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Abstract—Sensor networks are appealing targets for 

malicious attacks that invade the network with the aim of 

depleting the confidentiality, availability and integrity 

(CIA) features/parameters of neighboring sensor nodes. 

This is due to its open communication, minimal resources 

and its deployment in un-trusted, unguarded and 

unfriendly terrains. To restrict illegitimate users or 

malicious attackers (such as worms) network analysts 

have suggested network access control (NAC). 

Specifically, we apply NAC to wireless sensor network 

epidemic models in order to investigate distribution 

density, transmission range and sensor area/field. Our 

analyses involved analytical expressions of two sensor 

fields gleaned from literature. Additionally, we explored 

the possibilities of infectivity of sensor nodes at the 

exposed class using the two expressions for sensor field 

topologies. We also derived the reproduction ratios and 

solutions at several equilibrium points for the models. It 

is our hope that that our work herein would impact sensor 

deployment decisions for organizations that utilize 

wireless sensor networks for meaningful daily activities. 

 

Index Terms—Epidemic Theory, Wireless Sensor 

Networks, Network Access Control, Random Distribution. 

 

I.  INTRODUCTION 

The immense uses of Wireless Sensor Networks have 

made it a prominent technology of this era. This kind of 

networks mostly allows the random deployment of sensor 

nodes in un-trusted terrains without predetermined or 

engineered position. This emerging technology consists 

of miniaturized but low battery-powered devices that 

incorporate minimal sensing, processing, computation 

and radio transmission capabilities [1]. Its huge potential 

is evidently seen in its ability to provide dynamic and 

adaptable architectures for diverse applications in homes, 

healthcare, industry and in the military [1],[2]. 

Specifically, WSN applications are seen in the military 

(for monitoring forces/equipments, battlefield 

surveillance, reconnaissance, targeting, battle damage 

evaluation); the home and in the environment (for 

biocomplexity mapping, precision agriculture, fire and 

flood detection etc) [1,3]. Its use extends also to health 

applications (for telemonitoring of data, 

tracking/monitoring of doctors/patients and drug 

administration) and other commercial applications [3]. 

As shown in Fig 1, WSNs are “multi-hop packet based 

networks”[4] that consists of sensor nodes which are 

distributed in a sensor field where they are wirelessly 

connected to the sink [5]. They track, record and send 

ambient territorial parameters to a data collector (or base 

station) through “multihop infrastructureless” 

transmission between neighboring sensor nodes. The 

communication done in the open air medium [4] and its 

deployment in un-trusted, unguarded and unfriendly 

terrain, makes the WSN an easy target to external attacks 

that seek to delay/disrupt legitimate flow of information. 

These attackers exploit other open challenges of the WSN 

such as finite bandwidth, computational power, storage, 

and communication range; packets’ authentication, and 

uncertainty (in mobility, topology control, density, 

sensing accuracy) [1,3]. Modern research-based 

developments in sensor networks indicate that a 

malevolent attacker can utilize several innards of sensor 

nodes to outspread malicious codes all through the 

network without physical contact or human intervention 

[6]. As Giannetsos et al. [6] puts it, “such a method is to 

exploit memory related vulnerabilities, like buffer 

overflows, to launch a worm attack”.  

Attacks such as sinkhole, sybil, wormhole and hello 

flood in WSN are events that diminishes or eliminates a 

network's capacity to perform its expected function [7]; in 

other words these attacks deplete the confidentiality, 

availability and integrity (CIA) parameters of 

neighboring sensor nodes. To curb incidences of 

malicious code attacks in networks, analysts have 

proposed equation-based models to characterize, 

represent and understand spread patterns, strategies. 
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Often times the strength of particular model is determined 

by how much it can enhance understanding of malicious 

code transmission.  

 

 

Fig.1. Wireless Sensor Networks Environment [32]  

 

II.  RELATED WORKS 

Researchers in network security have discovered that 

there exist similar features between virus spread in 

biological networks and the propagation of malicious 

codes in telecommunication networks. With the 

development of the widely applied Susceptible-Infected-

Removed (SIR) analytical model [8-10], the journey into 

investigating the infectious outcomes of a susceptible 

population in view of the interaction between “agent”, 

“host” and “environment” began. Usually referred to as 

“Epidemic models”, these system(s) of equations that 

implement the epidemic theory can be ordinary 

differential, partial differential, or difference (depending 

on the intention of the modeler). Aside its application, in 

public health, they are also evident in the characterization 

of computer networks [11], peer-to-peer (P2P) [12], 

wireless sensor networks [13] and the WWW [14] or the 

internet [15].  

To provide better understanding and to address security 

issues arising in the above networks, analysts have 

proffered (and involved) analytical solutions/suggestions 

to cater for the observed features of known malicious 

codes; they include inoculation, quarantine, time delay, 

effect of anti-malicious code softwares etc. Their 

suggestions are seen to be part of several models for 

instance the SIS, SEIR, SEIRS-V, SEIQR, SEIQRS-V etc.  

