
I.J. Modern Education and Computer Science, 2017, 6, 17-24
Published Online June 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2017.06.03

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 6, 17-24

A Novel Reduced-Precision Fault-Tolerant

Floating-Point Multiplier

Maryam Mohajer
School of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, 47148-71167, Iran

Email: maryam.mohajer@stu.nit.ac.ir

Mojtaba Valinataj*
School of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, 47148-71167, Iran

*Corresponding author, Email: m.valinataj@nit.ac.ir

Abstract—This paper presents a new fault-tolerant

architecture for floating-point multipliers in which the

fault-tolerance capability is achieved at the cost of output

precision reduction. In this approach, to achieve the fault-

tolerant floating-point multiplier, the hardware cost of the

primary design is reduced by output precision reduction.

Then, the appropriate redundancy is utilized to provide

error detection/correction in such a way that the overall

required hardware becomes almost the same as the

primary multiplier. The proposed multiplier can tolerate a

variety of permanent and transient faults regarding the

acceptable reduced precisions in many applications. The

implementation results reveal that the 17-bit and 14-bit

mantissas are enough to obtain a floating-point multiplier

with error detection or error correction, respectively,

instead of the 23-bit mantissa in the IEEE-754 standard-

based multiplier with a few percent area and power

overheads.

Index Terms—Fault-tolerance, Reduced precision,

Floating-point multiplier, Error detection, Error

correction

I. INTRODUCTION

Arithmetic operations are one of the primary functions

of computer systems. This type of operations is required

for many embedded systems, especially the ones used in

multimedia applications [1, 2]. In particular, many

categories of software perform vast amounts of floating-

point arithmetic operations. Meanwhile, the floating-point

multiplication unit is an essential intellectual property (IP)

component for modern multimedia and high performance

computing such as graphics acceleration, signal

processing, image processing, etc. A lot of effort is made

over the past few decades to improve the performance

and reliability of floating-point computations since the

floating-point multipliers require more area and power

consumption compared to their fixed-point counterparts.

Because floating-point arithmetic operations are crucial

for many applications, there are many situations in which

an error in a floating-point calculation could be

problematic or even disastrous. Moreover, decreasing

feature sizes has led to reliability problems [3, 4]. Errors

can arise due to physical faults caused by the strike of

high-energy particles or permanent wear out of transistors

because of continuation of shrinking the transistor and

wire dimensions.

The reliability and low power consumption are two

major design objectives in today’s embedded systems.

Since Floating Point Units (FPUs) are required for many

embedded applications, a careful consideration should be

given to the reliability and power consumption of FPUs

used in the embedded systems.

Many floating-point applications in multimedia and

scientific computing do not require the complete

precision, and even an approximate value will be

sufficient for the correct operation [5]. Such floating-

point applications can tolerate imprecise computations. In

fact, many floating-point applications can operate with

reduced-precision floating-point values, so we can

remove some Least Significant Bits (LSB) of mantissa in

the floating-point values that are used in the computations.

As a result, a part of the circuit is released that can result

in a lower power consumption. However, in this paper,

we add and utilize some new parts for providing

redundant computations in order to enhance the reliability

in the form of error detection and error correction. This

way, we focus on error detection and error correction in

the floating-point multiplier architecture and present two

new 32-bit fault-tolerant floating-point multiplier designs,

one with error detection and another with error correction

capability. However, the main goal is to achieve the new

fault-tolerant designs with the hardware cost very close to

the original design.

The proposed designs are compatible with the single-

precision representation format of floating-point values

based on IEEE-754 standard. It is worth mentioning that

as the proposed designs are based on reduced-precision

computations, some computational errors may be

produced in the outputs. Therefore, we achieve to a

reliable floating-point multiplier against a variety of

permanent and transient faults by accepting a few percent

computational error in the outputs which is satisfactory in

many multimedia applications because some output

deviations are naturally hidden due to the limitation of

human sense.

18 A Novel Reduced-Precision Fault-Tolerant Floating-Point Multiplier

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 6, 17-24

The rest of the paper is organized as follows: In

Section II the related works, and in Section III, the

backgrounds for IEEE floating-point standard and single-

precision floating-point multiplier are presented. Section

IV describes the proposed fault-tolerant multiplier

designs. Section V shows the experimental results and

evaluates the proposed designs in terms of delay, power

consumption and area. Finally, some conclusions are

drawn in Section VI.

