
I.J. Modern Education and Computer Science, 2017, 5, 34-42
Published Online May 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2017.05.05

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 5, 34-42

Optimizing Memory using Knapsack Algorithm

Dominic Asamoah
Department of Computer Science, KNUST, Ghana

E-mail: dominic_asamoah@yahoo.co.uk

Evans Baidoo and Stephen Opoku Oppong
Department of Computer Science, KNUST, Ghana

E-mail: evandovich@gmail.com, sopokuoppong@yahoo.com

Abstract—Knapsack problem model is a general resource

distribution model in which a solitary resource is

allocated to various choices with the aim of amplifying

the aggregate return. Knapsack problem has been broadly

concentrated on in software engineering for a

considerable length of time. There exist a few variations

of the problem. The study was about how to select

contending data/processes to be stacked to memory to

enhance maximization of memory utilization and

efficiency. The occurrence is demonstrated as 0 – 1

single knapsack problem. In this paper a Dynamic

Programming (DP) algorithm is proposed for the 0/1 one

dimensional knapsack problem. Problem-specific

knowledge is integrated in the algorithm description and

assessment of parameters, with a specific end goal to

investigate the execution of finite-time implementation of

Dynamic Programming.

Index Terms—Knapsack, memory, maximization,

dynamic programming, algorithm.

I. INTRODUCTION

Earlier computers had a single-level scheme for

memory. Computer evolution has moved from gigantic

mainframes to small stylish desktop computers and to

low-power, ultra-portable handheld devices with in a

relatively short period of time. As the generations keep

passing by, computers making up of processors,

memories and peripherals turn out to be smaller and

faster with memory prices going up and down. However,

there has not been a single main memory that was both

fast enough and large enough even though computers

were becoming faster and programs were getting bigger,

particularly multiple processes that were simultaneously

carried out under the same computer system. Though

putting more random access memory (RAM) in the

computer is nearly at all times a good investment, but it

is not really advisable to spend extra money to get full

benefit from the memory you already have, if there is an

effective algorithm to ensure effective memory utilisation.

Modern computer memory management is for some

causes a crucial element of assembling current large

applications. First, in large applications, space can be a

problem and some technology is efficiently needed to

return unused space to the program. Secondly, inexpert

implementations can result in extremely unproductive

programs since memory management takes a momentous

portion of total program execution time and finally,

memory errors becomes rampant, such that it is

extremely difficult to find programs when accessing

freed memory cells. It is much secured to build more

unfailing memory management into design even though

complicated tools exist for revealing a variety of memory

faults. It is for this basis that efficient schemes are needed

to manage allocating and freeing of memory by programs.

In a computer system, a process as soon as created

wants to run. There is a number of N created processes

all contending for memory space to run. All process

want to fill the main memory that can hold an aggregate

weight of W. If all processes are allowed to run, it will

lead to system crushes, system running low memory,

system underperformance, system overheat and difficulty

in accessing data. We want to fill the main memory that

can hold an aggregate weight of W with some blend of

data/process from N possible list of data/process each

with data size and priority value so that optimal

utilisation of memory of the data/processes filled into the

System main memory is achieved hence maximized.

Among the data/processes contending for memory,

Which of them should be allowed to run and which

should not? Does the allowable data make optimal use of

memory without memory losses?

The problem that will be considered in this paper is

that of accepting or rejecting the Process (an occurrence

of an executed program) as they come in from the

process queue to compete for memory space when a user

request to run a program. The goal is to maximise the

number of processes in a limited memory space.

II. LITERATURE REVIEW

Knapsack problem largely considered as a discrete

programming problem has become one of the most

studied problem. The motive for such attention

essentially draws from three facts as stated by Gil-

Lafuente et al.

1. It can be viewed as the simplest integer linear

programming problem;

2. It emerges as a sub-problem in many more

complex problems;

 Optimizing Memory using Knapsack Algorithm 35

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 5, 34-42

3. It may signify a great number of practical

situations‖[1].

A. Memory management, Processes and its allocations

The computer system primary memory management is

key. After all, ―all software runs in memory and all data

is stored in some form of memory. Memory management

has been studied extensively in the traditional operating

systems field‖ [2]. Memory management includes giving

approaches to dispense bits of memory to programs at

their request, and liberating it for reuse when not really

required.