In a bid to represent the temporal and spatial dynamics 

of worms spreading over a sensor network, Khayam and 

Radha [16] developed the topologically-aware worm 

propagation model (TWPM) that considered the 

distribution of stationary and identical sensors on a grid 

governed by a two-dimensional, discrete-time random 

process. Their analysis included the expressions for the 

effects of medium access control (MAC) layer contention, 

network layer routing and transport layer protocol and 

their impacts on worm spread in WSN. In a later 

publication, the Khayam and Radha [17] used signal 

processing technique and a more advanced mathematical 

treatment to model propagation of worms in a sensor 

network.  

De, Liu and Das [18] assumed that malicious objects 

can starts its spread in a wireless sensor network due to 

either a compromised broadcast source or the lack of 

complex authentication schemes. In the light of this 

assumption they proposed an analytical model based on 

epidemic theory that involves the essential parameters of 

communication strategies of popular broadcast protocols 

such as Trickle, Deluge and MNP, so as to investigate 

speed and reachability.  

Tang and Mark [19] considered the addition of a 

maintenance capability to a group of identical and 

uniformly distributed sensors in a geographical area. 

Therein, the SIR model is modified to SIR-M (i.e., SIR 

with Maintenance) in order to investigate the impact 

transmission range and distribution density.  

Wang and Li [20] also modified the SIR model to iSIR 

model wherein the addition of the dead nodes (D) was 

considered; these are nodes who has exhausted their 

energy perhaps due to power consumption or due to 

malware activities. Simulation results of the iSIR model 

show that the process of worm propagation is sensitive to 

the topological structure of the network and the energy 

consumption of the sensor nodes.   

Tang and Mark [19] and Wang and Li [20] did not 

consider the sleep and work interleaving strategy 

employed for elongating the lifetime of sensor nodes in 

WSN. This shortcoming is alleviated by the EiSIRS 

model developed by Wang, Li and Li [21] to practically 

analyze the dynamics of worm propagation, and this 

model considered sleep and work states.  

The impact of medium access control (MAC) on the 

propagation dynamics of worm behavior was modeled by 

Wang and Yang [22] using the SI (Susceptible-Infected) 

model. Numerical simulations were used to show that 

increasing the network node density or the transmission 

range increased the number of infected nodes.  

Though Mishra and Keshri [13] didn’t consider the 

sleep/work interleaving policy, their Susceptible-

Exposed-Infectious-Recovered-Susceptible-Vaccination 

(SEIR-V) epidemic model involved the latent phase of 

malicious code spread (wherein the the usual speed of 

transmission of data become slow) and the inoculation of 

sensor nodes before the outset of malicious code (worm) 

infection.  

Mishra, Srivastava and Mishra [23] proposed the 

Susceptible-Infected-Quarantine-Recovered-Susceptible 

(SIQRS) epidemic model and Mishra and Tyagi [24] 

proposed the Susceptible-Exposed-Infectious-Quarantine-

Recovered with Vaccination (SEIQRS-V) epidemic 

model. Aside characterizing worm dynamics in WSNs, 

the symbolic solutions for the existent equilibrium states 

(worm free and endemic). Zhang and Si [25] proposed a 

delayed form of the SEIR-V epidemic model i.e. delay 

was used as the bifurcation parameter. To determine the 

direction of the Hopf bifurcation and the stability of the 

bifurcated periodic solutions, they used the normal form 

method and the center manifold theorem. 

Even though Feng et al. [26] failed to consider the 

exposed state of worm dynamics as well as the 

vaccination of sensor nodes in WSN, their Susceptible-

Infected-Recovered (SIR) epidemic model used the 

topological expression of Wang and Li [20] to study the 
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effect of communication range, network node density and 

energy consumption. In addition the jacobian method was 

used to investigate the local stability while the lyapunov 

theorem was used to study the global stability.  

On the other hand, to ensure network security some 

schools of thought have suggested Network Access 

Control (NAC) as a way of disallowing illegitimate 

users/nodes in WSNs [27,28]. According to Butun and 

Sankar [27], though NAC has been settled for traditional 

computer systems, it has not been investigated thoroughly 

in WSN scenarios. This is due to some inherent 

features/challenges of the sensor network which include 

open air communication, unreliable hardware, 

uniqueness/difficulty of access control, key renewal for 

newly deployed nodes and low-battery power. However, 

in traditional computer systems NAC has proved to be of 

immense benefits. For instance the CISCO version of 

NAC, called the Network Admission Control can harden 

a network, prevent network breaches, eliminates 

unauthorized network connections and identify, 

quarantine and remediate non-compliant/vulnerable 

devices in the network. Recently, a governing solution 

was derived for what seem like the NAC using classic 

epidemic models in [29]. This first order equation therein 

caters for quarantining and remediation of immigrant 

infected nodes through its Pre-quarantining compartment.  

