apply our

code generating system to a web application which

involves a specific function i.e. reading a marksheet. We

state concluding remarks in section VI.

II. RELATED WORKS

In this section, we review papers on methods to

generate web code which are usable in practice because

we aim at a really usable method to generate web code.

We mentioned about web frameworks in the previous

introduction and since their presence are not of academic

nature, we here just refer to one of the pioneering works

[3]. In [3], the authors introduced web design frameworks

as a conceptual approach to maximize reuse in web

applications which is a common task for all web

programming tools.

In [4] the authors point out the difficulties of security

implementation of web applications and presents a

framework for developing secure web applications. Also

the priority and importance of use case in UML are

pointed out.

In [5] the authors propose a machinery for a code

generator which is based on dynamic frames consisting of

SCT (Specification, Configuration and Templates)

elements. SCT generators dynamically generate code

templates which contain source code in the target

programming language together with connections

(replacing marks for insertion of variable code parts). As

template examples the authors show an HTML template

[5] and an SQL template [6], in the former case PHP and

other web frameworks have similar (and more practical)

mechanisms. As [7] shows for example, the SCT

generator model can be used for applications other than

web applications and the presentation of SCT generators

are rather abstract and showing only vital technical ideas.

For example, authentication, session handling and

interaction with database and web servers seem to be out

of the authors' sight.

In [8] the authors proposed a code generating

machinery which maps a declarative specification

language onto an imperative target language. As a

specification language the authors use SDL (Specification

and Description Language) whose description of

specification is very comprehensive [9]. In [9], this

method and SCT are compared to see when one is a better

choice than the other. In [9] the author also pointed out

that specification avoids human errors in programming

and also is an ideal starting point for automatic code

generation.

These works referred so far are conceptual in nature

and don't provide with or even mention much about

implementation details. For example, although some of

these works use templates as our web code generator does,

but the necessary details are not presented in their works

to see the differences between their templates and ours.

Our web code generator which will be described in the

following sections is (in contrast to the previous works)

web specific and constructs the directories and the static

libraries and modules and routing files, all you need to

run a web application.

III. A SCHEME OF GENERATING WEB CODE

As mentioned our code generation system sets

everything you need to run a web application. So, to

organize our presentation, we separate the system into the

three parts: the system setting, the application setting, and

the routing setting. All the three parts of the settings are

done based on configurations written in JSON.

We prepare the directory for our code generation

system, say 'User_Home/Gen' and call it 'Gen_home'.

Every process of our system will be executed from on

this directory.

For showing concrete examples of generating web

applications we need concrete scripts for the generating

processes and the generated code. In our case we write

them in Perl though a basic idea of our code generation

system can be applied to other languages as well.

A. System Setting

In this part we set the basic environments for web

applications we will produce. First we determine the

name of the environment as we wish. So let's call it 'pp'

and web applications constructed under it 'pp

applications'. Then we write a JSON configuration file

for pp, say 'Gen_home/CONFpp/conf_pp_data.json' and

the file content is:

{

 "ppData":

 {

 "DbModel": "mymysql",

 "FullWebHomePath": "/var/www/html",

 "WebReadPath": "pp_d",

 "JsPath": "pp_d/js",

 "CssPath": "pp_d/css",

 "ImgPath": "pp_d/img",

 "WebExecPath": "pp",

 "WebLibPath": "pp/mylib",

 "DbUser": "kajitori",

 "WebServerUser": "apache",

 "ppOwner": "kajitori"

 }

}

This expresses an object in JSON which determines the

database engine model be MySQL (or MariaDB,

'mymysql' is the name of the module manipulating

MySQL in our language) and the web read-path be

'/var/www/html/pp_d' and the web execution-path be

'/var/www/html/pp' and so on. We chose JSON as our

configuration language throughout our code generating

system because its notation is simple [12].

 Generating Code for Simple Dynamic Web Applications via Routing Configurations 3

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 11, 1-12

The data model of user accounts and session data are

common to every pp application. If as above our

database engine is MySQL (MariaDB) then we write an

SQL file 'Gen_home/CONFpp/pp.sql' like:

DROP TABLE IF EXISTS `account`;

CREATE TABLE `account` (

 `account` varchar(10) NOT NULL,

 `password` varchar(10) NOT NULL,

 PRIMARY KEY (`account`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

DROP TABLE IF EXISTS `session`;

CREATE TABLE `session` (

 `session_id` varchar(40) NOT NULL DEFAULT '',

 `account` varchar(10) DEFAULT NULL,

 `login_datetime` datetime DEFAULT NULL,

 PRIMARY KEY (`session_id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

DROP TABLE IF EXISTS `session_data`;

CREATE TABLE `session_data` (

 `session_id` varchar(40) NOT NULL DEFAULT '',

 `name` varchar(20) DEFAULT NULL,

 `value` text,

 `dumped` tinyint(1) DEFAULT '0',

 `updated_time` datetime,

 KEY `session_id` (`session_id`),

 FOREIGN KEY (`session_id`) REFERENCES

 `session`(`session_id`) ON DELETE CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

DROP TABLE IF EXISTS `pp_data`;

CREATE TABLE `pp_data` (

 `name` varchar(20) NOT NULL,

 `value` text character set utf8,

 PRIMARY KEY (`name`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

The table 'account' and 'session' store account info and

session id, respectively. The table 'session_data' stores

data used throughout the session. The table 'pp_data'

stores data specified in the file 'conf_pp_data.json'.

