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Abstract—Knapsack problem model is a general resource 

distribution model in which a solitary resource is 

allocated to various choices with the aim of amplifying 

the aggregate return. Knapsack problem has been broadly 

concentrated on in software engineering for a 

considerable length of time. There exist a few variations 

of the problem. The study was about how to select 

contending data/processes to be stacked to memory to 

enhance maximization of memory utilization and 

efficiency. The occurrence is demonstrated as 0 – 1 

single knapsack problem. In this paper a Dynamic 

Programming (DP) algorithm is proposed for the 0/1 one 

dimensional knapsack problem. Problem-specific 

knowledge is integrated in the algorithm description and 

assessment of parameters, with a specific end goal to 

investigate the execution of finite-time implementation of 

Dynamic Programming. 

 

Index Terms—Knapsack, memory, maximization, 

dynamic programming, algorithm. 

 

I.  INTRODUCTION 

Earlier computers had a single-level scheme for 

memory. Computer evolution has moved from gigantic 

mainframes to small stylish desktop computers and to 

low-power, ultra-portable handheld devices with in a 

relatively short period of time. As the generations keep 

passing by, computers making up of processors, 

memories and peripherals turn out to be smaller and 

faster with memory prices going up and down. However, 

there has not been a single main memory that was both 

fast enough and large enough even though computers 

were becoming faster and programs were getting bigger, 

particularly multiple processes that were simultaneously 

carried out under the same computer system. Though 

putting more random access memory (RAM) in the 

computer is nearly at all times a good investment, but it 

is not really advisable to spend extra money to get full 

benefit from the memory you already have, if there is an 

effective algorithm to ensure effective memory utilisation. 

Modern computer memory management is for some 

causes a crucial element of assembling current large 

applications. First, in large applications, space can be a 

problem and some technology is efficiently needed to 

return unused space to the program. Secondly, inexpert 

implementations can result in extremely unproductive 

programs since memory management takes a momentous 

portion of total program execution time and finally, 

memory errors becomes rampant, such that it is 

extremely difficult to find programs when accessing 

freed memory cells. It is much secured to build more 

unfailing memory management into design even though 

complicated tools exist for revealing a variety of memory 

faults. It is for this basis that efficient schemes are needed 

to manage allocating and freeing of memory by programs. 

In a computer system, a process as soon as created 

wants to run. There is a number of N created processes 

all contending for memory space to run.  All process 

want to fill the main memory that can hold an aggregate 

weight of W. If all processes are allowed to run, it will 

lead to system crushes, system running low memory, 

system underperformance, system overheat and difficulty 

in accessing data. We want to fill the main memory that 

can hold an aggregate weight of W with some blend of 

data/process from N possible list of data/process each 

with data size    and priority value    so that optimal 

utilisation of memory of the data/processes filled into the 

System main memory is achieved hence maximized. 

Among the data/processes contending for memory, 

Which of them should be allowed to run and which 

should not? Does the allowable data make optimal use of 

memory without memory losses? 

The problem that will be considered in this paper is 

that of accepting or rejecting the Process (an occurrence 

of an executed program) as they come in from the 

process queue to compete for memory space when a user 

request to run a program. The goal is to maximise the 

number of processes in a limited memory space. 

 

II.  LITERATURE REVIEW 

Knapsack problem largely considered as a discrete 

programming problem has become one of the most 

studied problem. The motive for such attention 

essentially draws from three facts as stated by Gil-

Lafuente et al. 

 

1. It can be viewed as the simplest integer linear 

programming problem;  

2. It emerges as a sub-problem in many more 

complex problems;  
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3. It may signify a great number of practical 

situations‖[1]. 

 

A. Memory management, Processes and its allocations 

The computer system primary memory management is 

key. After all, ―all software runs in memory and all data 

is stored in some form of memory. Memory management 

has been studied extensively in the traditional operating 

systems field‖ [2]. Memory management includes giving 

approaches to dispense bits of memory to programs at 

their request, and liberating it for reuse when not really 

required.  