In this paper, we modify the Quarantine-Susceptible-

Exposed-Infectious-Recovered-Susceptible with 

Vaccination (Q-SEIRV) epidemic model of [29] by 

applying Tang and Mark [19]’s expression for Sensor 

Field 1 and Wang et al. [20]’s expression for Sensor 

Field 2. Additionally, we explored the possibilities of 

infectivity of sensor nodes at the exposed class using the 

two expressions for sensor fields/WSN topologies which 

represents uniform random distribution of sensor nodes. 

This is aimed at investigating the effect of distribution 

density, transmission range and NAC on worm 

propagation.  

 

III.  THE NAC SEIRS-V MODEL 

To accurately represent malicious code spread with 

respect to time in a sensor network we propose the 

inclusion of distribution density (σ), transmission range 

( 𝑟2 ) in the Network Access Control–Susceptible–

Exposed–Infectious–Remediated–Vaccinated (NAC-

SEIRV) epidemic model. At first, we assume sensor 

nodes pass through a pre-screening process, where 

infectious immigrant nodes are isolated, treated and sent 

to the remediated compartment. This act of remediating 

infective sensor nodes closely mimics the “Remedial” 

nature of NAC. Sensor nodes that are free of any 

malicious code infection enter the susceptible sensor 

population. To a large extent the NAC applied here 

implements “the assume guilty till proven innocent” 

slogan of the cyber space. Inoculation of the susceptible 

sensor nodes provides additional immunization capability 

toward the outbreak of subsequent malicious code 

infections. 

 

 

Fig.2. Schematic diagram for the proposed NAC-SEIRV model (as 

adapted from [29]) 

It is seen from the loop that the dynamics of the NAC 

compartment is governed by the first order differential 

equation: 

 

�̇� =  λ − Q(d + 𝜂 + 𝜌 + 𝜔)                    (1) 

 

The solution of this equation is derived from the 

convolution integral as:  

 

Q (t) = 𝑒−(d+𝜂 +𝜌+𝜔)𝑡𝑄𝑜  + 

  
𝜆

(d+𝜂 +𝜌+𝜔)
 [1 − 𝑒−(d+𝜂 +𝜌+𝜔)𝑡]                   (2) 

 

𝑄𝑜  is the initial population. Our assumptions on the 

dynamical transfer of the population in Sensor field 1 are 

depicted as Fig 2. From the schematic diagram a system 

of ordinary differential equations are generated and it 

goes thus; 

 

�̇� = 𝜌𝑄 +  𝜃𝑉 +  𝜀𝑅 − 𝑆(𝛽𝐼𝜎𝜋𝑟0
2 + 𝑑 +  𝜇) 

�̇� = 𝛽𝑆𝐼𝜎𝜋𝑟0
2 − 𝐸(𝛾 + 𝑑) 

𝐼̇ =  𝛾𝐸 − 𝐼(𝜑 + 𝑑 + 𝛿)                   (3) 

�̇� =  𝜔𝑄 + 𝜑𝐼 − 𝑅(𝜀 + 𝑑) 

�̇� =  𝜇𝑆 − 𝑉(𝜃 + 𝑑) 

 

The assumptions on the dynamical transfer of the 

population using Sensor field 2 will affect equations for 

the susceptible and exposed class i.e. 𝛽𝑆𝐼𝜎𝜋𝑟0
2  is 

replaced by 𝛽𝑆𝐼𝜎 𝜋𝑟0
2 𝐿2⁄  in the schematic diagram of Fig 

2. The resulting system of ordinary differential equations 

are; 

 

�̇� = 𝜌𝑄 +  𝜃𝑉 +  𝜀𝑅 − 𝑆(𝛽𝐼𝜎 𝜋𝑟0
2 𝐿2⁄ + 𝑑 +  𝜇) 

�̇� = 𝛽𝑆𝐼𝜎 𝜋𝑟0
2 𝐿2⁄ − 𝐸(𝛾 + 𝑑) 

𝐼̇ =  𝛾𝐸 − 𝐼(𝜑 + 𝑑 + 𝛿)                      (4) 

�̇� =  𝜔𝑄 + 𝜑𝐼 − 𝑅(𝜀 + 𝑑) 

�̇� =  𝜇𝑆 − 𝑉(𝜃 + 𝑑) 

 

Given the above system of equation, the sensor nodes 

are uniformly and randomly deployed with a distribution 

density of σ and a transmission range of  𝑟0
2 , this implies 

that the effective contact with an infected node for 

transfer of infection is in the order of 𝜎𝜋𝑟0
2  for Sensor 

field 1 and in the order of 𝜎𝜋𝑟0
2 𝐿2⁄  for Sensor Field 2. 