To register pp applications we also write another SQL

file 'Gen_home/CONFpp/app.sql' :

DROP TABLE IF EXISTS `app`;

CREATE TABLE `app` (

 `name` varchar(20) DEFAULT NULL,

 `code` int(11) NOT NULL AUTO_INCREMENT,

 `register_datetime` datetime,

 PRIMARY KEY (`code`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

DROP TABLE IF EXISTS `app_data`;

CREATE TABLE `app_data` (

 `app_code` int(11) NOT NULL DEFAULT '0',

 `name` varchar(20) DEFAULT NULL,

 `value` text character set utf8,

 `dumped` tinyint(1) DEFAULT '0',

 PRIMARY KEY (`app_code`,`name`),

 KEY (`name`),

 FOREIGN KEY (`app_code`) REFERENCES `app`(`code`)

ON UPDATE CASCADE ON DELETE CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

DROP TABLE IF EXISTS `role`;

CREATE TABLE `role` (

 `account` varchar(10) NOT NULL,

 `app_code` int(11) NOT NULL DEFAULT '0',

 `uadmin` tinyint(1) NOT NULL DEFAULT '0',

 `admin` tinyint(1) NOT NULL DEFAULT '0',

 PRIMARY KEY (`account`,`app_code`),

FOREIGN KEY (`account`) REFERENCES

`account`(`account`) ON UPDATE CASCADE ON DELETE

CASCADE,

FOREIGN KEY (`app_code`) REFERENCES `app`(`code`)

ON UPDATE CASCADE ON DELETE CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

DROP TABLE IF EXISTS `user_data`;

CREATE TABLE `user_data` (

 `account` varchar(10) NOT NULL,

 `app_code` int(11) NOT NULL DEFAULT '0',

 `name` varchar(20) NOT NULL,

 `value` text character set utf8,

 `dumped` tinyint(1) DEFAULT '0',

 PRIMARY KEY (`account`,`app_code`,`name`),

FOREIGN KEY (`account`) REFERENCES

`account`(`account`) ON UPDATE CASCADE ON DELETE

CASCADE,

FOREIGN KEY (`app_code`) REFERENCES `app`(`code`)

ON UPDATE CASCADE ON DELETE CASCADE,

FOREIGN KEY (`name`) REFERENCES

`app_data`(`name`) ON UPDATE CASCADE ON DELETE

CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

These tables are created here because they have to exist

before generating a pp application and we postpone

explanation of them until the next subsection.

Then we run a Perl script 'generate_pp.pl' on

Gen_home to do the following:

(1) to create a database instance 'pp' in MySQL and

execute 'pp.sql' to create the tables above and register

'DbUser' as a superuser for 'pp' and grant update, insert,

delete to 'WebServerUser' and store the data for pp in

'pp_data'.

(2) to make the directories under the web home and

copy the static libraries and javascript files and css files

and image files which are common to every pp

application to the directories 'the_web_home/pp/mylib',

'the_web_home/pp_d/js', 'the_web_home/pp_d/css',

'the_web_home/pp_d/img', respectively.

(3) to just execute 'app.sql'.The static libraries under

the directory 'mylib' include mysession.pm which deals

with session control and myview.pm which gives basic

HTML printing methods and mymodel/mymysql.pm

which gives basic access to MySQL (or MariaDB).

These libraries are basic to pp applications as we explain

later.

B. Application Setting

In this part we set up the environment of an individual

pp application. Let the name of a pp application we are

going to configure be 'test'. Then first we write a JSON

configuration file

Gen_home/CONFapp/conf_test_data.json like:

4 Generating Code for Simple Dynamic Web Applications via Routing Configurations

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 11, 1-12

{

 "AppData":

 {

 "AppName": "test",

 "AppOwner": "kajitori",

 "MenuItem": "logout,config",

 "AppModel":

 {

 "ModelName": "requested books",

 "ModelType": "mymysql"

 }

 }

}

This is an example of a configuration of a simple pp

application 'test' which accepts and stores a request for

books to be bought by a library and will be explained

further and demonstrated in the next section. For 'test'

we also need a model definition to be executed by a

database engine of “ModelType”. The model type for

'test' is configured above to be 'mymysql' and so we use

'mymysql.pm' as the module for database tasks of 'test'

and we write a model definition in the language of

MySQL (MariaDB) :

DROP TABLE IF EXISTS `test_request`;

CREATE TABLE test_request (

 `id` varchar(50) NOT NULL PRIMARY KEY,

 `book_info` varchar(60) character set utf8,

 `requester` varchar(150) character set utf8,

 `department` varchar(30)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

At this point, we run the script 'generate_app.pl' by:

$./generate_app.pl test

To do the following:

(1) to create the directory for the application

'the_web_home/pp/test'.