Chen [3] identified possibilities of managing memory 

in smart home gateways. They asserts that ―due to 

different architecture, memory management for software 

bundles executed in home gateways differs from 

traditional memory management techniques because 

traditional memory management techniques generally 

assume that memory regions used by different 

applications are independent of each other while some 

bundles may depend on other bundles in a gateway‖. By 

way of contribution, they introduce a service dependency 

heuristic algorithm that is close to the optimal solution 

based on Knapsack problem but performs significantly 

better than traditional memory management algorithms 

and also in a general computing environment identified 

the difference between memory management in home 

gateway and traditional memory management problem. 

As program advancement is shifting its way into a 

more extensive programming community and more 

conventional state-based dialects from the practical 

programming community, ―the view that a more 

disciplined approach to memory management becomes a 

very important aspect [4]. For example, web 

programming languages such as Java and Python include 

garbage collection as part of the language, and there are 

various packages for performing memory management in 

C and C++‖.  

B. Knapsack problems and applications 

The knapsack problem (KP) is a traditional 

combinatorial issue used to show numerous modern 

circumstances. ―Since Balas and Zemel a dozen years 

ago introduced the so-called core problem as an efficient 

way of solving the Knapsack Problem, all the most 

successful algorithms have been based on this idea. All 

knapsack Problems belong to the family of NP-hard 

problems, meaning that it is very unlikely that we ever 

can devise polynomial algorithms for these problems‖ [5]. 

Table 1. Core history of Knapsack Problems and Solutions 

Year Author Solution Proposed 

1950s 
 

 

1957 

Richard Bellman 
 

 

George B. Dantzig 

Produced the first algorithm - dynamic programming theory - to exactly 
explain the 0/1 knapsack problem. 

 

He gave an exquisite and productive strategy to obtain the answer for the 
continuous relaxation issue, and henceforth an upper bound on z which was 

utilized as a part of all studies on KP in the accompanying a quarter century 

 

1960s 

 

 
1967 

Gilmore and Gomory 

 

 
Katherine Kolesar 

Among other knapsack-type problems he explored the dynamic programming 

approach to the knapsack problem  

 
Experimented with the first branch and bound algorithm of the knapsack 

problem. 

 

1970s 

 

 
1973 

 

 
1974 

 

 
1975 

 

1977 

Horowitz and Sahni  

 

 
Ingargiola and Korsh  

 

 
Johnson  

 

 
Ibarra and Kim 

 

Martellon and Toth 

The branch and bound methodology was further created, turned out to be the 

main approach fit for taking care of issues with a great amount of variables.  

 
Presented the initial reduction formula, a pre-processing algorithm which 

significantly reduces the number of variables  

 
Gave the first polynomial time approximation design to solve the problem of 

the subset-sum; Sahni extended the result to the 0/1 knapsack problem.  

 
They introduce the first completely polynomial time approximation design  

 

Proposed the first upper bound taking over the charge of the continuous 
relaxation. 

 

The key products of the eighties concern the resolution of mass problems, for which variables cataloguing (required by all the most effective 

algorithms) takes a very high percentage of the running time. 
 

1980 Balas and Zemel Introduced another way to deal with the issue by sorting, much of the time, just 

a little subset of the variables (the core problem). They demonstrated that there 
is a high likelihood for discovering an ideal solution in the core, in this way 

abstaining from considering the remaining objects.  

 

 

The Knapsack problem has been concentrated on for 

over a century with prior work dating as far back as 1897. 

―It is not known how the name Knapsack originated 

though the problem was referred to as such in early work 

of mathematician Tobias Dantzig suggesting that the 

name could have existed in folklore before mathematical 
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problem has been fully defined‖ [6]. 

Given a knapsack of limit, Z, and n dissimilar items, 

Caceres and Nishibe [7] algorithm resolved the single 

Knapsack problem using local computation time with 

communication rounds. With dynamic programming, 

their algorithm solved locally pieces of the Knapsack 

problem. The algorithm was implemented in Beowulf 

and the obtained time showed good speed-up and 

scalability [8].  

Heuristic algorithms experienced in literature that can 

generally be named as population heuristics include; 

―genetic algorithms, hybrid genetic algorithms, mimetic 

algorithms, scatter-search algorithms and bionomic 

algorithms‖. Among these, Genetic Algorithms have 

risen as a dominant latest search paradigm [9]. 