Chen [3] identified possibilities of managing memory

in smart home gateways. They asserts that ―due to

different architecture, memory management for software

bundles executed in home gateways differs from

traditional memory management techniques because

traditional memory management techniques generally

assume that memory regions used by different

applications are independent of each other while some

bundles may depend on other bundles in a gateway‖. By

way of contribution, they introduce a service dependency

heuristic algorithm that is close to the optimal solution

based on Knapsack problem but performs significantly

better than traditional memory management algorithms

and also in a general computing environment identified

the difference between memory management in home

gateway and traditional memory management problem.

As program advancement is shifting its way into a

more extensive programming community and more

conventional state-based dialects from the practical

programming community, ―the view that a more

disciplined approach to memory management becomes a

very important aspect [4]. For example, web

programming languages such as Java and Python include

garbage collection as part of the language, and there are

various packages for performing memory management in

C and C++‖.

B. Knapsack problems and applications

The knapsack problem (KP) is a traditional

combinatorial issue used to show numerous modern

circumstances. ―Since Balas and Zemel a dozen years

ago introduced the so-called core problem as an efficient

way of solving the Knapsack Problem, all the most

successful algorithms have been based on this idea. All

knapsack Problems belong to the family of NP-hard

problems, meaning that it is very unlikely that we ever

can devise polynomial algorithms for these problems‖ [5].

Table 1. Core history of Knapsack Problems and Solutions

Year Author Solution Proposed

1950s

1957

Richard Bellman

George B. Dantzig

Produced the first algorithm - dynamic programming theory - to exactly
explain the 0/1 knapsack problem.

He gave an exquisite and productive strategy to obtain the answer for the
continuous relaxation issue, and henceforth an upper bound on z which was

utilized as a part of all studies on KP in the accompanying a quarter century

1960s

1967

Gilmore and Gomory

Katherine Kolesar

Among other knapsack-type problems he explored the dynamic programming

approach to the knapsack problem

Experimented with the first branch and bound algorithm of the knapsack

problem.

1970s

1973

1974

1975

1977

Horowitz and Sahni

Ingargiola and Korsh

Johnson

Ibarra and Kim

Martellon and Toth

The branch and bound methodology was further created, turned out to be the

main approach fit for taking care of issues with a great amount of variables.

Presented the initial reduction formula, a pre-processing algorithm which

significantly reduces the number of variables

Gave the first polynomial time approximation design to solve the problem of

the subset-sum; Sahni extended the result to the 0/1 knapsack problem.

They introduce the first completely polynomial time approximation design

Proposed the first upper bound taking over the charge of the continuous
relaxation.

The key products of the eighties concern the resolution of mass problems, for which variables cataloguing (required by all the most effective

algorithms) takes a very high percentage of the running time.

1980 Balas and Zemel Introduced another way to deal with the issue by sorting, much of the time, just

a little subset of the variables (the core problem). They demonstrated that there
is a high likelihood for discovering an ideal solution in the core, in this way

abstaining from considering the remaining objects.

The Knapsack problem has been concentrated on for

over a century with prior work dating as far back as 1897.

―It is not known how the name Knapsack originated

though the problem was referred to as such in early work

of mathematician Tobias Dantzig suggesting that the

name could have existed in folklore before mathematical

36 Optimizing Memory using Knapsack Algorithm

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 5, 34-42

problem has been fully defined‖ [6].

Given a knapsack of limit, Z, and n dissimilar items,

Caceres and Nishibe [7] algorithm resolved the single

Knapsack problem using local computation time with

communication rounds. With dynamic programming,

their algorithm solved locally pieces of the Knapsack

problem. The algorithm was implemented in Beowulf

and the obtained time showed good speed-up and

scalability [8].

Heuristic algorithms experienced in literature that can

generally be named as population heuristics include;

―genetic algorithms, hybrid genetic algorithms, mimetic

algorithms, scatter-search algorithms and bionomic

algorithms‖. Among these, Genetic Algorithms have

risen as a dominant latest search paradigm [9].

Eager about making use of a easy heuristic scheme

(simple flip) for answering the knapsack problems,

Oppong [10] offered a study work on the application of

usual zero-1 knapsack trouble with a single limitation to

determination of television ads at significant time such as

prime time news, news adjacencies, breaking news and

peak times.

C. Related Works

The Knapsack problem has been concentrated on for

over a century with prior work dating as far back as 1897.