II. RELATED WORKS

FPUs, in particular their floating-point multipliers, are

among the most crucial and hardest components to

protect. So the fault-tolerance capability of such units

against faults is one of the important issues which require

much attention. There are several techniques to improve

reliability. However, these techniques impose a sort of

overheads including power consumption, delay overhead

and area overhead. Traditional fault or error

detection/correction techniques, such as duplication with

comparison, Triple Modular Redundancy (TMR), and the

methods based on time redundancy (re-execution) [6] are

used in some of the practical floating-point processors.

However, these techniques suffer from high area and

power overheads.

So far, many fault-tolerant fixed-point arithmetic

operators or units have been designed such as [7-12].

However, the fault-tolerant floating-point arithmetic units

have received less attention. In [13] a floating-point

arithmetic unit with error detection capability is proposed

in which a cost-efficient and complete residue checking is

utilized. However, because of the utilized original method,

it cannot be used for error correction. In [14] an exponent

checking architecture is proposed for floating-point

computations, which detects many errors but apparently it

can detect fewer errors compared to the augmented

design in which the mantissa is checked for errors.

Similar to [13], this design is only useful for error

detection.

Previous reduced-precision or bit truncation schemes

[15-18] focused on reducing the power consumption in

the mantissa multiplication block, due to the fact that it

consumes the largest amount of power consumption in a

floating-point multiplier. In [15], it is examined that how

a software-based system can employ the minimal number

of bits for mantissa and exponent in the floating-point

hardware to reduce the power consumption while

maintaining the program’s overall accuracy. This study

shows the relationship between the accuracy of floating-

point programs and the number of bits used in the

representation of their data. The experimental results

stated in [15] show that none of the floating-point

programs displays a noticeable degradation in accuracy

when the bit width of mantissa is reduced from 23 to 11.

Moreover, for some programs, the accuracy does not

change significantly with as few as 5-bit mantissa. The

results demonstrate that many programs which

manipulate human sensory inputs, e.g. speech and image

recognition, suffer no loss of accuracy with reduced bit

width in the mantissa or exponent. However, limited

studies have been performed based on reduced-precision

to achieve error detection capability for floating-point

adders and multipliers. Moreover, there is not any

research regarding error correction in the reduced-

precision FPUs.

In [19] an error detection technique for a floating-point

adder is presented which uses a reduced-precision

checker adder to determine whether the result is correct

within some error bound. In this technique, the same

amount of bits for the exponent is maintained due to the

fact that the exponent highly influences the last result and

thus should not be truncated, but the mantissa is truncated

to save area and power. The full computation is done in

parallel with the redundant computation, with the

reduced-precision checker adder which performs the

redundant computation, only taking the Most Significant

Bits (MSBs) of the operands. In the last stage of the

design there is a hardware that compares the results and

determines whether there is an error or not. In [20] the

Reduced Precision Checking (RPC) technique has been

applied to the floating-point multiplier to detect errors.

This study shows that the RPC can successfully detect

errors in floating-point multiplication at relatively low

cost but cannot correct errors.

III. BACKGROUND

A. IEEE Floating-Point Representation

The most common representations used for real

numbers are in the form of fixed-point or floating-point.

The floating-point representation provides both a wider

dynamic range and a higher precision as compared to the

fixed-point representation, but it incurs a higher area and

power consumption, as well. The usual display of

floating-point numbers is determined according to IEEE-

754 standard. In this standard two main representation

formats are defined. The first format called single-

precision format is 32 bits wide, containing one bit for the

sign, 8 bits for the exponent and 23 bits for the mantissa.

The second format called double-precision format is 64

bits wide, containing one bit for the sign, 11 bits for the

exponent and 52 bits for the mantissa. In this paper, we

focus only on the single-precision format. However, the

proposed architecture can be extended to double-

precision numbers. Fig. 1 demonstrates the binary

representation of the single-precision floating-point

format.

According to the IEEE-754 standard, the mantissa is

less than 1.0, but one hidden bit, which is always '1', is

supposed to be placed on the left of the implicit binary

point and forms the significand. Therefore, the

significand is a normalized number in the range of [1, 2).

In this representation, the exponent is modified with a

bias of 127 (that is equal to 2number of exponent's bits-1-1) for the

1271 1.Mantissa 2 Sign Exponent  

 A Novel Reduced-Precision Fault-Tolerant Floating-Point Multiplier 19

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 6, 17-24

Fig.1. Binary representation of single-precision format.

single-precision format for some reasons that one of them

is the representation of zero number with only zero bits.