Eager about making use of a easy heuristic scheme 

(simple flip) for answering the knapsack problems, 

Oppong [10] offered a study work on the application of 

usual zero-1 knapsack trouble with a single limitation to 

determination of television ads at significant time such as 

prime time news, news adjacencies, breaking news and 

peak times.  

C. Related Works 

The Knapsack problem has been concentrated on for 

over a century with prior work dating as far back as 1897. 

―It is not known how the name Knapsack originated 

though the problem was referred to as such in early work 

of mathematician Tobias Dantzig suggesting that the 

name could have existed in folklore before mathematical 

problem has been fully defined‖ [6]. 

Kalai and Vanderpooten [11] examined the hearty 

knapsack problem utilizing a maximum-min conditon, 

and proposed another robustness method, called 

lexicographic α-vigor. The authors demonstrated that 

―the complication of the lexicographic α-robust problem 

does not augment compared with the max-min version 

and presented a pseudo-polynomial algorithm in the case 

of a bounded number of scenarios‖. 

Benisch et al. [12] experimented the problem of 

selecting biased costs for clients with probabilistic 

valuations and a merchant. They demonstrated that under 

specific suspicions this problem can be summary to the 

―continuous knapsack problem‖ (CKP).  

Shang et al [13] solved the Knapsack problem using 

this algorithm. ACO was enhanced in determination 

procedure and data change so that it can't undoubtedly 

keep running into the local optimum and can meet at the 

global optimum.  

Kosuch [14] presented an ―Ant Colony Optimization 

(ACO) algorithm‖ for the Two-Stage Knapsack case with 

discretely dispersed weights and limit, using a meta-

heuristic approach.  

Florios et al [15] tackled an example of the ―multi-

objective multi-constraint (or multidimensional) 

knapsack problem (MOMCKP)‖, with three target 

capacities and three limitations. The creators requested 

for an accurate and approximate algorithm which is a 

legitimately altered form of the ―multi-criteria branch and 

bound (MCBB) algorithm‖, further tweaked by suitable 

heuristics.  

In the middle of the 1970s ―several good algorithms 

for Knapsack Problem (KP) were developed [16], [17], 

[18]. The starting point of each of these algorithms was 

to order the variables according to non-increasing profit-

to-weight (pj/wj) ratio, which was the basis for solving 

the Linear KP.‖  

Given a knapsack of limit, Z, and n dissimilar items, 

Caceres and Nishibe [7] algorithm resolved the single 

Knapsack problem using local computation time with 

communication rounds. With dynamic programming, 

their algorithm solved locally pieces of the Knapsack 

problem. The algorithm was implemented in Beowulf 

and the obtained time showed good speed-up and 

scalability [8].  

Silva et al [19] managed the issue of incorrectness of 

the solutions produced by meta-heuristic methodologies 

for combinatorial optimization bi-criteria knapsack 

problems.  

Yamada et al [20] solved the knapsack sharing 

problem to optimality by presenting a ―branch and bound 

algorithm and a binary search algorithm‖. These 

algorithms are executed and computational tests are done 

to break down the conduct of the created algorithms. As a 

result, they found that ―the binary search algorithm 

solved KSPs with up to 20,000 variables in less than a 

minute in their computing environment‖.  

Lin [21] examined the likelihood of genetic algorithms 

as a part of taking care of the fuzzy knapsack problem 

without characterizing participation capacities for each 

inexact weight coefficient.  

Bortfeldt and Gehring [22] presented a hybrid genetic 

algorithm (GA) for the container packing problem with 

boxes of unlike sizes and one container for stacking.  

Simoes and Costa [23] performed an empirical study 

and evaluated the exploits of the ―transposition A-based 

Genetic Algorithm (GA) and the classical GA for solving 

the 0/1 knapsack problem‖.  

Babaioff et al [24] presented a model for ―the multiple-

choice secretary problem in which k elements need to be 

selected and the goal is to maximize the combined value 

(sum) of the selected elements‖.  

Hanafi and freville [25] illustrated another way to deal 

with Tabu Search (TS) emphasising on tactical 

oscillation and surrogate control information that gives 

stability between escalation. Heuristic algorithm like 

Tabu Search and Genetic algorithm have also appeared in 

recent times for the solution of Knapsack problems. Chu 

et al [9] proposed a genetic algorithm for the 

multidimensional Knapsack problem. 