―It is not known how the name Knapsack originated

though the problem was referred to as such in early work

of mathematician Tobias Dantzig suggesting that the

name could have existed in folklore before mathematical

problem has been fully defined‖ [6].

Kalai and Vanderpooten [11] examined the hearty

knapsack problem utilizing a maximum-min conditon,

and proposed another robustness method, called

lexicographic α-vigor. The authors demonstrated that

―the complication of the lexicographic α-robust problem

does not augment compared with the max-min version

and presented a pseudo-polynomial algorithm in the case

of a bounded number of scenarios‖.

Benisch et al. [12] experimented the problem of

selecting biased costs for clients with probabilistic

valuations and a merchant. They demonstrated that under

specific suspicions this problem can be summary to the

―continuous knapsack problem‖ (CKP).

Shang et al [13] solved the Knapsack problem using

this algorithm. ACO was enhanced in determination

procedure and data change so that it can't undoubtedly

keep running into the local optimum and can meet at the

global optimum.

Kosuch [14] presented an ―Ant Colony Optimization

(ACO) algorithm‖ for the Two-Stage Knapsack case with

discretely dispersed weights and limit, using a meta-

heuristic approach.

Florios et al [15] tackled an example of the ―multi-

objective multi-constraint (or multidimensional)

knapsack problem (MOMCKP)‖, with three target

capacities and three limitations. The creators requested

for an accurate and approximate algorithm which is a

legitimately altered form of the ―multi-criteria branch and

bound (MCBB) algorithm‖, further tweaked by suitable

heuristics.

In the middle of the 1970s ―several good algorithms

for Knapsack Problem (KP) were developed [16], [17],

[18]. The starting point of each of these algorithms was

to order the variables according to non-increasing profit-

to-weight (pj/wj) ratio, which was the basis for solving

the Linear KP.‖

Given a knapsack of limit, Z, and n dissimilar items,

Caceres and Nishibe [7] algorithm resolved the single

Knapsack problem using local computation time with

communication rounds. With dynamic programming,

their algorithm solved locally pieces of the Knapsack

problem. The algorithm was implemented in Beowulf

and the obtained time showed good speed-up and

scalability [8].

Silva et al [19] managed the issue of incorrectness of

the solutions produced by meta-heuristic methodologies

for combinatorial optimization bi-criteria knapsack

problems.

Yamada et al [20] solved the knapsack sharing

problem to optimality by presenting a ―branch and bound

algorithm and a binary search algorithm‖. These

algorithms are executed and computational tests are done

to break down the conduct of the created algorithms. As a

result, they found that ―the binary search algorithm

solved KSPs with up to 20,000 variables in less than a

minute in their computing environment‖.

Lin [21] examined the likelihood of genetic algorithms

as a part of taking care of the fuzzy knapsack problem

without characterizing participation capacities for each

inexact weight coefficient.

Bortfeldt and Gehring [22] presented a hybrid genetic

algorithm (GA) for the container packing problem with

boxes of unlike sizes and one container for stacking.

Simoes and Costa [23] performed an empirical study

and evaluated the exploits of the ―transposition A-based

Genetic Algorithm (GA) and the classical GA for solving

the 0/1 knapsack problem‖.

Babaioff et al [24] presented a model for ―the multiple-

choice secretary problem in which k elements need to be

selected and the goal is to maximize the combined value

(sum) of the selected elements‖.

Hanafi and freville [25] illustrated another way to deal

with Tabu Search (TS) emphasising on tactical

oscillation and surrogate control information that gives

stability between escalation. Heuristic algorithm like

Tabu Search and Genetic algorithm have also appeared in

recent times for the solution of Knapsack problems. Chu

et al [9] proposed a genetic algorithm for the

multidimensional Knapsack problem.

III. METHODOLOGY

This is a clean integer programming with a single

check which forms an essential class of whole number

programming. It confines the number of duplicates of

every sort of item to zero or one and the relating

aggregate is boosted without having the data size total to

surpass the limit C. The 0-1 Knapsack Problem (KP) can

 Optimizing Memory using Knapsack Algorithm 37

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 5, 34-42

be mathematically stated through the succeeding integer

linear programming.