Other parameters include; 𝜆 = inclusion rate of nodes into 

the network population, 𝛽 = infectivity contact rate, d = 

mortality or the death rate of nodes due to hardware or  
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software failure, 𝜂 =  death rate of infected immigrant 

nodes,   𝛿 = is the crashing rate due to attack of worms, 𝜀 

is the rate of transmission from remediated class to 

susceptible class, 𝜌  is the rate of transmission from 

quarantined to susceptible class, 𝛾  is the rate of 

transmission from exposed to infectious class, 𝜔 =  rate 

of transmission from quarantine class to remediated class. 

𝜑 =  rate of transmission from infectious to the 

remediated class, 𝜃  = rate of transmission from 

vaccinating class to susceptible class, 𝜎 is the vaccinating 

rate coefficient for the susceptible nodes.  

A. Solution at Equilibrium Points  

Equating the modified system of differential equations 

(3) to zero we obtain two solutions which are the worm-

free equilibrium and the endemic equilibrium points. 

Hence, a worm-free equilibrium of the model that exists 

is the same for both sensor fields and it goes thus; 𝑊𝑓 =  

(𝑆𝑓, 𝐸𝑓 , 𝐼𝑓 , 𝑅𝑓, 𝑉𝑓) =   

 

(
(𝑑+𝜃)(𝑑𝑄∗𝜌+𝜀(𝜑+𝑄∗(𝜌+𝜔)))

𝑑(𝑑+𝜀)(𝑑+𝜃+𝜇)
, 0,0,

𝜑+𝑄∗𝜔

𝑑+𝜀
,  

  
𝜇(𝑑𝑄∗(𝜌+𝜀(𝜑+𝑄∗((𝜌+𝜔)))

𝑑(𝑑+𝜀)(𝑑+𝜃+𝜇)
)                     (5) 

 

Sensor Field 1: At the endemic equilibrium there is 

presence of infection or disease i.e. worm in the wireless 

sensor network. Hence, an endemic equilibrium of the 

model exists at: 𝑊𝑒= 

 

𝑆∗ =  
(𝑑+𝛾)(𝑑+𝛿+𝜑)

𝛽𝛾𝜎πr0
2 ; 

𝐸∗ =
(

𝑑(𝑑+𝛾)(𝑑+𝜀)(𝑑+𝜃+𝜇)(𝑑+𝛿+𝜑)

𝛽𝛾(𝑑+𝜃)σπr0
2 −𝑄∗(𝑑𝜌+𝜀(𝜌+𝜔)))(−𝑑−𝛿−𝜑)

(𝑑+𝛾)(𝑑+𝛿)(𝑑+𝜀)+𝑑(𝑑+𝛾+𝜀)𝜑
  

𝐼∗ =
(

𝑑(𝑑+𝛾)(𝑑+𝜀)(𝑑+𝜃+𝜇)(𝑑+𝛿+𝜑)

𝛽𝛾(𝑑+𝜃)σπr0
2 −𝑄∗(𝑑𝜌+𝜀(𝜌+𝜔)))(−𝑑−𝛿−𝜑)

(𝑑+𝛿+𝜑)(
(𝑑+𝛾)(𝑑+𝜀)(𝑑+𝛿+𝜑)

𝛾
−𝜀𝜑)

   (6) 

𝑅∗ = 
𝑄∗𝛾𝜌𝜑+𝑄∗(𝑑+𝛾)(𝑑+𝛿+𝜑)𝜔−

𝑑(𝑑+𝛾)(𝑑+𝜃+𝜇)𝜑(𝑑+𝛿+𝜑)

𝛽(𝑑+𝜃)σπr0
2

(𝑑+𝛾)(𝑑+𝛿)(𝑑+𝜀)+𝑑(𝑑+𝛾+𝜀)𝜑
 

𝑉∗ =   
(𝑑+𝛾)𝜇(𝑑+𝛿+𝜑)

𝛽𝛾(𝑑+𝜃)σπr0
2  

 

Sensor Field 2: Here, an endemic equilibrium of the 

model exists at: 𝑊𝑒= 

 

𝑆∗ =  
𝐿2(𝑑+𝛾)(𝑑+𝛿+𝜑)

𝛽𝛾σπr0
2   

𝐸∗ =
(Ω −𝑑𝑄∗(𝜌−𝜀(𝜑+𝑄∗((𝜌+𝜔)))(−𝑑−𝛿−𝜑)

𝛾(
(𝑑+𝛾)(𝑑+𝜀)(𝑑+𝛿+𝜑)

𝛾
−𝜀)

  

𝐼∗ =
(Ω −𝑑𝑄∗(𝜌−𝜀(𝜑+𝑄∗((𝜌+𝜔)))(−𝑑−𝛿−𝜑)

(𝑑+𝛿+𝜑)(
(𝑑+𝛾)(𝑑+𝜀)(𝑑+𝛿+𝜑)