 

III.  METHODOLOGY 

This is a clean integer programming with a single 

check which forms an essential class of whole number 

programming. It confines the number    of duplicates of 

every sort of item to zero or one and the relating 

aggregate is boosted without having the data size total to 

surpass the limit C. The 0-1 Knapsack Problem (KP) can 
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be mathematically stated through the succeeding integer 

linear programming. 

Let there be n items,    to   where    has a value    

and data size   .    is the number of copies of the item   , 

which, must be zero or one. The maximum data size that 

we can carry in the bag is C. It is common to assume that 

all values and data sizes are nonnegative. To make 

simpler the illustration, we also presume that the items 

are scheduled in increasing order of data size 

 

                         ∑   
 
                            (1) 

 

                         ∑    
 
                        (2) 

 

   = 0 or 1, j = 1,...,n 

 

Increase the summation of the items values in the 

knapsack so that the addition of the data sizes must be 

not exactly or equivalent to the knapsack's limit. 

As ―Knapsack Problems are NP-hard‖ there is no 

recognized exact solution technique than possibly a 

greedy approach or a possibly complete enumeration of 

the solution space. However quite a lot of effort may be 

saved by using one of the following techniques: These 

are ―Branch-and-Bound and dynamic programming‖ 

methods as well as meta-heuristics approaches such as 

―simulated annealing, Genetic algorithm, and Tabu 

search‖ which have been employed in the case of large 

scale problems solution. This research paper makes use 

of the dynamic programming algorithm to investigate the 

problem. 

A. Dynamic Programming 

This is an approach for responding to an unpredictable 

problem by reducing it into a set of simpler sub-problems 

It is appropriate to problems displaying the properties of 

overlying sub-problems and optimal substructure. 

Dynamic Programming (DP) is an effective procedure 

that permits one to take care of a wide range of sorts of 

problems in time O(  ) or O(  ) for which an innocent 

methodology would take exponential time.  

Dynamic programming algorithms are used for 

optimization (for instance, discovering the most limited 

way between two ways, or the speediest approach to 

multiply numerous matrices). A dynamic programming 

algorithm will look at the earlier tackled sub-problems 

and will consolidate their answers for give the best 

answer for the given problem.  

B. Dynamic Programming Algorithm for Knapsack 

A set of n items is given where 

 

i = item 

z = the storage limit. 

   = size or data weight 

   = profit 

C = maximum capacity (size of the knapsack) 

 

The target is to locate the subset of items of maximum 

sum value so much that the total of their sizes is at most 

C (all can be placed into the knapsack). 

 

Step 1: Break up the problem into smaller problems. 

Constructing an array V[0. . . n, 0 . . .C]. 

For       and      , the entry V[i ,z] will 

keep the maximum (combined) computing value of every 

subset of items {1,2, . . ., i} of (combined) size at most z. 

If we compute all the entries of this array, then the 

array entry V[n, C] will hold the highest computing items 

value that can fit into storage, that is, the solution to the 

problem. 

 

Step 2: Recursively describe the worth of an ideal 

solution in terms of solutions to smaller problems. 

Initial settings: Set 

 

 [   ]       for           no item 

 

 [   ]        for                illegal 

 

Recursive step: Use 

 

 [   ]         [     ]      [         ]  
 

for 

 

1           , 

 

Remember: V[i, z] stores the maximum (combined) 

computing value of any subset of items {1,2, . . . , i} of 

(combined) size at most z, and item i has size,    (units) 

and has a value   , C (units) is the maximum  storage. 

To compute V[i , z] there are only two choices for item 

i: 

Leave item i from the subset: The best that can be done 

with items {1, 2, . . . i  - 1} and storage limit z is V[i – 1, 

z]. 

Take item i (only possible if       : This way we 

gain    benefit, but have spent    bytes of the storage. 

The best that can be done with the remaining items {1, 

2, . . ., i – 1} and storage limit, z -    is V[i – 1, z -   ]. 

End product is     V[i – 1, z -   ].  