Let there be n items, to where has a value

and data size . is the number of copies of the item ,

which, must be zero or one. The maximum data size that

we can carry in the bag is C. It is common to assume that

all values and data sizes are nonnegative. To make

simpler the illustration, we also presume that the items

are scheduled in increasing order of data size

 ∑

 (1)

 ∑

 (2)

 = 0 or 1, j = 1,...,n

Increase the summation of the items values in the

knapsack so that the addition of the data sizes must be

not exactly or equivalent to the knapsack's limit.

As ―Knapsack Problems are NP-hard‖ there is no

recognized exact solution technique than possibly a

greedy approach or a possibly complete enumeration of

the solution space. However quite a lot of effort may be

saved by using one of the following techniques: These

are ―Branch-and-Bound and dynamic programming‖

methods as well as meta-heuristics approaches such as

―simulated annealing, Genetic algorithm, and Tabu

search‖ which have been employed in the case of large

scale problems solution. This research paper makes use

of the dynamic programming algorithm to investigate the

problem.

A. Dynamic Programming

This is an approach for responding to an unpredictable

problem by reducing it into a set of simpler sub-problems

It is appropriate to problems displaying the properties of

overlying sub-problems and optimal substructure.

Dynamic Programming (DP) is an effective procedure

that permits one to take care of a wide range of sorts of

problems in time O() or O() for which an innocent

methodology would take exponential time.

Dynamic programming algorithms are used for

optimization (for instance, discovering the most limited

way between two ways, or the speediest approach to

multiply numerous matrices). A dynamic programming

algorithm will look at the earlier tackled sub-problems

and will consolidate their answers for give the best

answer for the given problem.

B. Dynamic Programming Algorithm for Knapsack

A set of n items is given where

i = item

z = the storage limit.

 = size or data weight

 = profit

C = maximum capacity (size of the knapsack)

The target is to locate the subset of items of maximum

sum value so much that the total of their sizes is at most

C (all can be placed into the knapsack).

Step 1: Break up the problem into smaller problems.

Constructing an array V[0. . . n, 0 . . .C].

For and , the entry V[i ,z] will

keep the maximum (combined) computing value of every

subset of items {1,2, . . ., i} of (combined) size at most z.

If we compute all the entries of this array, then the

array entry V[n, C] will hold the highest computing items

value that can fit into storage, that is, the solution to the

problem.

Step 2: Recursively describe the worth of an ideal

solution in terms of solutions to smaller problems.

Initial settings: Set

 [] for no item

 [] for illegal

Recursive step: Use

 [] [] []

for

1 ,

Remember: V[i, z] stores the maximum (combined)

computing value of any subset of items {1,2, . . . , i} of

(combined) size at most z, and item i has size, (units)

and has a value , C (units) is the maximum storage.

To compute V[i , z] there are only two choices for item

i:

Leave item i from the subset: The best that can be done

with items {1, 2, . . . i - 1} and storage limit z is V[i – 1,

z].

Take item i (only possible if : This way we

gain benefit, but have spent bytes of the storage.

The best that can be done with the remaining items {1,

2, . . ., i – 1} and storage limit, z - is V[i – 1, z -].

End product is V[i – 1, z -].

If > z, then V[i – 1, z -] =

Step 3: Using Bottom up computing V[i, z]

Bottom: V[0, z] = 0 for all
Bottom-up computation:

 [] [] [
]

C. Strategy 1

Assumes process are sorted by memory size in

ascending order

Knapsack(v, w, W)

 load := 0

 i := 1

 while load < W and i ≤ n loop

38 Optimizing Memory using Knapsack Algorithm

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 5, 34-42

 wi ≤ W - load then

 take all of item i

 add weight of what was taken to load

 i := i + 1

 end loop

 return load

D. Strategy 2

Assumes processes are sorted by number of times

accesses in ascending order

Knapsack(v, w, W)

 load := 0

 i := 1

 while load < W and i ≤ n loop

 if wi ≤ W - load then

 take all of item i

 else

 take (W-load) / wi of item i

 end if

 add weight of what was taken to load

 i := i + 1

 end loop

 return load

IV. ANALYSIS

This paper uses data collected dynamically from a

process – ―number of times data is accessed and data size‖

to represent the value and weight of an item by assigning

randomized personal data - to model the knapsack

problem and solve the problem of Computer systems

ending up running low memory by employing a dynamic

programming approach.