In addition, the sign bit represents the sign of significand

while the sign of exponent is implicit inside it due to the

fact that the two's complement representation is used for

the exponent. The floating-point values based on different

amounts of exponent and mantissa, are depicted in Table

1.

B. Single-Precision Floating-Point Multiplier

The single-precision floating-point multiplier performs

the multiplication of two 32-bit inputs which are floating-

point numbers with single-precision format and provides

the output in the same format. The multiplication of two

floating-point numbers is performed in six steps as the

following:

 Step 1: Multiplication of significands

 Step 2: Normalization

 Step 3: Adding the exponents

 Step 4: Checking for underflow/overflow

occurrence

 Step 5: Calculating the sign

 Step 6: Standardizing

Fig. 2 depicts the 32-bit floating point multiplier's data

process flow. Each input is split into three parts (sign,

exponent, and mantissa) so that can be easily routed into

the corresponding components. The signs from the input

operands A and B are connected directly to an XOR gate

to generate the sign of the final result, in which '0'

indicates the positive sign and '1' indicates the negative

sign. The 23-bit mantissas are extracted from two

operands to be sent to the multiplication unit. However,

an explicit '1' is appended as the leading bit of both

mantissas to produce the significand and fit into the 24-

bit multiplier unit. The output of the 24-bit multiplier is a

48-bit result, but only 23 bits are extracted in order to

follow the IEEE-754 standard rules. Thus, the 48-bit

output of the multiplier should pass through the

normalizer to be rounded to nearest 23-bit result of

mantissa. The extraction of 23 bits out of 48 bits in the

output after multiplication, as the final result for mantissa,

has two conditions. It may also involve an adjustment of

the resultant exponent, depending on the MSB of the 48-

bit multiplication's output. If this bit is equal to '1', one

carry bit is given to the exponent calculation block to set

the final exponent.

Condition1: If the MSB (48th bit) is equal to '1', the bits

with the indices from 25 to 47 will be selected as the final

23-bit mantissa with rounding to nearest by adding 24th

bit, and adding '1' to the exponent (carry is one).

Table 1. Floating-Point Values Based on Different Amounts of

Exponent and Mantissa

E = 0 Zero

0< E < 255 Normal numbers

E = 255 , M = 0 Infinite

E = 255 , M /= 0 Not-a-Number

A B

Sign Exponent Mantissa Sign Exponent Mantissa

1
23 8 23

 1 Mantissa 1 Mantissa

24-bit Multiplier

NormalizerExponent adder

Standardizing

Result

1

1
1

8

23 23

2424

48Carry

8 23

1

8 8 Subtract

127

32

Fig.2. The baseline 32-bit floating-point multiplier.

Condition2: If the MSB (48th bit) is equal to '0', then

the bits with the indices from 24 to 46 will be selected

with rounding to nearest by adding 23th bit without

adding a carry to the exponent (carry is zero).

The 8-bit exponent values from two operands are

added to generate a sum of 9-bit result. The incoming

values are biased, so a constant value of 127 must be

subtracted from the result. In addition, the carry signal

from the normalizer is added to this exponent for

adjustment. Only the 8-bit exponent values are forwarded

to the final output, which will be the 8-bit exponent in the

IEEE-754 32-bit floating-point number. Equation (1) is

used to obtain the sum of exponents:

Exp. (Sum) = Exp. (A) + Exp. (B) –

 127 + Carry from Normalizer (1)

Moreover, the MSB (9th bit) is used to show that either

overflow or underflow has occurred in the exponent. If

the MSB of the exponent is equal to '1', it means the

exponent value is overflowed (infinite value), and if it is

'0', it means the exponent is under flowed (nearly zero

value).

Finally, the 32-bit output passes through the

standardizing block. This block, as its name shows, is

responsible for displaying the multiplication result

according to the IEEE-754 standard. In addition, there are

some special cases in which the mentioned steps are not

needed and the answer can directly be obtained. Some of

these special cases are shown in Table 2.

20 A Novel Reduced-Precision Fault-Tolerant Floating-Point Multiplier

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 6, 17-24

Table 2. Some Special Cases for Floating-Point Multiplication

Operand A Operand B Output

Normal Zero Zero

Normal Infinite Infinite

Normal Not-a-Number Not-a-Number

Infinite Infinite Not-a-Number

Infinite Not-a-Number Not-a-Number

In the following sections, two new architectures based

on single-precision floating-point multiplier are proposed

and evaluated for error detection and error correction in

such a way that the overall required hardware becomes

almost the same as the primary multiplier.