If   > z, then     V[i – 1, z -   ] =    

 

Step 3: Using Bottom up computing V[i, z]  

Bottom: V[0, z] = 0 for all         
Bottom-up computation: 

 

 [   ]            [     ]      [      
   ]              

 

C. Strategy 1 

Assumes process are sorted by memory size in 

ascending order 

 

Knapsack(v, w, W) 

        load := 0 

        i := 1 

        while load < W and i ≤ n loop 
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           wi ≤ W - load then 

                take all of item i 

            add weight of what was taken to load 

            i := i + 1 

        end loop 

        return load 

 

D. Strategy 2 

Assumes processes are sorted by number of times 

accesses in ascending order 

 

Knapsack(v, w, W) 

        load := 0 

        i := 1 

        while load < W and i ≤ n loop 

            if wi ≤ W - load then 

                take all of item i 

            else 

                take (W-load) / wi of item i 

            end if 

            add weight of what was taken to load 

            i := i + 1 

        end loop 

        return load 

 

IV.  ANALYSIS 

This paper uses data collected dynamically from a 

process – ―number of times data is accessed and data size‖ 

to represent the value and weight of an item by assigning 

randomized personal data - to model the knapsack 

problem and solve the problem of Computer systems 

ending up running low memory by employing a dynamic 

programming approach.  

Category A: Table 2 below shows a computer system 

with a total of 15 created processes, all with their system 

information in Figures. The computer memory can 

accommodate capacity of 32mb.  

Category B: Table 3 below shows system information 

of a total of 32 data/processes in Figs. The memory 

capacity of this system is 512mb.  

From Table 2, there are a total of 15 processes and that 

of Table 3 has 32 processes. Taken the system 

information each process carries, if all processes are 

allowed to load as soon as created, from Table 2, the 

computer system will require total memory capacity of 

88mb exceeding the main memory capacity of 32mb. 

Table 3 will demand an arbitrary overall memory space 

of 2411mb from a System with capacity limit 512mb. 

Therefore, from Table 2, an additional memory of 56mb 

needs to be created and that of Table 3 is1899mb. 

Therefore, it is infeasible to allow all the process to run 

without running into low memory or system crushes. A 

summary is shown in Fig. 1 

 

 

 

 

Table 2. Data values of Category A 

Processes No data size/mb 
Number of times 

data is accessed 

1 6 6 

2 4 5 

3 8 8 

4 6 2 

5 6 9 

6 7 4 

7 5 7 

8 7 9 

9 3 6 

10 10 2 

11 3 9 

12 6 10 

13 9 9 

14 5 8 

15 3 6 

 Total: 88  

Table 3. Data values of Category B 

Processes No 
Memory data 

size/mb 

Number of times 

data is accessed 

1 25 6 

2 52 5 

3 100 7 

4 86 9 

5 36 5 

6 76 3 

7 12 4 

8 56 7 

9 128 7 

10 96 7 

11 160 8 

12 120 3 

13 82 2 

14 68 4 

15 92 6 

16 48 5 

17 128 4 

18 160 8 

19 24 6 

20 64 2 

21 96 1 

22 124 3 

23 65 2 

24 12 3 

25 45 7 

26 56 6 

27 86 7 

28 82 3 

29 98 7 

30 134 8 

31 142 4 

32 200 5 

 Total: 2753  
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Fig.1. Memory demand of Table 1 and Table 2 

Strategy one allows data/process to be loaded 

according to data size picking data with smallest sizes 

first until the system capacity is reached. From Table 2, 

processes 1, 2, 4, 7, 9, 11 satisfy the condition over the 

other processes and therefore by precedence it will be 

given concern. Together, this six (6) data/process will 

require 28mb space, with 4mb free. From Table 4.2, 

processes 1, 2, 5, 7, 8, 16, 19, 20, 23, 24, 25, and 26, a 

throughput of 12 data/processes satisfy the condition with 

a total request memory of 495mb, 17mb space left 

unused.  

Table 4 compares the optimal data from Table 2 of 

Load data into memory by size Strategy and the Dynamic 

Programming approach. 