Category A: Table 2 below shows a computer system

with a total of 15 created processes, all with their system

information in Figures. The computer memory can

accommodate capacity of 32mb.

Category B: Table 3 below shows system information

of a total of 32 data/processes in Figs. The memory

capacity of this system is 512mb.

From Table 2, there are a total of 15 processes and that

of Table 3 has 32 processes. Taken the system

information each process carries, if all processes are

allowed to load as soon as created, from Table 2, the

computer system will require total memory capacity of

88mb exceeding the main memory capacity of 32mb.

Table 3 will demand an arbitrary overall memory space

of 2411mb from a System with capacity limit 512mb.

Therefore, from Table 2, an additional memory of 56mb

needs to be created and that of Table 3 is1899mb.

Therefore, it is infeasible to allow all the process to run

without running into low memory or system crushes. A

summary is shown in Fig. 1

Table 2. Data values of Category A

Processes No data size/mb
Number of times

data is accessed

1 6 6

2 4 5

3 8 8

4 6 2

5 6 9

6 7 4

7 5 7

8 7 9

9 3 6

10 10 2

11 3 9

12 6 10

13 9 9

14 5 8

15 3 6

 Total: 88

Table 3. Data values of Category B

Processes No
Memory data

size/mb

Number of times

data is accessed

1 25 6

2 52 5

3 100 7

4 86 9

5 36 5

6 76 3

7 12 4

8 56 7

9 128 7

10 96 7

11 160 8

12 120 3

13 82 2

14 68 4

15 92 6

16 48 5

17 128 4

18 160 8

19 24 6

20 64 2

21 96 1

22 124 3

23 65 2

24 12 3

25 45 7

26 56 6

27 86 7

28 82 3

29 98 7

30 134 8

31 142 4

32 200 5

 Total: 2753

 Optimizing Memory using Knapsack Algorithm 39

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 5, 34-42

Fig.1. Memory demand of Table 1 and Table 2

Strategy one allows data/process to be loaded

according to data size picking data with smallest sizes

first until the system capacity is reached. From Table 2,

processes 1, 2, 4, 7, 9, 11 satisfy the condition over the

other processes and therefore by precedence it will be

given concern. Together, this six (6) data/process will

require 28mb space, with 4mb free. From Table 4.2,

processes 1, 2, 5, 7, 8, 16, 19, 20, 23, 24, 25, and 26, a

throughput of 12 data/processes satisfy the condition with

a total request memory of 495mb, 17mb space left

unused.

Table 4 compares the optimal data from Table 2 of

Load data into memory by size Strategy and the Dynamic

Programming approach.

Table 4. Comparism of Optimal Data of Table 2

Load data into memory by size

(Strategy 1)

Dynamic Programming

Approach

ProcessNo data size/mb ProcessNo Data size/mb

1 6 5 6

2 4 7 5

4 6 9 3

7 5 11 3

9 3 12 6

11 3 14 5

 15 3

Table 5. Comparism of Optimal Data of Table 3

Load data into memory by

size(Strategy 1)
Dynamic Programming Approach

Processes No data size/mb Processes No Data size/mb

1 25 1 25

2 52 2 52

5 36 3 100

7 12 4 86

8 56 5 36

16 48 7 12

19 24 8 56

20 64 19 24

23 65 24 12

24 12 25 45

25 45 26 56

26 56

Table 5 compares the optimal data from Table 3 of

Load data into memory by size Strategy and the Dynamic

Programming approach.

Table 6. Memory utilisation Analysis of Table 2

Specification (Strategy 1)
Dynamic

Programming

Approach

System throughput 6 7

Memory acquired 28 31

Used memory 4 1

Fig.2. Memory utilisation of Table 6

Table 6 illustrate the analysis of Memory utilisation of

Table 2 whereas Table 7 illustrate the analysis of

Memory utilisation of Table 3

Table 7. Memory Utilisation Analysis of Table 3

Specification (Strategy 1)
Dynamic

Programming

Approach

System throughput 12 11

Memory acquired 495 504

Used memory 17 8

Fig.3. Memory utilisation of Table 7

Strategy two allows data/process to be selected

according to the number of times data is access or the

data access times until the system capacity is reached.