(2) to register the application to the table 'app' and set

the application data in the above configuration file to the

table 'app_data' in the database 'pp'.

(3) according to MVC (Model, View, Control) model

for applications, to generate from templates

'model_template', 'view_template', 'control_template'

under 'Gen_home/CONFpp/mylib/TEMPLATE' the

modules 'test_model.pm', 'test_view.pm' and

'test_control.pm' under 'the_web_home/pp/test'.

(4) to just execute 'test.sql'. The module

'test_model.pm' defines CRUD routines for the model of

the application which are higher level routines than those

of the basic modules under

'the_web_home/mylib/mymodel' (of course

'test_model.pm' uses those basic model modules). The

module 'test_view.pm' defines HTML writing routines

which again use and are higher in level than those in

myview.pm in 'the_web_home/pp2/mylib'. The module

test_control.pm defines (by our definition of 'control' for

our system) wrapper routines which utilize routines

whose code cannot be generated by our system e.g.

routines for reading marksheets (see section V).

C. Routing Setting

For pp applications the routing is done by a web script

file (in our case a Perl program file) which we call a

uibase (user interface base) file because it is organized by

managing user requests and responses to users.

The function of a uibase can be expressed by an action

diagram of UML as in Fig.1 below.

Fig.1. Action diagram for a uibase

At each time a uibase gets a request from the user, it

checks the user's eligibility for the request at the 'Check

Access' node in the diagram. This check process is

done by creating an object of 'mysession.pm' package in

'mylib'. The object sets in itself many parameters in

'app_data' and 'session_data' to fit the user's environment.

If the check is ok, then the uibase routes the request to

some actions of our library and show the next user

interface as a response.

The skeleton of a uibase file is as follows (we only

write comments) :

#!/usr/bin/perl

Set a session object

Check access

Routing

A uibase file is automatically generated from a

template 'uibase_template' under the 'TEMPLATE'

directory which writes the above skeleton in Perl without

the routing part and a uibase configuration file

'conf_test_uibase.json' under 'Gen_home/CONFapp':

{

 "UiBase": [

 {

 "UiBaseName": "user",

 "MenuItem": "logout, ...",

 "Role": "user",

 "Route": [

 {

 "RoutePath":"print_page_show_record",

 Generating Code for Simple Dynamic Web Applications via Routing Configurations 5

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 11, 1-12

 "Action": [

 {

 "ActionName":"test_model::search_table(...)",

 "ActionOutput": "recs",

 "Target": "print_page_show_record"

 },

 {

 "ActionName":"print_page_show_record(...)"

 }

]

 },

 {

 "RoutePath": "",

 "Action": [

 {

 "ActionName":"print_page_add_record(...)"

 }

]

 },

 {

 "RoutePath": "add_record",

 "Action":[

 {

 "ActionName":"test_model::add_record"

 },

 {

 "ActionName":"print_page_message(...)"

 }

]

]

 }

]

}

In the above, '…' part means the real content is omitted

for brevity (the same in the followings).

The above expression is a JSON object for which the

only attribute is “Uibase” whose value is an array of

uibases but usually it includes only one uibase. The

general form of the object is:

{

 "Uibase": [

 {

 "UiBaseName": "…",

 "MenuItem": "…",

 "Role": "…",

 "Route": [

 ...

]

 },

 {

 ...

 }

]

}

The value of "UiBaseName" will be the name of the

uibase file which will be generated based on this

configuration.

"MenuItem" determines the menu items to be shown

on every page of the uibase. "Role" means the role the

user must be admitted in the table 'role'. The 'role' table

determines whether it admits each of the three roles 'user',

'uadmin' and 'admin' to each (account, application) pair.

"Route" is an array of routes each of which is an object of

the form:

{

 "RoutePath": "….",

 "Action": [

 {…},

 {…}

]

}

If the request URL has a PATH_INFO which matches

the value of "RoutePath" of a route, then the actions of

"Action" of the route are invoked in the order in the array.

For 'conf_test_uibase.json', for example, if the request

URL is:

http://localhost/pp/test/user/print_page_show_record

, then the uibase 'user' prints an HTML page displaying

all the records as explained in detail below.

if "ActionName" begins with "print_page", then the

action object is of the form:

{

 "ActionName": "print_page_...",

 "PageOutput":

 {

 …

 }

}

or otherwise

{

 "ActionName": "...",

 "ActionOutput": "...",

 "Target": "..."