Table 4. Comparism of Optimal Data of Table 2 

Load data into memory by size 

(Strategy 1) 

Dynamic Programming 

Approach 

ProcessNo data size/mb ProcessNo Data size/mb 

1 6 5 6 

2 4 7 5 

4 6 9 3 

7 5 11 3 

9 3 12 6 

11 3 14 5 

  15 3 

Table 5. Comparism of Optimal Data of Table 3 

Load data into memory by 

size(Strategy 1) 
Dynamic Programming Approach 

Processes No data size/mb Processes No Data size/mb 

1 25 1 25 

2 52 2 52 

5 36 3 100 

7 12 4 86 

8 56 5 36 

16 48 7 12 

19 24 8 56 

20 64 19 24 

23 65 24 12 

24 12 25 45 

25 45 26 56 

26 56   

 

Table 5 compares the optimal data from Table 3 of 

Load data into memory by size Strategy and the Dynamic 

Programming approach. 

Table 6. Memory utilisation Analysis of Table 2 

Specification (Strategy 1) 
Dynamic 

Programming 

Approach 

System throughput 6 7 

Memory acquired 28 31 

Used memory 4 1 

 

 

Fig.2. Memory utilisation of Table 6 

Table 6 illustrate the analysis of Memory utilisation of 

Table 2 whereas Table 7 illustrate the analysis of 

Memory utilisation of Table 3 

Table 7. Memory Utilisation Analysis of Table 3 

Specification (Strategy 1) 
Dynamic 

Programming 

Approach 

System throughput 12 11 

Memory acquired 495 504 

Used memory 17 8 

 

 

Fig.3. Memory utilisation of Table 7 

Strategy two allows data/process to be selected 

according to the number of times data is access or the 

data access times until the system capacity is reached. 

Passing the data in Table 2 through this heuristic strategy, 

processes 5, 8, 11, 12, and 13 satisfy the condition due to 

its higher access times. A throughput of 5, it requires 

15 32 88 56 32 
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31mb space to manage this processes. 

Processes 4, 11, and 18 giving a throughput of 3 from 

Table 3 satisfy the condition of heuristic strategy two. 

The processes will require 406mb to allow the three most 

frequently accessed data to run in memory holding the 

remaining data/process in queue. This will leave 106mb 

free space in memory unutilized.  

Using the Dynamic programming approach for solving 

Table 2 as already illustrated in Fig 2, a throughput of 7, 

Processes 5, 7, 9, 11, 12, 14, and 15 is loaded into 

memory for CPU scheduling. With Table 3, Processes 1, 

2, 3, 4, 5, 7, 8, 19, 24, 25, 26 totalling a throughput of 11 

is loaded for memory allocation since their memory 

utilisation requirement is 8mb less than the 512mb 

memory capacity of the computer system. This is 

illustrated in Fig 3.  

Table 8 compares the optimal data from Table 2 of 

Load data into memory by number of accesses Strategy 

and the Dynamic Programming approach. 

Table 8. Comparism of Optimal Data of Table 2 

Load data into memory by 
number of accesses (Strategy 2) 

Dynamic Programming 
Approach 

Processes No 
Number of 

times data is 

accessed 

Processes No 
Number of 

times data is 

accessed 

5 9 5 9 

8 9 7 7 

11 9 9 6 

12 10 11 9 

13 9 12 10 

  14 8 

  15 6 

 

Table 9 compares the optimal data from Table 3 of 

Load data into memory by number of accesses Strategy 

and the Dynamic Programming approach. 

Table 9. Comparism of Optimal Data of Table 3 

Load data into memory by 
number of accesses 

 (Strategy 2) 

Dynamic Programming Approach 

Processes No 
Number of 

times data is 

accessed 

Processes No 
Number of 

times data is 

accessed 

4 9 1 6 

11 8 2 5 

18 8 3 7 

  4 9 

  5 5 

 

7 4 

8 7 

 

19 6 

24 3 

25 7 

26 6 

 

Table 10 illustrate the analysis of Memory utilisation 

of Table 2 for strategy two 

 

 

Table 10: Memory utilisation of Table 2 

Specification (Strategy 2) 

Dynamic 

Programming 
Approach 

System throughput 5 7 

Memory acquired 31 31 

Used memory 1 1 

 

 

Fig.4. Memory utilisation of Table 10 

Table 11. Memory utilisation of Table 3 

Specification (Strategy 2) 
Dynamic Programming 

Approach 

System 

throughput 
3 11 

Memory 
acquired 

406 504 

Used memory 106 8 

 

 

Fig.5. Memory utilisation of Table 11 

Comparing the Dynamic programming approach to 

other existing strategies employed by computer 

programmers and system developers for optimising 

memory, the Dynamic programming approach tends to 

out-perform most of them.  