Passing the data in Table 2 through this heuristic strategy,

processes 5, 8, 11, 12, and 13 satisfy the condition due to

its higher access times. A throughput of 5, it requires

15 32 88 56 32
512

2411
1899

0
500

1000
1500
2000
2500
3000

Table 4.1 Table 4.2

6

28

4
7

31

1
0

10

20

30

40

System
throughput

Memory
acquired

Used
memory

(Strategy 1)

Dynamic Programming Approach

12

495

17 11

504

8
0

100

200

300

400

500

600

System
throughput

Memory
acquired

Used memory

(Strategy 1)

Dynamic Programming Approach

40 Optimizing Memory using Knapsack Algorithm

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 5, 34-42

31mb space to manage this processes.

Processes 4, 11, and 18 giving a throughput of 3 from

Table 3 satisfy the condition of heuristic strategy two.

The processes will require 406mb to allow the three most

frequently accessed data to run in memory holding the

remaining data/process in queue. This will leave 106mb

free space in memory unutilized.

Using the Dynamic programming approach for solving

Table 2 as already illustrated in Fig 2, a throughput of 7,

Processes 5, 7, 9, 11, 12, 14, and 15 is loaded into

memory for CPU scheduling. With Table 3, Processes 1,

2, 3, 4, 5, 7, 8, 19, 24, 25, 26 totalling a throughput of 11

is loaded for memory allocation since their memory

utilisation requirement is 8mb less than the 512mb

memory capacity of the computer system. This is

illustrated in Fig 3.

Table 8 compares the optimal data from Table 2 of

Load data into memory by number of accesses Strategy

and the Dynamic Programming approach.

Table 8. Comparism of Optimal Data of Table 2

Load data into memory by
number of accesses (Strategy 2)

Dynamic Programming
Approach

Processes No
Number of

times data is

accessed

Processes No
Number of

times data is

accessed

5 9 5 9

8 9 7 7

11 9 9 6

12 10 11 9

13 9 12 10

 14 8

 15 6

Table 9 compares the optimal data from Table 3 of

Load data into memory by number of accesses Strategy

and the Dynamic Programming approach.

Table 9. Comparism of Optimal Data of Table 3

Load data into memory by
number of accesses

 (Strategy 2)

Dynamic Programming Approach

Processes No
Number of

times data is

accessed

Processes No
Number of

times data is

accessed

4 9 1 6

11 8 2 5

18 8 3 7

 4 9

 5 5

7 4

8 7

19 6

24 3

25 7

26 6

Table 10 illustrate the analysis of Memory utilisation

of Table 2 for strategy two

Table 10: Memory utilisation of Table 2

Specification (Strategy 2)

Dynamic

Programming
Approach

System throughput 5 7

Memory acquired 31 31

Used memory 1 1

Fig.4. Memory utilisation of Table 10

Table 11. Memory utilisation of Table 3

Specification (Strategy 2)
Dynamic Programming

Approach

System

throughput
3 11

Memory
acquired

406 504

Used memory 106 8

Fig.5. Memory utilisation of Table 11

Comparing the Dynamic programming approach to

other existing strategies employed by computer

programmers and system developers for optimising

memory, the Dynamic programming approach tends to

out-perform most of them.

5

31

1

7

31

1

0

5

10

15

20

25

30

35

System
throughput

Memory
acquired

Used memory

(Strategy 2)

Dynamic Programming Approach

3

406

106

11

504

8
0

100

200

300

400

500

600

System
throughput

Memory
acquired

Used
memory

(Strategy 2)

Dynamic Programming Approach

 Optimizing Memory using Knapsack Algorithm 41

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 5, 34-42

The Dynamic programming approach tends to pick

data/process that can enhance efficient utilisation of

memory. It also picks as many processes as possible

provided their data sizes do not exceed the system

capacity. from Table 6 even though loading data into

memory by size strategy (Strategy one) allowed system

throughput of 6, it left an unused memory space of 4mb

compared to the Dynamic approach of allowing 7 process,

and an efficient memory utilisation of 31mb, illustrating

that there is optimal utilisation of memory. Same can be

made of Table 7 with strategy 1 picking more

data/process than the Dynamic approach, it left more

unutilized space than the Dynamic approach which may

lead to memory leakage. The strategy of loading data into

memory by size strategy tends to favour only

process/data with smaller data size but data with larger

data size takes a long time to be given space thereby

increasing the allocation time of such data irrespective of

the higher system priority or access frequency that a

data/process may have.