}

In the former case the action is printing an HTML page

and "PageOutput" is the content of the page. In the above

example configuration there is no "PageOutput" because

all "print_page_..." methods in the above example are

custom methods defined in the module 'test_view.pm'

which are just inherited from the template

'view_template' under the template directory

'Gen_home/CONFpp/mylib/TEMPLATE'. The more we

use custom methods the less configuration we must write

and the more we can benefited by the code generation.

Examples of "PageOutput" will appear in section V.

In the latter case, "ActionOutput" is optional because

the method may not have an output. "Target" means the

name of the method which uses the output named by

“ActionOutput”. In the above example, the method

'test_model::search_table' targets and pass the output

records "recs" to the method 'print_page_show_record'

which of course amounts to showing the search result.

The prefix 'test_model::' indicates (in Perl grammar) that

the method is defined in the 'test_model.pm' module

under 'the_web_home/pp/test'.

There may be more than one uibase configuration

6 Generating Code for Simple Dynamic Web Applications via Routing Configurations

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 11, 1-12

which in turn can be separated into more than one file.

Then we run the script 'augment_uibase.pl' by:

$./augment_uibase.pl test

To do the following:

(1) to join the uibase configurations altogether to make

an array of uibases and write it into the file

'conf_augmented_test_uibase.json'.

Actually there is another important role of the script

'augment_uibase.pl', namely to 'augment' routes for

update, delete, download, but since the 'test' application

does not use this augmentation, our explanation of this

role will be postponed until the section V.

Now that we have all the uibase configurations in a file,

we generate the all uibase files by executing:

$./generate_uibase.pl test

This command actually does for each uibase

cofiguration the following:

(1) to create the uibase file of the name determined by

the "UiBaseName" under 'the_web_home/pp/test'.

(2) to open 'uibase_template' under

'Gen_home/CONFpp/mylib/TEMPLATE'. Replace in the

template the temporary expressions "_UiBaseName",

"_Role", "_AppName", "_DbUser", "_MenuData" by

their real values for the uibase.

(3) to replace in the template the expression

"_ROUTING" by the real routing code for the uibase.

(4) to write the content of the template into the uibase

file.

In (3) the real routing code for the uibase is generated

for each “Action” array of the uibase as follows:

(a) the routing of the action array is of the form:

elsif($path_info eq '/_route_path_'){

 ...

 ...

}

, where '_route_path_' is the value of "RoutePath" for

which the action array is defined and the '...' parts will be

fulfilled with the expressions for the actions in the action

array.

(b) if the action is not a 'print_page_...', then the code

for the action is of the form:

my $_output_=_class_::_action_;

, where 'my $_output_=' is omitted if the action has no

"ActionOutput", otherwise the part '_output_' is the value

of "ActionOutput". The part '_action_' is the value of

"ActionName". If the value of "ActionName" does not

include '::', then '_class_' will be 'test_control' and if

"ActionName" already include '::', namely the class is

already determined, then '_class_::' is omitted and we

assume that the action is already defined in the module of

the class (we call them 'custom methods'). The part

'_action_' may include the argument part '(...)' at the end

and in that case the arguments should be appropriately

added '$' (if we use Perl).

(c) if the action is a 'print_page_...', then the code for

the action is of the form:

test_view::print_page_...;

, where the part '...' includes not only the name of the

action but also the argument part '(...)' which contains the

argument determined from the value of "PageOutput".

The value of "PageOutput" which is a JSON expression is

transformed into the corresponding structure of Perl and

written as an argument of the action. If "PageOutput" is

not defined, then we assume that the action is already

defined in the module 'test_view.pm', namely the action is

a custom method of the module 'test_view.pm'. An

example of the value of "PageOutput" and its

transformation into a Perl structure will be shown in

section V.

IV. THE TEST EXAMPLE

In the previous section, the configuration files are

written for a pp application 'test'. In this section, we show

how the application 'test' works and how its code can be

effectively generated by our system.
The aim of 'test' is simple:

(1) to register a request for a book to be purchased by

the library.

(2) to show all the requests so far registered.

We demonstrate 'test' by showing a login view in Fig.2

and a view for (1) in Fig.3 and a view for (2) in Fig.4

(below WebExecPath is 'pp2' not 'pp').

Fig.2. A login view

Fig.3. A view for registering a request

 Generating Code for Simple Dynamic Web Applications via Routing Configurations 7

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 11, 1-12

Fig.4. A view for showing all the requests

To accomplish the aim we needed just the following

configuration files as we described in the previous

section:

Table 1. The configuration files for 'test'

File name # of characters # of words

test.sql 255 31

conf_test.data.json 144 13

conf_test_uibase.json 670 52

Total 1069 96

On the other hand the following files are automatically

generated for 'test' under 'the_web_home/pp2/test'.