𝛾
−𝜀)

         (7) 

𝑅∗ = 

𝜑+𝑄∗(𝜔+
(Ω −𝑑𝑄∗(𝜌−𝜀(𝜑+𝑄∗((𝜌+𝜔)))(−𝑑−𝛿−𝜑)

(𝑑+𝛿+𝜑)(
(𝑑+𝛾)(𝑑+𝜀)(𝑑+𝛿+𝜑)

𝛾 −𝜀)

𝑑+𝜀
 

𝑉∗ = 
𝐿2(𝑑+𝛾)𝜇(𝑑+𝛿+𝜑)

𝛽𝛾(𝑑+𝜃)σπr0
2  

 

Where 

 

Ω = 
𝑑𝐿2(𝑑+𝛾)(𝑑+𝜀)(𝑑+𝜃+𝜇)(𝑑+𝛿+𝜑)

𝛽𝛾(𝑑+𝜃)σπr0
2  

IV.  TWO INFECTIVITY RATES 

With the addition of an infectivity rate for the exposed 

class, the transfer for the susceptible class to the exposed 

class becomes something different. The system of 

differential equations for two infectivity rates is;  

 

�̇� = 𝜌𝑄 +  𝜃𝑉 +  𝜀𝑅 − 𝑆(𝛱𝐸𝜎𝜋𝑟0
2 + 𝛽𝐼𝜎𝜋𝑟0

2 + 𝑑 + 𝜇) 

�̇� = 𝛱𝑆𝐸𝜎𝜋𝑟0
2 + 𝛽𝑆𝐼𝜎𝜋𝑟0

2 − 𝐸(𝛾 + 𝑑) 

𝐼̇ =  𝛾𝐸 − 𝐼(𝜑 + 𝑑 + 𝛿)                       (8) 

�̇� =  𝜔𝑄 + 𝜑𝐼 − 𝑅(𝜀 + 𝑑) 

�̇� =  𝜇𝑆 − 𝑉(𝜃 + 𝑑) 

 

Where 𝛱  is the infectivity rate of the sensors in the 

exposed class. The solutions for the endemic equilibrium 

points when the infectivity rates of the exposed and the 

infectious sensors are considered are slightly different 

from the (6). Note that at the worm-free equilibrium the 

solutions are the same with (5). Here the endemic 

equilibrium of the model (using sensor field 1) exists at: 

𝑊𝑒= 

 

𝑆∗ =  
(𝑑+𝛾)(𝑑+𝛿+𝜑)

(𝛽𝛾+𝛱(𝑑+𝛿+𝜑))σπr0
2  

𝐸∗ = 
(𝑑+𝜀)+(−𝑑−𝛿−𝜑)(−𝜀(𝜑+𝑄𝜔)(Φ−𝑄𝜌))

𝑑3+𝛾𝜀(−1+𝛿+𝜑)+𝑑2(𝛾+𝛿+𝜀+𝜑)+𝑑(𝜀(𝛿+𝜑)+𝛾(𝛿+𝜀+𝜑))
 

𝐼∗ =   
𝛾(−𝑑−𝛿−𝜑)(−𝜀(𝜑+𝑄𝜔)+(𝑑+𝜀)(−𝑄𝜌+Φ))

Υ(𝑑3+𝛾𝜀(−1+𝛿+𝜑)+𝑑2(𝛾+𝛿+𝜀+𝜑)+𝑑(𝜀(𝛿+𝜑)+𝛾(𝛿+𝜀+𝜑)))
   

(9)   

𝑅∗ = 
𝜑+𝑄𝜔+

𝛾(−𝑑−𝛿−𝜑)(−𝜀(𝜑+𝑄𝜔)+(𝑑+𝜀)(Φ−𝑄𝜌))

Υ(𝑑3+𝛾𝜀(−1+𝛿+𝜑)+𝑑2(𝛾+𝛿+𝜀+𝜑)+𝑑(𝜀(𝛿+𝜑)+𝛾(𝛿+𝜀+𝜑)))

𝑑+𝜀
 

𝑉∗ =   
(𝑑+𝛾)𝜇(𝑑+𝛿+𝜑)

(𝑑+𝜃)(𝛽𝛾+𝛱(𝑑+𝛿+𝜑))σπr0
2 

 

Where 

 

 Υ =  (𝑑 + 𝛿 + 𝜑), Φ = 
𝑑(𝑑+𝛾)(𝑑+𝜃+𝜇)(𝑑+𝛿+𝜑)

(𝑑+𝜃)(𝛽𝛾+𝛱(𝑑+𝛿+𝜑))σπr0
2 

 

    The endemic equilibrium of the model (using sensor 

field 2) exists at: 𝑊𝑒= 

 

𝑆∗ =  
𝐿2(𝑑+𝛾)(𝑑+𝛿+𝜑)