IV. PROPOSED DESIGNS

Many floating-point applications in multimedia and

scientific computing can tolerate imprecise computations

[5, 15]. In fact, many floating-point applications can

operate with single-precision format and even less

precision with some truncated bits. However, output

deviations in the form of errors are not acceptable. Thus,

the fault-tolerant methods should be considered in the

floating-point operations to achieve error detection or

error correction in the outputs. As the state of the art

fault-tolerant methods incur noticeable area and power

overheads, we utilize the bit truncation of mantissa in the

proposed designs to reduce the overall consumed area

while some types of redundancies are applied to achieve

reliability in the form of error detection or error

correction in the intended multiplier architecture. In other

words, the precision reduction resulted by the bit

truncation of mantissa in the floating-point representation

of the input operands causes some blocks of the baseline

multiplier to be smaller and thus require less area and

power. This helps us to incorporate some redundancies to

achieve a fault-tolerant multiplier. In this way, regarding

the size of mantissa, the new designs can be attained with

almost the same hardware cost as the primary design

which is one of the main goals of this paper.

A. Floating-Point Multiplier with Error Detection

As mentioned in Section III, the single-precision

format according to the IEEE-754 standard has a bit for

the sign, eight bits for the exponent and 23 bits for the

mantissa, and there is also a hidden bit '1' on the left of

the mantissa which forms the significand. To achieve an

error detecting floating-point multiplier design, we

maintain the same number of bits for the exponent since

it highly influences the magnitude and the range of

displayable floating-point numbers. However, the

truncation of some LSBs of the mantissa is performed to

compromise precision and reliability.

As shown in Fig. 2, the 32-bit floating-point multiplier

described before includes an internal 24-bit multiplier for

multiplying two 24-bit significands of the input floating-

point operands. Thus, to achieve error detection

capability in the multiplier, the largest part of the

architecture, two m-bit reduced-precision internal

multipliers (m<24) are utilized according to the concept

of duplication with comparison method. Therefore, each

23-bit mantissa is truncated to a new k-bit mantissa

(which means (23–k) LSBs are removed) which together

with the hidden bit forms an m-bit significand (m=k+1).

This way, instead of using a large 24-bit internal

multiplier with a 48-bit result, two m-bit reduced-

precision multipliers are utilized to produce two 2m-bit

results to be compared in the comparator in order to

detect probable errors with minimum hardware overheads.

Fig. 3 depicts the proposed reduced-precision fault-

tolerant floating-point multiplier with error detection

capability. As shown in this figure, the normalizer block

is also duplicated to reach more error detection capability

in entire design. In addition, an error signal will be

asserted if the results of two m-bit internal multipliers are

not equal after passing the normalizer blocks or two

produced carry signals from the normalizer blocks are not

equal. The comparators will set their output to one if their

input operands are not equal. Otherwise, one of the

produced results will be sent to the remaining blocks

(exponent adder and standardizing blocks) to produce the

last result in the form of the 32-bit single-precision

floating-point number. It should be noted that in the

standardizing block, (23–k) zeros are appended at the

right of the k-bit resultant mantissa to obtain the 32-bit

standard result. As will be shown in Section V, a proper k

value can be selected regarding the total hardware cost

(area, power, delay) to obtain low-cost error detecting

design with almost the same hardware cost as the primary

design while reducing the output's precision.

B. Floating-Point Multiplier with Error Correction

It is clear that more cost is imposed if an error

correcting multiplier is to be reached. Thus, to maintain

the entire cost almost unchanged, more precision

reduction is needed. This way, tree n-bit reduced-

precision multipliers (n<m<24) are utilized according to

the concept of TMR method to correct single errors in the

fault-tolerant floating-point multiplier. Therefore, each

23-bit mantissa is truncated to a new t-bit mantissa

(which means (23–t) LSBs are removed) which together

with the hidden bit forms an n-bit significand (n=t+1).

This way, instead of a large 24-bit internal multiplier with

a 48-bit result, tree n-bit reduced-precision internal

multipliers are utilized to produce tree 2n-bit results to be

compared in the voter in order to mask or correct

probable errors.

Fig. 4 depicts the proposed reduced-precision fault-

tolerant floating-point multiplier with error correction

capability. In this figure, the normalizer block is

triplicated similar to the internal multiplier to reach more

error correction capability in entire design. In addition,

two voters are utilized including a t-bit voter for masking

single errors in the resultant mantissa and a one-bit voter

for the output carries of the normalizer blocks. Then, the

voters' outputs will be sent to the remaining blocks to

produce the last result in the form of the 32-bit single-

 A Novel Reduced-Precision Fault-Tolerant Floating-Point Multiplier 21

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 6, 17-24

precision floating-point number. Similar to the error

detecting multiplier, several zeros (23–t) are appended at

the right of the t-bit resultant mantissa in the

standardizing block to obtain the 32-bit standard result.