Table 2. The generated files for 'test'

File name # of characters # of words

test_model.pm 3581 398

test_view.pm 3867 523

user 1998 174

Total 9446 1095

The number of characters is counted by using

LibreOffice Writer (which counts space). The number of

words is counted by LibreOffice Writer except that we

count it by vision for JSON files. The difference between

the size of the configuration files and the size of the

generated files is huge (the ratio is about 1:10) because in

'test' the methods are custom methods which are prepared

in the templates.

In the above figures, HTML styles are controlled by

the default CSS file prepared for pp application (see the

next section for details).

V. AN EXAMPLE USING AN EXTERNAL LIBRARY

In this section we present an example of a pp

application that uses an external library for which our

code generating system cannot generate code from

configurations.

A. the aim of the application

We name this pp application (as in a configuration file

below) 'reo' because it returns scanned exam answer

sheets already graded to the students (return exam online).

The external library we use for reo does the job of

reading the student ids marked on marksheets on students'

answer sheets. Note that although the external library

reads ids correctly almost all the time from marksheets,

we need to check its correctness anyway. To use 'reo' the

teacher should prepare in advance a PDF file (or a zipped

file) of the scanned answer sheets on each of which a

marksheet is printed on one side for marking the student

id.

The 'reo' aims at the following functions:

(1) A teacher registers an exam file stated above.

(2) After the exam file is uploaded, it is separated into

pages and marksheets on all the pages are read (so the ids

are 'identified'). Then, the images of the marksheets and

the corresponding student ids are returned to be checked

by the teacher.

(3) After the teacher checks the correspondence and

corrects it if necessary, he or she submits the check result.

Then, the application creates for each student id a PDF

file consisting of the student's answer sheets.

(4) A student upon login can see or download a PDF

file of exam answer sheets he or she wrote.

We demonstrate views for (1) to (4) below in Fig.5 to

Fig.8.

Fig.5. A teacher's view for adding an exam

Fig.6. A teacher's view for checking the student ids.

8 Generating Code for Simple Dynamic Web Applications via Routing Configurations

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 11, 1-12

The empty image means that it is a back of a sheet and

no marksheet on it, hence the same sid (student id) is

assigned as the previous page.

Fig.7. A teacher's view for all exams registered by the teacher.

Fig.8. A student's view for downloading

B. Role of Control Module

Unlike the 'test' application in the previous section, the

pp application 'reo' has a control module 'reo_control.pm'

(C in MVC model) other than 'reo_model.pm' and

'reo_view.pm' (M and V in MVC model). For pp

applications, a control module acts as a wrapper to an

external library and we do not provide with a way to

generate it so we have to write it manually. We have a

static library for manipulating marksheet named

'marksheet.pm' under 'mylib'. This module does the

following:

(1) to separate a file into the pages (image files) and

read a sequence of numbers from a marksheet on each

page. The method name is '_read_marksheet'.

(2) to create a PDF file consisting of the pages of the

same sequence. The method name is '_create_sid_pdf'.

Then for example, in 'reo_control.pm', a method

'read_marksheet' is defined as:

sub read_marksheet {

my $ms=shift;

…

my $corres = marksheet::_read_marksheet(

 $ms->{session_data}->{upfile_name},

 ...

);

return $corres;

}

If the external library is written so as to be used

directly in uibases, then we can dispense with a control

module. Actually 'marksheet.pm' can be used directly in

uibases and we can dispense with 'reo_control.pm', but

we wrote it anyway because otherwise the configuration

of uibases would be complicated.

C. Configuration files for REO

As in the case of 'test' application, we write

'conf_reo_data.json' for basic settings like "AppName"

and "AppModel", and so on. But this time the file

'conf_reo_data.json' includes an attribute "Augment" of

the object "AppModel" as below:

 "AppModel":
 {
 …,
 "Augment":
 [
 {
 "UiBaseName": "teacher",
 "AugmentItem":

 {

 "Update": "",

 "Delete": ""

 }

 },

 {

 "UiBaseName": "student",

 "AugmentItem":

 {

 "Download": ""

 }

 }

]

 }

The 'Augment' configuration and HTML custom types

defined in 'myview.pm' dispense us from very tedious

coding of user interfaces for update, delete for records of

database tables, and download of files. In the above

configuration it is designated, for example, that the uibase

'teacher' should include the routing code for updating

table, namely showing an HTML table for updating a

record and committing it to the database and reporting the

result to the user. To include these routing code,

'augment_uibase.pl' mentioned in section III adds JSON

code so that 'generate_uibase.pl' should generate these

routing code. In 'reo' application these routing are

invoked by custom HTML types 'updateByIdButton',

'deleteByIdButton' and 'downloadByIdButton' which are

explained further when we describe the configuration of

uibase 'teacher'.