(𝛽𝛾+𝛱(𝑑+𝛿+𝜑))σπr0
2  

𝐸∗ = 
((𝑑+𝜀)(Ρ−𝑄𝜌)−𝜀(𝜑+𝑄𝜔))(−𝑑−𝛿−𝜑)

𝑑3+𝛾𝜀(−1+𝛿+𝜑)+𝑑2(𝛾+𝛿+𝜀+𝜑)+𝑑(𝜀(𝛿+𝜑)+𝛾(𝛿+𝜀+𝜑))
 (10) 

𝐼∗ =   
((𝑑+𝜀)(Ρ−𝑄𝜌)−𝜀(𝜑+𝑄𝜔))𝛾(−𝑑−𝛿−𝜑)

(𝑑+𝛿+𝜑)(𝑑3+𝛾𝜀(−1+𝛿+𝜑)+𝑑2(𝛾+𝛿+𝜀+𝜑)+𝑑(𝜀(𝛿+𝜑)+𝛾(𝛿+𝜀+𝜑)))
  

𝑅∗ =  

𝜑+𝑄𝜔+
𝛾(−𝑑−𝛿−𝜑)(−𝜀(𝜑+𝑄𝜔)+(𝑑+𝜀)(−𝑄𝜌+Ρ))

(𝑑+𝛿+𝜑)(𝑑3+𝛾𝜀(−1+𝛿+𝜑)+𝑑2(𝛾+𝛿+𝜀+𝜑)+𝑑(𝜀(𝛿+𝜑)+𝛾(𝛿+𝜀+𝜑)))

𝑑+𝜀
 

𝑉∗ =   
𝐿2(𝑑+𝛾)𝜇(𝑑+𝛿+𝜑)

(𝑑+𝜃)(𝛽𝛾+𝛱(𝑑+𝛿+𝜑))σπr0
2  

A.  Reproduction Ratio 

The reproduction ratio is “the expected number of 

secondary cases produced in a completely susceptible 

population, by a typical infective individual” [30]. Mishra 

& Pandey [31] refers to is as the as the inverse of the 

susceptible at the endemic equilibrium. Going by that, the 

reproduction number at both sensor fields is given as; 
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Sensor Field 1: R0 = 
𝛽𝛾𝜎𝜋𝑟0

2

(𝛾+𝑑)(𝜑+𝑑+𝛿)
               (11) 

 

Sensor Field 2: R0 = 
𝛽𝛾𝜎𝜋𝑟0

2

𝐿2(𝑑+𝛾)(𝑑+𝛿+𝜑)
             (12) 

 

When sensors in the exposed class possess a different 

infectivity rate lesser than that of the fully infectious 

nodes then the model’s reproduction ratio would certainly 

differ from (11) and (12). Using the expression for sensor 

field 1 the reproduction number/ratio is (13) while the 

reproduction ratio for sensor field 2 is (14).  

 

Sensor Field 1: R0 = 
(𝛽𝛾+𝛱(𝑑+𝛿+𝜑))σπr0

2

(𝑑+𝛾)(𝑑+𝛿+𝜑)
          (13) 

 

Sensor Field 2: R0 = 
(𝛽𝛾+𝛱(𝑑+𝛿+𝜑))σπr0

2

𝐿2(𝑑+𝛾)(𝑑+𝛿+𝜑)
          (14) 

 

V.  SIMULATION RESULTS FOR NAC–SEIRV EPIDEMIC 

MODEL 

We present the numerical results using Runge-Kutta 

Fehlberg method of order 4 and 5 for the NAC-SEIRV 

model. The network is assumed to have initial values: 

𝑄𝑜= 5; S=100; E=3; I=1; R=0; V=0. Other values used 

for the simulation include 𝜆 =0.33; 𝜌 =0.3; 𝜔 =0.01; 

𝜂 = 0.001;  𝜀 = 0.3; 𝛽 = 0.1;  𝛾 =0.25; 𝜑 =0.4; 𝑑 =
0.003;  𝛿 = 0.07; 𝜃 = 0.06 ;  𝜇 = 0.3; adapted from the 

time history of [29]. 

A. Sensor Field 1 

We observed that at r=1, the responses are the same for 

the time histories of [29] (Fig. 3) and NAC-SEIRV (Fig. 

4). At r=2 in Fig. 4, the number of exposed sensor nodes 

shot up to 51 from the initial 35 exposed sensor nodes at 

r=1. Gauging the distribution density and the range 

alongside our aznalytical NAC presents some interesting 

factors worthy of note. Comparing Fig. 7 of [5] and Fig. 5 

shows the impact of NAC. At density = 0.3, r=2 and at 

density = 0.5, r=2; the exposed nodes of Fig. 7 is 65 and 

72 while the exposed of Fig. 5 is 51 and 53. Even keeping 

density constant at 0.5 and increasing r from 2.0 to 2.5 

showed the impact of NAC because the 79 exposed nodes 

recorded in Fig. 7 was reduced to 57 exposed nodes in 

Fig 5.  