As will be shown later, a proper t value can be selected

regarding the total hardware cost to obtain a low-cost

error correcting design while reducing the output's

precision.

A B

 Sign Exponent Mantissa Sign Exponent Mantissa

1 8 23 1
8 23

 1 Mantissa 1 Mantissa

m-bit Multiplier

K-bit Normalizer

Exponent adder

Result

m-bit Multiplier

k

2m2m

K-bit Normalizer

k-bit Comparator

Error

Carry2

m=k+1

m=k+1

Carry1

1 1

Subtract

127

8 8

Standardizing

81

32

1-bit Comparator

k
11

k

11

k

k

Fig.3. Proposed 32-bit reduced-precision floating-point multiplier with

error detection.

A B

Sign Exponent Mantissa Sign Exponent Mantissa

8
23

 1 Mantissa 1 Mantissa

n-bit Multiplier

t-bit NormalizerExponent adder

Result

n-bit Multiplier

t-bit Normalizer

t-bit Voter

n-bit Multiplier

t
t

t-bit Normalizer
Carry3 Carry2

Standardizing

Subtract

127 2n2n 2n

88

8
1

32

1-bit Voter

tt
t1

1

t

Carry

1
1

81 23
1

Carry1

1
1

n=t+1 n=t+1

Fig.4. Proposed 32-bit reduced-precision floating-point multiplier with

error correction.

V. EXPERIMENTAL RESULTS

To obtain a proper size for fault-tolerant floating-point

multipliers in which the required area and power become

very close to the baseline multiplier, different precisions

are investigated for the mantissa in two proposed

architectures. Therefore, the baseline and the proposed

designs are implemented with VHDL, and then,

synthesized using Synopsys Design Compiler to obtain

the area, power, and delay requirements of the baseline

and the proposed designs while changing the bit width of

mantissa i.e. k and t values in error detecting and error

correcting architectures, respectively. The synthesis

results shown in Tables 3 and 4 are according to CMOS

65 nm LPLVT STMicroelectronics standard cell library

(with 1.2 V power supply in 25°C temperature).

Table 3 shows the required area, power and delay of

the proposed error detecting floating-point multiplier with

different precisions (15, 16, and 17 bits for mantissa) in

addition to the baseline multiplier in which a 23-bit

mantissa is utilized. This table also presents different

overheads (O.H.) compared to the baseline multiplier

regarding some parameters. Each negative overhead

shows that the new multiplier with an specific size of

mantissa (k) not only does not have any overhead in that

parameter, but even outperforms compared to the basic

non-fault-tolerant design. According to Table 3, an error

detecting floating-point multiplier with k equal to 17

which means it includes two 18-bit internal multipliers

instead of one 24-bit internal multiplier, requires a few

percent area and power overheads compared to the

baseline multiplier while its speed is still higher because

it requires lower delay. In other words, the design with

the 17-bit mantissa requires the area and power very close

to that of the baseline multiplier. Therefore, it can be used

instead of the baseline non-fault-tolerant floating-point

multiplier.

It is worth mentioning that according to [15], using the

11-bit mantissa in representing the floating-point

numbers is enough for many applications to produce the

satisfying results. Thus, all the designs with 15-, 16-, or

17-bit mantissa shown in Table 3 can be used instead of

the baseline floating-point multiplier. Especially, the

designs with 15-bit or 16-bit mantissa require lower area,

power consumption and delay compared to the baseline

multiplier.

It should be noted that in the baseline floating-point

multiplier, the main 24-bit multiplier solely consumes

85% of total area. Thus, making only this block fault-

tolerant, will result in a high fault-tolerance capability in

overall architecture. The last column of Table 3 shows

error detection probability in the designs with different

mantissa. This probability is simply obtained according to

the area that each part of the design is consumed.

Therefore, error detection probability shown in Table 3 is

the area ratio of the parts with error detection capability

in the proposed floating-point multiplier for different k

values. This area ratio which corresponds to the error

detection probability is obtained based on the fact that

only duplicated parts and comparators in the new

multiplier have error detection capability. Thus, for

example, for k equal to 17, two multipliers, two

normalizers, and the comparators including the last OR

gate, consume 10118.2 um2, 376.5 um2, and 96.2 um2,

respectively, which leads to the error detection

probability equal to 89.4% respecting the total area equal

22 A Novel Reduced-Precision Fault-Tolerant Floating-Point Multiplier

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 6, 17-24

to 11850.8 um2 in this design. It is clear that more error

detection probability will be reached if a longer mantissa

is used in the proposed design.