We assume that data structures of pp applications are

not complicated. So, we had better model it by directly

writing SQL script files. Here is our definition of the

model for 'reo', 'reo.sql':

DROP TABLE IF EXISTS `reo_exam`;

 Generating Code for Simple Dynamic Web Applications via Routing Configurations 9

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 11, 1-12

CREATE TABLE reo_exam (

 `id` varchar(50) NOT NULL PRIMARY KEY,

 `exam_name` varchar(60) character set utf8,

 `upfile_name` varchar(150) character set utf8,
 `account` varchar(10)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

DROP TABLE IF EXISTS `reo_student_doc`;

CREATE TABLE `reo_student_doc` (

 `id` varchar(50) NOT NULL PRIMARY KEY,

 `sid` varchar(10) NOT NULL,

 `exam_id` varchar(50),

 `file_name` varchar(150) NOT NULL,

 UNIQUE(`sid`,`exam_id`),

 KEY `exam_id` (`exam_id`),

 FOREIGN KEY (`exam_id`) REFERENCES

`reo_exam`(`id`) ON DELETE CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE VIEW `reo_student_view` AS

 SELECT reo_student_doc.id, reo_student_doc.sid,

reo_exam.exam_name, reo_student_doc.file_name

 FROM reo_exam, reo_student_doc

 WHERE reo_exam.id=reo_student_doc.exam_id;

This defines indeed a simple data model with just two

tables and one view. The table 'reo_exam' stores

uploaded file information for each teacher account and

the table 'reo_student_doc' stores PDF file information

for each student id. The view 'reo_student_view' is set

for viewing PDF information with exam names not with

ids.

We would like to generate two uibase files, 'teacher' for

teachers and 'student' for students. For teachers we write

a configuration 'conf_reo_uibase.json' under

'Gen_home/CONFapp':

{

UiBase":[

 {

 "UiBaseName": "teacher",

 "MenuItem": "...",

 "Role": "uadmin",

 "Route": [

 {
 "RoutePath": "",

 "Action": [

 {

 "ActionName":"print_page_add_record(…)

 }

]

 },

 {
 "RoutePath": "add_record",

 "Action": [

 {

 "ActionName": "reo_model::add_record"

 },

 {

 "ActionName": "read_marksheet",

 "ActionOutput": "img_page_sid_taio",

 "Target": "print_page_check_sid"

 },

 {

 "ActionName": "print_page_check_sid",

 "PageOutput":

 {
 "PageTitle": "check sid",

 "Content": [

 {

 "ContentType": "form",

 "FormAction": "create_sid_pdf",

 "Content": [

 {

 “ContentType": "table",

 “Column": [

 {

 "ColumnTitle": "marksheet img",

 "Content": [

 {

 "ContentType": "image",

 "ImageUrl": 0

 }

]

 },

 {

 "ColumnTitle": "sid",

 "Content": [

 {

 "ContentType": "input",

 "InputType":"text",

 "InputName": 1,

 "InputValue": 2

 }

]

 }

]

 }

]

 }

]

 }
 }
]

 },

 {
 "RoutePath": "create_sid_pdf",

 "Action": [

 {

 "ActionName": "create_sid_pdf"

 },

 {

 "ActionName": "print_page_message(…)"

 }

]

 },

 {
 "RoutePath": "print_page_account_exams",

 "Action": [

 {

 "ActionName":"reo_model::search_table_ByAccount(...)",

 "ActionOutput": "exam_events",

 "Target": "print_page_exam_events"

 },

 {

 "ActionName": "print_page_exam_events",

 "PageOutput":

 {
 "PageTitle": "account exams",

 "Content": [

 {
 "ContentType": "table",

 "Column": [

10 Generating Code for Simple Dynamic Web Applications via Routing Configurations

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 11, 1-12

 {

 "ColumnTitle": "exam",

 "Content": [

 {

 "ContentType": "text",

 "TextType": "raw",

 "Text": 1

 }

]

 },

 {

 "ColumnTitle": "",

 "Content": [

 {

 "ContentType": "deleteByIdButton",

 "Table": "reo_exam",
 "Id": 0

 }

]

 },

 {

 "ColumnTitle": "",

 Content": [

 {

 "ContentType": "updateByIdButton",

 "Table": "reo_exam",

 "Id": 0

 }

]

 }

]

 }

]

 }
]

 }
]

 }

]

}

This JSON expression consists mostly of an array

"Route" of routes and each route contains an array

"Action" of actions just as in 'conf_test_uibase.json'.

This time each action is not necessarily a custom method

already defined in a module. We colored the parentheses

and the value of "RoutePath" of each route by red and

boldfaced them for visibility.

In the above configuration, there are two

'print_page_...' actions which have "PageOutput"

definitions (those page outputs are marked green). If a

'print_page_...' action is not already defined in the

template 'view_template' from which 'reo_view.pm' is

generated, then we have to define it by writing a page

output. The value of a "PageOutput" is a JSON object

whose “Content” array should be transformed into an

HTML page content by a method in the module

'reo_view.pm' for which we have to generate code. The

code we generate for a value of "PageOutput" is just a

wrapper of the method 'print_ page' in 'myview.pm'.