 

 

Fig.3. Time History adapted from [29]               

 

 

Fig.4. Time History at r=2 and σ = 0.3 for NAC-SEIRV 

The impact of NAC becomes more evident if one 

considers the behavior of the recovered class for the 

model in [29] (Fig. 3) and Fig. 4. While the recovered 

class is at 19 sensor nodes for Fig. 3, the recovered class 

appreciated for Fig. 4 (i.e. it became 28 sensor nodes).  

To further show the effect of NAC, we employ the 

results of Nwokoye et al. [5] where there was a notable 

increase in the exposed class (Fig. 7) and a decrease of 

the vaccinated class (Fig. 8). Keeping density constant at 

0.5 and increasing from 2.0 to 2.5 showed the impact of 

NAC because the 79 exposed sensor nodes recorded in 

Fig. 7 was reduced to 57 exposed nodes in Fig. 5. At 

density = 0.3, r=2 and at density =0.5, r=2; the 

vaccinated nodes of Fig. 8 is 12 and 15 while the 

vaccinated of Fig. 5 is 30. Keeping density constant at 0.5 

and increasing the transmission range from 2.0 to 2.5 

showed the impact of NAC because the 21 vaccinated 

sensor nodes recorded in Fig. 8 increased to 35 exposed 

nodes in Fig 6. This implies that increase in worm 

infection can be tackled using the NAC. 

 

 

Fig.5. Infectious vs Exposed for NAC-SEIRV 

 

Fig.6. Susceptible vs Vaccinated for NAC-SEIRV
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Fig.7. Infectious vs Exposed [5]                             

 

Fig.8. Susceptible vs Vaccinated [5]  

B. Sensor Field 2 

To simulate the network (for Sensor Field 2), we 

employ the same initial values used for NAC–SEIRV 

Epidemic Model (Sensor Field 1).  

 

 

Fig.9. Time History at r=1 and 𝐿 = 0.5 (NAC) 

 

Fig.10. Time History at r=1.5 and 𝐿 = 0.5 (NAC) 

From our simulation results, it is obvious that 

increasing the value of r and keeping L constant, 

increased the number of exposed nodes and reduced 

greatly the number of vaccinated nodes. On the other 

hand, NAC has no effect in Sensor field 2. This is clearly 

seen if one considers Fig. 9, Fig. 11 and Fig. 10, Fig. 12. 

There was no difference between the simulation 

experiments that represent the presence (Fig. 9, Fig. 10) 

and absence of NAC (Fig 11, Fig 12).  

 

 

Fig.11. Time History at r=1, 𝐿 = 0.5 (Without NAC) 

  

Fig.12. Time History at r=1.5 and 𝐿 = 0.5 (Without NAC) 

C. Two Infectivity Rates  

We assume the following initial values for the network; 

S=100, E=1, I=1, R=0, V=0. Note that since the exposed 

sensor nodes have been adjudged infectious i.e. 

possessing some infectivity rate, we reduced the initial 

value for the exposed class to 1. The result of the 

modification of system of equation (8) is shown as Fig. 

13. This figure is similar to the case of vertical 

transmission described in Nwokoye, et al [33]; wherein 

the exposed class increased due to the birth of a fraction 

of the exposed and the infectious nodes.  

 

 

Fig. 13. Time History at 𝜆=0.33, 𝜀=0.3, 𝛽=0.5, Π=0.2, 𝛾=0.25, 𝜑=0.02, 

d=0.003, 𝛿=0.07, 𝜃=0.06, 𝜇=0.3, 𝜎=0.3, r=1 

Note that aside the infectivity rate of the exposed class, 

the range and density also contributes to the probable 

cause for epidemic in the sensor network.  

On the other hand, we performed simulation 

experiments in order to observe the impact of NAC when 

the infectivity rates of the exposed and the infectious 

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

Exposed Sensor Nodes 

In
fe

c
ti

o
u

s
 S

e
n

s
o

r 
N

o
d

e
s

Graph of Infectious Nodes Plotted against Exposed Nodes

density=0.3,range=2.0
0
density=0.5,range=2.0
0
density=0.5,range=2.5
0

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

Vaccinated Sensor Nodes

S
u

sc
ep

ti
b

le
 S

en
so

r 
N

o
d

es
 

Graph of Susceptible Nodes Plotted against Vaccinated Nodes

density=0.3, range=2.0

0

density=0.5, range=2.0

0

density=0.5, range=2.5

0

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Time

S
en

so
r 

P
op

ul
at

io
n 

Grpah of Sensor Population 

Susceptible

Exposed

Infectious

Recovered

Vaccinated

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

TIme 

S
en

so
r 

P
op

ul
at

io
n

Graph of Sensor Population against Time

Susceptible

Exposed

Infectious

Recovered

Vaccinated

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

TIme

S
en

so
r 

P
op

ul
at

io
n

Graph of Sensor Population (WITHOUT NAC)