Table 4 shows the required area, power and delay of

the proposed error correcting floating-point multiplier

with different precisions (11, 13, 14 and 15 bits for

mantissa) in addition to the baseline multiplier in which a

23-bit mantissa is utilized. This table also demonstrates

different overheads compared to the baseline multiplier

regarding the mentioned parameters. According to Table

4, an error correcting floating-point multiplier with t

equal to 14 which means it includes three 15-bit

multipliers instead of one 24-bit internal multiplier,

requires the area and power consumption very close to

that of the baseline multiplier. In other words, the design

with the 14-bit mantissa requires only 5% area overhead

compared to the baseline multiplier. In addition, it

requires 3.6% less power and 20.3% less delay compared

to the baseline multiplier. Thus, it can be used instead of

the baseline non-fault-tolerant floating-point multiplier as

a design with error correction capability while it requires

less power and delay, as well. In addition, as the 11-bit

mantissa is enough for many applications to produce the

desirable results [15], all the reduced-precision designs

shown in Table 4 can be used instead of the baseline

floating-point multiplier.

Table 3. Proposed Error Detection Multiplier with Different Precisions Compared to the Baseline Multiplier

Size of mantissa

in bits

Delay

(ns)

Delay

O.H.

Area

(um2)

Area

O.H.

Power

(mw)

Power

O.H.

Error

Detection

prob.

k=23 (Baseline) 8.70 NA 11290.2 NA 5.62 NA NA

k=15 6.76 -22.3% 10098.4 -10.6% 4.39 -22.9% 89.2%

k=16 7.24 -16.8% 11213.8 -0.7% 5.08 -9.6% 89.1%

k=17 7.00 -19.5% 11850.8 +5.0% 5.77 +2.7% 89.4%

Table 4. Proposed Error Correction Multiplier with Different Precisions Compared to the Baseline Multiplier

Size of mantissa

in bits

Delay

(ns)

Delay

O.H.

Area

(um2)

Area

O.H.

Power

(mw)

Power

O.H.

Error

Correction

prob.

t=23 (Baseline) 8.70 NA 11290.2 NA 5.62 NA NA

t=11 5.69 -34.6% 7098.5 -37.1% 3.45 -38.6% 87.1%

t=13 6.42 -26.2% 10531.0 -6.7% 4.65 -17.3% 89.5%

t=14 6.93 -20.3% 11850.3 +5.0% 5.42 -3.6% 90.4%

t=15 6.81 -21.7% 14548.0 +28.9% 6.33 +12.6% 92.0%

Furthermore, similar to Table 3, the last column of

Table 4 depicts the fault-tolerance capability in the form

of error correction as a function of the size of mantissa.

According to Fig. 4, the blocks in which all single errors

will be masked or corrected include three n-bit

multipliers and three t-bit normalizers. These blocks, for

example for the design with t equal to 14, consume

10712.5 um2 altogether which finally leads to 90.4%

error correction probability respecting the total area that

is equal to 11850.3 um2. According to Table 4, it is

apparent that more error correction probability will be

reached if a longer mantissa is used in the proposed

design. However, more hardware overheads will be

required, as well.

As mentioned in Section II, the RPC technique [20]

can be used for detecting errors in the floating-point

multiplier. This technique in which the 32-bit floating-

point multiplier is checked by a k-bit (k<23) reduced-

precision floating-point checker multiplier, requires the

area and power overheads equal to 17.8% and 35%,

respectively, for the checker multiplier in which the

mantissa with the size of only 7 bits has been used. It is

clear that the area and power overheads for that method

would be more for longer mantissa used in the checker.

However, as shown in table 3, the required area and

power overheads in our error detecting scheme are much

lower, even with a longer mantissa. For example, the

design with a 17-bit mantissa requires only 5% and 2.7%

area and power overheads, respectively, while its

precision is much higher than that of the checker in [20].

In addition, based on [15] the 11-bit mantissa is enough

for many applications that verifies our proposed fault-

tolerant designs.

Since the proposed fault-tolerant floating-point

multipliers in this paper are based on output's precision

reduction method, therefore, some small and limited

computational errors will be produced at the output.