The second strategy although can be used to Optimize

memory, it also failed to perform better compared to the

proposed approach. From Table 10, although the memory

requirement of selected processes of Table 2 for Load

data into memory by number of accesses strategy

(strategy 2) equals the Dynamic programming approach,

the system throughput of the heuristic strategy two falls

short of 2 more processes compared to the Dynamic

programming approach which allow 7 processes to load

at time. In Table 11 the Dynamic programming approach

achieves 8 more processes than heuristic strategy two.

With only 3 system throughput, strategy two require

406mb memory spaces to allow the most frequently used

process to run leaving behind 106mb memory unutilized.

The Dynamic programming approach, with 11 system

throughput, made an effective utilisation of memory. It

required 504mb memory leaving 8mb space free. At this

point it can be deduced that The Load data into memory

by number of accesses strategy may sometimes not make

use of efficient use of memory and may lead to memory

loses and leakages

Additionally, the Load data into memory by number of

accesses strategy take a longer time for a fresh new data

to be loaded into memory space since it favours

data/process with a higher number/time accessed

otherwise such process/data is held in queue. Therefore,

newly created process which probably may need little

space to load will have to wait a long while to execute.

V. CONCLUSION

In this paper, we propose a partial enumeration

technique based on an exact enumeration algorithm like

the dynamic programming for effective utilisation and

optimization of memory. The problem identified is one

that has a single linear constraint, a linear objective

function which sums the values of data/process in

memory, and the added restriction that each data/process

should be in memory or not. The Dynamic programming

approach proved to quickly find an optimal solution or a

near optimal solution in some situations where exact

solution is not possible as opposed to a heuristic that may

or may not find a good solution.

From the paper, it is shown that the Dynamic

programming algorithm is more efficient and yield better

result than other existing heuristic algorithm. Dynamic

Programming algorithm is easy to implement since no

sorting is necessary, saving the corresponding sorting

time. Additionally, the time complexity taken to solve the

Dynamic programming is 0(n*W) compared to the 0/1

knapsack algorithm running time of O(2^n). Taken that n

is the number of items and W is the Capacity limit.

REFERENCES

[1] Gil-Lafuente, A., de-Paula, L., Merig-Lindahl, J., M.,

Silva-Marins, F., and de Azevedo-Ritto, A. (2013).

Decision Making Systems in Business Administration:

Proceedings of the MS'12 International Conference.

World Scientific Publishing Co., Inc. Retrieved from

http://dl.acm.org/citation.cfm?id=2509785

[2] Silberschatz, A., and Peterson, J. (1989). Operating

System Concepts. Addison-Wesley, Reading.

[3] Chen G., Chern M., and Jang J. Pipeline architectures for

dynamic programming algorithms. Parallel Computing,

1(13):111 – 117, 1990.

[4] Coquand,T., Dybjer, P., Nordström, B., and Smith, J.

(1999). Types for Proofs and Programs, International

Workshop TYPES'99, Lökeberg, Sweden, Available from:

Selected Papers. Lecture Notes in Computer Science 1956,

Springer 2000, ISBN 3-540-41517-3.

[5] Pisinger, D. (1994). Core problems in knapsack

algorithms. Operations Research 47, 570-575.

[6] Kellerer, H., Pferschy, U., Pisinger, D. (2004). Knapsack

Problems. Springer, Berlin Heidelberg.

[7] Cáceres E. N., and Nishibe, C. (2005). 0-1 Knapsack

Problem: BSP/CGM Algorithm and Implementation.

IASTED PDCS: 331-335.

[8] Robert M, & Thompson, K (1978). Password Security: A

Case History. Bell Laboratories, K8.

[9] Chu P.C and Beasley J. E. (1998), A genetic algorithm for

multidimensional knapsack problem. Journal Heuristics.

4:63-68.

[10] Oppong, O. E. (2009). Optimal resource Allocation Using

Knapsack Problems: A case Study of Television

Advertisements at GTV. Master’s degree paper, KNUST.

[11] Kalai, R. and Vanderpooten, D. (2006). Lexicographic a-

Robust Knapsack Problem

http://ieeexplore.ieee.org/xpl/freeabs

[12] Benisch, M., Andrews, J., Bangerter, D., Kirchner, T.,

Tsai, B. and Sadeh, N. (2005). CMieux analysis and

instrumentation toolkit for TAC SCM. Technical Report

CMU-ISRI-05-127, School of Computer Science,

Carnegie Mellon University.