Susceptible

Exposed

Infectious

Recovered

Vaccinated

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Time 

S
e
n
s
o
r 

P
o
p
u
la

ti
o
n

Graph of Sensor Population (WITHOUT NAC)

Susceptible

Exposed

Infectious

Recovered

Vaccinated

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Time

S
e
n
s
o
r 

P
o
p
u
la

ti
o
n

Graph of Sensor Population 

Susceptible 

Exposed

Infectious

Recovered

Vaccinated



 Modeling the effect of Network Access Control and Sensor Random Distribution on Worm Propagation 55 

Copyright © 2017 MECS                                                  I.J. Modern Education and Computer Science, 2017, 11, 49-57 

sensor nodes are considered. More so the impacts of 

NAC are shown using the dynamic behavior of the 

recovered class. Fig. 14 and Fig. 15 show the dynamical 

behavior of the SEIR-V model (with two infectivity rates) 

without NAC and with NAC respectively, at the same 

recovery rate (0.4). From the two figures (simulated with 

the values of Fig. 13, excepting  𝜑 ), it is evident that 

persistent recovery of the sensors is more likely with the 

latter (Fig. 15). Specifically, while the recovered class 

was 27 sensor nodes for Fig. 14 (without NAC), the 

recovered class was 35 sensor nodes for Fig 15 (with 

NAC).  

 

 

Fig.14. Time History of the (Two Infectivity Rate Model) at 𝜑=0.4. 

 

Fig.15. Time History of the (NAC Two Infectivity Rate Model) at 

𝜑=0.4 

Fig. 14 and Fig. 15 are the results of our modification 

using sensor field 1. Since the length of side (L2) 

distinguishes sensor field 1 from sensor field 2, it is 

necessary to observe its impact on the recovered class of 

sensor nodes.  
 

 

Fig.16. Time History of the Recovered Class at L2= 0.5, 1.0, 2.0 

(Without NAC) 

 

Fig.17. Time History of the Recovered Class at L2= 0.5, 1.0, 2.0 (With 

NAC) 

Fig. 16 shows the impact of length of side on the 

SEIR-V model (without NAC). It is evident that the 

sensor nodes in the recovered class reduced as the length 

increases (from 0.5 to 2.0). This is so with Fig 17 (with 

NAC) 

 

VI.  CONCLUSION 

Our study here explored the 

characterization/application of network access control 

(NAC) to epidemic models in wireless sensor networks; 

considering random distribution of nodes in two different 

types of sensor fields. The first sensor field was proposed 

by Tang and Mark [19] while the second one was 

proposed by Wang, et al. [20]. We believe that NAC may 

to some extent remediate immigrant infected nodes; 

thereby reducing the importation of infections through 

sensor node addition. Other insights on the factors that 

increase the node exposure or infectiousness was also 

highlighted using several simulation experiments of both 

sensor fields.  More so we derived the reproduction ratio 

of both sensor fields in all the cases x-rayed by our study 

herein. Firstly, is the case where only the infectious class 

possess infectivity and secondly, the case where both the 

exposed and infectious class possess infectivity.  

We observed the impact of NAC when our model (for 

Sensor field 1) herein was compared with an equivalent 

model in literature. Specifically, NAC reduced the 

exposed and the infectious compartment. 

Correspondingly, it improved the vaccination 

countermeasure. 

Conversely, the topology described in [20, 26] (Sensor 

field 2), was not impacted by NAC if one consider the 

behavior of exposed, the infectious and the vaccinated 

class. We feel the reason was due to the addition of the 

length of side (L). This parameter is non-existent in 

Sensor field 1 [19]. The rationale for using [5] for 

comparative analyses in NAC-SEIRV for sensor field 1 

was because the work has already highlighted the 

negative impact of increasing both density and range in 

the network. Furthermore, we noticed that increasing the 

value of r and keeping L constant, increased the number 

of exposed nodes and reduced greatly the number of 

vaccinated nodes.  
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On the case of infectivity at both the exposed and 

infectious class (described with the simulation results of 

section V, subsection C), we observed a better recovery 

of the sensor network. However, it is clear that NAC is 

not entirely an almighty solution to a worm-laden sensor 

network i.e. network managers should entrench practices 

that increase the recovery tendencies of sensors. Then 

with the addition of NAC the network becomes fortified 

against external importation of infection. Additionally, 

the length of side impacted the recovered class for both 

sensor fields.  

The above analyses will impact sensor deployment 

decisions in organizations that use wireless sensor 

networks. Specifically, it will inform them on the factors 

that inhibit/aid worm propagation. Furthermore, we 

would apply other network characteristics/protocols in 

order to check its effect in worm propagation and 

containment.   
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