However, in many applications especially the

applications that are relevant to human senses such as

hearing and vision, the precise computation is not

required and some percent of computational errors is

acceptable in the outputs. In other words, many floating-

point applications in multimedia and scientific computing

can tolerate imprecise computations. The estimation of

maximum relative error is straightforward for a floating-

point output, and can be calculated according to the

following equation:

Maximum Relative Error = 2-l (2)

In the equation above, l is the bit width of the mantissa

used in the representation of floating-point number. Table

 A Novel Reduced-Precision Fault-Tolerant Floating-Point Multiplier 23

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 6, 17-24

5 demonstrates the maximum relative errors in different

multipliers with different precisions or bit width of

mantissa. For example, in both proposed error detecting

and error correcting multipliers in which m equal to 16 is

used, the bit width of the mantissa (k) equals 15 which

results in the maximum relative error equal to 2-15 or

3.05×10-5.

Table 5. Maximum Relative Errors for Different Multipliers with Different Precisions

Type of

Multiplier
Error Cor. Error Cor.

Both Error Cor.

and Error Det.
Error Det. Error Det. Baseline

Size of mantissa

in bits
13 14 15 16 17 23

Maximum

Relative Error
1.22×10-4 6.1×10-5 3.05×10-5 1.53×10-5 7.63×10-6 1.19×10-7

VI. CONCLUSION

In this paper, two floating-point multiplier

architectures were proposed beneficial for fault-tolerant

computations especially for the applications that can

tolerate imprecise computations. The first multiplier has

error detection capability and the other has error

correction capability. However, for both proposed

multipliers, the width of mantissa can be selected so that

they require almost the same hardware cost compared to

the non-fault-tolerant baseline multiplier. This property is

achieved by an appropriate output's precision reduction.

In addition, the proposed multipliers have more speed

compared to the baseline multiplier. In this technique,

less precise multiplication is used which results in less

hardware cost. Thus, more smaller and redundant

multipliers can be utilized for error detection or error

correction in the overall multiplication. The proposed

multipliers can tolerate both the permanent and transient

faults by accepting some percentage of errors in the

output. The implementation results show that a proper

fault-tolerant floating-point multiplier can be selected

with almost the same area and power requirements

compared to the baseline architecture while having an

acceptable output precision for many floating-point

applications.

REFERENCES

[1] C. H. Yu, K. Chung, D. Kim, and L. S. Kim, “An energy-

efficient mobile vertex processor with multithread

expanded VLIW architecture and vertex caches, ” IEEE

Journal of Solid-State Circuits, vol. 42, no. 10, pp. 2257–

2269, Oct. 2007.

[2] L. Huang, M. Lai, K. Dai, and H. Yue, “Hardware support

for arithmetic units of processor with multimedia

extension,” IEEE International Conference on Multimedia

and Ubiquitous Engineering, pp. 633–637, Apr. 2007.

[3] B. Nicolescu, N. Lgnat, Y. Savaria, and G. Nicolescu,

“Analysis of real-time systems sensitivity to transient

faults using MicroC kernel,” IEEE Transactions on

Nuclear Science, vol. 53, no. 4, pp. 1902–1909, Aug.

2006.

[4] T. Karnik and P. Hazucha, “Characterization of soft errors

caused by single event upsets in (CMOS) processes,”

IEEE Transactions on Dependable and Secure Computing,

vol. 1, no. 2, pp. 128–143, Apr. 2004.

[5] A. B. Kahng and S. Kang, “Accuracy-configurable adder

for approximate arithmetic designs”, Proceedings of the

49th Annual Design Automation Conference., San

Francisco, California, USA, ACM, pp. 820–825, Jun.

2012.

[6] S. C. Lai, S. L. Lu, K. Lai, and J. K. Peir, “Ditto

processor,” IEEE International Conference on

Dependable Systems and Networks, pp. 525–534, Jun.

2002.

[7] I. Ž. Milovanović, E. I. Milovanović, M. K. Stojčev, and

M. P. Bekakos, “Orthogonal fault-tolerant systolic arrays

for matrix multiplication”, Microelectronics Reliability,

vol. 51, no. 3, pp. 711–725, Mar. 2011.

[8] V. Khorasani, B. V. Vahdat, and M. Mortazavi,

“Analyzing area penalty of 32-Bit fault tolerant ALU

using BCH code,” 14th Euromicro Conf. on Digital System

Design (DSD'11), pp. 409–413, 2011.