[13] Shang, R., Ma, W. and Zhang, W (2006). Immune Clonal

MO Algorithm for 0/1 Knapsack Problems. Lecture Notes

in Computer Science, 2006, Volume 4221/2006, 870-878.

[14] Kosuch, S. and Lisser, A. (2009). On two-stage stochastic

knapsack problems. Discrete Applied Mathematics

Volume 159, Issue 16.

[15] Florios, K. et. al. (2009). Solving multi objective multi

constraint knapsack problem using Mathematical

programming and evolutionary algorithm. European

Journal of Operational Research 105(1): 158-17.

[16] Horowitz, E. and Sahni, S. (1972). Computing partitions

with applications to the Knapsack Problem. Journal of

http://dl.acm.org/citation.cfm?id=2509785
http://ieeexplore.ieee.org/xpl/freeabs

42 Optimizing Memory using Knapsack Algorithm

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 5, 34-42

ACM, 21, 277-292.

[17] Nauss, R,. M. (1976). An Efficient Algorithm for the 0-1

Knapsack Problem. Management Science, 23, 27-31.

[18] Martello, S., Pisinger, D. and Paolo, T. (2000). New

trends in exact algorithms for the 0 – 1 knapsack problem.

http: // citeseerx.istpsu/viewdoc/download?doi10.1.11.

89068rep=rep|type=ps

[19] Silva et.al (2008). Core problem in bi criteria 0-1

knapsack problems. Retrieved from:

www.sciencedirect.com

[20] Yamada, T, Futakawa, M., and Kataoka, S. (1998). Some

exact algorithms for the knapsack sharing problem.

www.sciencedirect.com

[21] Lin and Wei (2008). Solving the knapsack problem with

imprecise weight coefficients using Genetic algorithm.

www.sciencedirect.com

[22] Bortfeldt A, Gehring H. (2001). A hybrid genetic

algorithm for the container loading problem [J]. European

Journal of Operational Research, 2001, 131(1):143-161.

[23] Simoes, A, and Costa, E. (2001). Using Genetic

Algorithm with Asexual Transposition. Proceedings of

the genetic and evolutional computation conference (pp

323-330).

[24] Babaioff, M. et al (2007). Matroids, secretary problems,

and online mechanisms. Proceedings of the eighteenth

annual ACM-SIAM symposium on Discrete algorithms.

Pages 434-443

[25] Hanafi, S. and Freville, A. (1998), An efficient tabu

search approach for the 0-1 multidimensional knapsack

problem. http://www.sciencedirect.com

Authors’ Profiles

Dominic Asamaoh received his BSc and

MPhil Degree in Computer Science from

Kwame Nkrumah University of Science

and Technology (KNUST), Ghana. He is

a Lecturer in the Department of

Computer Science, KNUST. He has an

extensive career of over 15 years

teaching experience in Computer Science.

Research areas include Image processing,

Data Structures and Algorithms and Computer Systems

Architecture.

Evans Baidoo received his M.Phil

degree in Information Technology from

the Department of Computer Science,

Kwame Nkrumah University of Science

and Technology , Ghana in 2015. He has

an extensive career of over 7 years in

ICT educational training and programs in

public sector as an Instructor and as a

Project researcher in the private sector.

His research interest include: verification, Software

technologies in education, Algorithm and Optimization

Stephen Opoku Oppong received his

Bsc degree in Actuarial Science from

Kwame Nkrumah University of Science

and Technology (KNUST), Ghana in

2012 and Masters of Philosophy (MPhil)

degree in Information Technology also

from KNUST in 2015. He is a Lecturer in

the Department of Information

Technology, Faculty of Technology at

Academic City College, Accra Ghana He. His research areas

include statistical modeling, algorithms and image processing.

How to cite this paper: Dominic Asamoah, Evans Baidoo, Stephen Opoku Oppong,"Optimizing Memory using

Knapsack Algorithm", International Journal of Modern Education and Computer Science(IJMECS), Vol.9, No.5, pp.

34-42, 2017.DOI: 10.5815/ijmecs.2017.05.05

http://www.sciencedirect.com/
http://www.sciencedirect.com/
http://www.sciencedirect.com/
http://www.sciencedirect.com/