Thus the code is of the form :

sub print_page_… {

 my $ms=shift;

 my $menu=shift;

 my $option=shift;

 myview::print_page ($ms,$menu,

 {

 'PageTitle' => '...',

 'Content' => [

 ...

]

 },

 $option

);

}

Here, the Perl object

 {
 'PageTitle' => '...',

 'Content' => [

 ...

]

 }

is just a direct translation of the JSON object, i.e. the

value of the "PageOutput" into a Perl object.

The '$option' is an object of options which may contain

'$option→{Data}' which sends dynamic data for HTML

code. In the above configuration, the first page output

includes an HTML content like :

 {
 "ContentType": "image",
 "ImageUrl": 0
 }

which shows this content is '' type. Since

in this case '$option→{Data]' is an array reference, the

'src' attribute of the 'img' tag has the value :

 $option→{Data}→[0].

The '$option→{Data}' could be a Perl object of the

form :

{ ""=>…, "..."=>…, ... }

in which case the above 'src' attribute has the value :

$option→{Data}→{""}→[0]

, and other assignments are reserved for other kinds of

data.

Options are passed in a variable '$option' whose code

is written in a uibase file as:

elsif($path_info eq '/add_record'){

 reo_model::add_record($ms);

 my $corres=reo_control::read_marksheet($ms);
 reo_view::print_page_check_sid (

 $ms,

 \@menu_data,

 {css_path => ['/pp_d/css/reo.css'], Data => $corres}

);

}

 Generating Code for Simple Dynamic Web Applications via Routing Configurations 11

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 11, 1-12

In this routing in the uibase file 'teacher' for the 'reo'

application the red highlighted part is the option. This

option includes two option data. One determines HTML

style of the page. The other determines the dynamic data

in the page as follows. The 'targeted' action

'print_page_check_sid' accepts as an option the output

'$corres' of the action 'read_marksheet' which targets

'print_page_check_sid'.

The second page output describes the content of the

HTML table of the registered exams whose columns

include the columns for the two HTML buttons

'updateByIdButton' and 'deleteByIdButton' (see Fig.7).

These buttons are defined as custom HTML types in

'myview.pm' just as those submit buttons for HTML

forms for updating or deleting a record by id.

We need for 'reo' another uibase configuration for

students which we named 'conf_reo_uibase2.json', but we

do not present it here because no new features are in it

except an HTML custom type 'downloadByIdButton'

which is similar to 'updataByIdButton' and

'deleteByIdButton' described above.

Next as the previous section we compare the size of the

configuration files and the size of files under

'the_web_home/pp':

Table 3. The manually written files for 'reo'

File name # of characters # of words

reo.sql 803 85

conf_reo.data.json 546 54

conf_reo_uibase.json 2930 207

conf_reo_uibase2.json 1281 94

reo_control.pm 1101 67

Configuration Total 6561 507

marksheet.pm 6744 565

Total 13305 1072

Table 4. The files under 'the_web_home/pp' used by 'reo'.

File name # of characters # of words

reo_model.pm 3306 345

reo_view.pm 8697 643

reo_control.pm 1101 67

teacher 3042 255

student 1710 154

Produced Total 17856 1464

marksheet.pm 6744 565

'reo' files Total 24600 2029

mysession.pm 12025 1130

myview.pm 9012 745

mymysql.pm 3961 359

myfile.pm 2700 302

myroutine.pm 4395 377

MylibTotal 32093 2913

Total 75750 6543

'Produced Total' means the total of generated files and the manually

written control file for 'reo'.

''reo' files Total' means the total of the files specific to the application

'reo'.

If we assume that the 'marksheet.pm' is provided as a

static library before coding the 'reo' application, then the

manually prepared files for 'reo' amount in size to about

one third of files generated or used as is (represented

altogether as 'produced' in the table) in the directory

'the_web_home/pp/reo', which is compared to the result

for 'test' where the configuration files amount to one tenth

of the generated files.

If we assume that we have to code marksheet.pm when

we implement the 'reo' application, then the ratio

decreases to about a half. But still the libraries doing

authentication, session handling, file uploading &

downloading, and custom HTML types and custom

methods help implementing the application avoid

temporal coding of basically important functions.

VI. CONCLUSION AND FINAL REMARKS

Our first example 'test' shows that our code generation

system is quite effective if the application needs just

'routines' which our system prepares as custom methods

or types. The second example 'reo' shows that our pp

libraries and custom types and methods can still be useful

in that it helps us concentrate on coding functions which

is not generic (in the sense of our system).