5 

31 

1 

7 

31 

1 

0

5

10

15

20

25

30

35

System
throughput

Memory
acquired

Used memory

(Strategy 2)

Dynamic Programming Approach

3 

406 

106 

11 

504 

8 
0

100

200

300

400

500

600

System
throughput

Memory
acquired

Used
memory

(Strategy 2)

Dynamic Programming Approach



 Optimizing Memory using Knapsack Algorithm 41 

Copyright © 2017 MECS                                                    I.J. Modern Education and Computer Science, 2017, 5, 34-42 

The Dynamic programming approach tends to pick 

data/process that can enhance efficient utilisation of 

memory. It also picks as many processes as possible 

provided their data sizes do not exceed the system 

capacity. from Table 6 even though loading data into 

memory by size strategy (Strategy one) allowed system 

throughput of 6, it left an unused memory space of 4mb 

compared to the Dynamic approach of allowing 7 process, 

and an efficient memory utilisation of 31mb, illustrating 

that there is optimal utilisation of memory. Same can be 

made of Table 7 with strategy 1 picking more 

data/process than the Dynamic approach, it left more 

unutilized space than the Dynamic approach which may 

lead to memory leakage. The strategy of loading data into 

memory by size strategy tends to favour only 

process/data with smaller data size but data with larger 

data size takes a long time to be given space thereby 

increasing the allocation time of such data irrespective of 

the higher system priority or access frequency that a 

data/process may have. 

The second strategy although can be used to Optimize 

memory, it also failed to perform better compared to the 

proposed approach. From Table 10, although the memory 

requirement of selected processes of Table 2 for Load 

data into memory by number of accesses strategy 

(strategy 2) equals the Dynamic programming approach, 

the system throughput of the heuristic strategy two falls 

short of 2 more processes compared to the Dynamic 

programming approach which allow 7 processes to load 

at time. In Table 11 the Dynamic programming approach 

achieves 8 more processes than heuristic strategy two. 

With only 3 system throughput, strategy two require 

406mb memory spaces to allow the most frequently used 

process to run leaving behind 106mb memory unutilized. 

The Dynamic programming approach, with 11 system 

throughput, made an effective utilisation of memory. It 

required 504mb memory leaving 8mb space free. At this 

point it can be deduced that The Load data into memory 

by number of accesses strategy may sometimes not make 

use of efficient use of memory and may lead to memory 

loses and leakages 

Additionally, the Load data into memory by number of 

accesses strategy take a longer time for a fresh new data 

to be loaded into memory space since it favours 

data/process with a higher number/time accessed 

otherwise such process/data is held in queue. Therefore, 

newly created process which probably may need little 

space to load will have to wait a long while to execute.  

 

V.  CONCLUSION 

In this paper, we propose a partial enumeration 

technique based on an exact enumeration algorithm like 

the dynamic programming for effective utilisation and 

optimization of memory. The problem identified is one 

that has a single linear constraint, a linear objective 

function which sums the values of data/process in 

memory, and the added restriction that each data/process 

should be in memory or not. The Dynamic programming 

approach proved to quickly find an optimal solution or a 

near optimal solution in some situations where exact 

solution is not possible as opposed to a heuristic that may 

or may not find a good solution. 

From the paper, it is shown that the Dynamic 

programming algorithm is more efficient and yield better 

result than other existing heuristic algorithm. Dynamic 

Programming algorithm is easy to implement since no 

sorting is necessary, saving the corresponding sorting 

time. Additionally, the time complexity taken to solve the 

Dynamic programming is 0(n*W) compared to the 0/1 

knapsack algorithm running time of O(2^n). Taken that n 

is the number of items and W is the Capacity limit. 
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