To edit configuration files in JSON format, we had

better use a JSON processor like jq [11] because such a

JSON processor can check the syntactical correctness of

JSON expressions and pretty-prints them which makes

our system much easier to use. We write the contents of

HTML page outputs in JSON not in HTML directly

because JSON is easier to input with the assistance of

those JSON processors. But it seems not hard to modify

our system to be able to write HTML page outputs in

HTML as well as in JSON.

The more custom methods and custom types are

defined, the more useful our system will become as a way

of generating web code and it will be so if we go on

writing web applications by using our system because we

would get more reusable code for our system.

Our method of generating web code described in this

paper can be seen as an automation of the way of coding

web applications which the author has used in recent

years. The author wanted to treat the method in a more

systematic way. For example, it is certainly desirable to

have a systematic way of handling errors which occur

during the code generation with suggesting ways to

correct them and achieve what we want. We have written

some error checking code in our code generating scripts

but they are not enough because they are not exhaustive

nor sufficiently suggestive at all. Ontological or semantic

description of web applications have been studied

[13][14]. We expect that ontological or semantic

approaches would help make our automation of coding

more systematic. This will be our future investigation.

REFERENCES

[1] K.Kajitori, K. Aoki, S. Ito, Developing a Compact and

Practical Online Quiz System, International Journal of

Modern Education and Computer Science(IJMECS), Vol.6,

No.9, 1-7 (2014).

[2] K.Kajitori, K. Aoki, Implementation of a Simple

Document Repository System, International Journal of

12 Generating Code for Simple Dynamic Web Applications via Routing Configurations

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 11, 1-12

Modern Education and Computer Science(IJMECS), Vol.8,

No.9, 12-19 (2016).

[3] Schwabe, D., Rossi, G., Esmeraldo, L., Lyardet, F., Web

design frameworks: An approach to improve reuse in web

applications, Web Engineering pp.335-352 (2001).

[4] Nitish Pathak, Girish Sharma, B.M.Singh, Experimental

Analysis of SPF Based Secure Web Application,

International Journal of Modern Education and Computer

Science(IJMECS), Vol.7, No.2, 48-55 (2015).

[5] Radošević, Danijel, and Ivan Magdalenić, Source code

generator based on dynamic frames. Journal of Information

and Organizational Sciences, 2011.

[6] Radošević, Danijel, and Ivan Magdalenić. "Python

implementation of source code generator based on

dynamic frames." MIPRO, 2011 Proceedings of the 34th

International Convention. IEEE, 2011.

[7] Kvesić, A., Radošević, D., Orehovački, T.:"Dynamic

Frames Based Generation of 3D Scenes and Applications",

Acta Graphica, ISSN: 0353-4707, 26(1-2), 11-19, 2015.

[8] Mansurov, N. and Ragozin, A. Using declarative mappings

for automatic code generation from {SDL} and asn.1. In

Lahav, R. D. v. B., editor, {SDL} '99, pages 275 – 290.

Elsevier Science B.V., Amsterdam, 1999.

[9] Martin Kaufleitner, Code Generation from Configuration

Specification Languages -For Program Execution

Environment Configuration-, Seminar aus

Programmiersprachen, May 6, 2016.

[10] JSON, http://www.json.org

[11] jq, https://stedolan.github.io/jq/.

[12] Mohammed Ali, Tarek S. Sobh,*, Salwa El-Gamal,

Identity Management: Lightweight SAML for Less

Processing Power, International Journal of Information

Technology and Computer Science(IJITCS), Vol.7, No.4,

pp.42-49, 2015

[13] Amira Abdelatey, Mohamed Elkawkagy, Ashraf Elsisi,

Arabi Keshk, "Improving Matching Web Service Security

Policy Based on Semantics ", International Journal of

Information Technology and Computer Science(IJITCS),

Vol.8, No.12, pp.67-74, 2016.

[14] N. Kaur, H. Aggarwal,"Evaluation of Information

Retrieval Based Ontology Development Editors for

Semantic Web", International Journal of Modern

Education and Computer Science (IJMECS), Vol.9, No.7,

pp.63-73, 2017.

Authors' Profiles

Kazuaki Kajitori, Ph.D, is a professor

of the Department of Fisheries

Distribution and Management at

National Fisheries University in Japan.

In teaching, he has been in charge of

classes of mathematics and statistics

and computer sciences. In his classes,

he has been utilizing IT methods

extensively. He wrote online texts and

courses' home pages and conducted many online exams and let

students do online exercises as the preparation of online exams.

In research, he has studied mathematical logic which led him

computer related fields like data mining and databases and e-

learning. He has developed several web applications including

one treated in this paper.

How to cite this paper: Kazuaki Kajitori, "Generating Code for Simple Dynamic Web Applications via Routing

Configurations", International Journal of Modern Education and Computer Science(IJMECS), Vol.9, No.11, pp. 1-12,

2017.DOI: 10.5815/ijmecs.2017.11.01