[9] M. Fazeli, A. Namazi, S.-G. Miremadi, and A. Haghdoost,

“Operand width aware hardware reuse: a low cost fault-

tolerant approach to ALU design in embedded

processors,” Journal of Microelectronics Reliability, vol.

51, no. 12, pp. 2374–2387, Dec. 2011.

[10] P. Reviriego, S. Z. Can, Ç. Eryılmaz, J. A. Maestro, and O.

Ergin, “Exploiting processor features to implement error

detection in reduced precision matrix multiplications,”

Microprocessors and Microsystems, vol. 38, no. 6, pp.

581–584, Aug. 2014.

[11] A. Mukherjee and A. S. Dhar, “Real-time fault-tolerance

with hot-standby topology for conditional sum adder,”

Microelectronics Reliability, vol. 55, no. 3-4, pp. 704–712,

Feb.-Mar. 2015.

[12] M. Valinataj, “Fault-tolerant carry look-ahead adder

architectures robust to multiple simultaneous errors,”

Microelectronics Reliability, vol. 55, no. 12, pp. 2845–

2857, Dec. 2015.

[13] D. Lipetz, and E. Schwarz, “Self checking in current

floating-point units,” 20th IEEE Symposium on Computer

Arithmetic, pp.73–76, 2011.

[14] M. Maniatakos, Y. Makris, P. Kudva, and B. Fleischer,

“Exponent monitoring for low-cost concurrent error

detection in FPU control logic,” IEEE VLSI Test

Symposium, pp.235–240, 2011.

[15] J. Ying, F. Tong, D. Nagle, and R. A. Rutenbar,

“Reducing power by optimizing the necessary

precision/range of floating-point arithmetic,” IEEE

Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 8, no. 3, pp. 273–286, Jun. 2000.

[16] J. Pool, A. Lastra, and M. Singh, “Energy-precision

tradeoffs in mobile graphics processing units,” 26th IEEE

International Conference on Computer Design (ICCD),

pp. 60–67, Oct. 2008.

[17] A. Gupta, S. Mandavalli, V.J. Mooney, "Low Power

Probabilistic Floating Point Multiplier Design", IEEE

Computer Society Annual Symposium on VLSI (ISVLSI),

pp. 182–187, Jul. 2011.

http://www.sciencedirect.com/science/article/pii/S0026271410005275
http://www.sciencedirect.com/science/article/pii/S0026271410005275
http://www.sciencedirect.com/science/article/pii/S0026271410005275
http://www.sciencedirect.com/science/article/pii/S0026271410005275
http://www.sciencedirect.com/science/article/pii/S0141933114000726?np=y
http://www.sciencedirect.com/science/article/pii/S0141933114000726?np=y
http://www.sciencedirect.com/science/article/pii/S0141933114000726?np=y
http://www.sciencedirect.com/science/article/pii/S0141933114000726?np=y
http://www.sciencedirect.com/science/article/pii/S0141933114000726?np=y
http://www.sciencedirect.com/science/article/pii/S0141933114000726?np=y

24 A Novel Reduced-Precision Fault-Tolerant Floating-Point Multiplier

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 6, 17-24

[18] H. Zhang, W. Zhang, and J. Lach, “A low-power

accuracy-configurable floating point multiplier,” 32nd

IEEE International Conference on Computer Design

(ICCD), pp. 48–54, Oct. 2014.

[19] P. J. Eibl, A. D. Cook, and D. J. Sorin, “Reduced

precision checking for a floating point adder,” 24th IEEE

International Symposium on Defect and Fault Tolerance

in VLSI Systems, pp. 145–152, Oct. 2009.

[20] K. Seetharam, L. C. T. Keh, R. Nathan, and D. J. Sorin,

“Applying reduced precision arithmetic to detect errors in

floating point multiplication,” IEEE Pacific Rim

International Symposium on Dependable Computing

(PRDC), pp. 232–235, Dec. 2013.

Authors’ Profiles

Maryam Mohajer received both B.Sc.

and M.Sc. degrees from Babol Noshirvani

University of Technology, Babol, Iran in

hardware computer engineering, in 2013

and 2016, respectively. Her research

interests include computer arithmetic,

computer architecture, reliable computing,

and fault-tolerant system design.

Mojtaba Valinataj received the B.Sc.,

M.Sc. and PhD degrees from the

University of Tehran, Tehran, Iran in

computer engineering, in 2000, 2003 and

2010, respectively. He is working as a

faculty member in Babol Noshirvani

University of Technology, Babol, Iran

since 2010. He performed different

research projects at Embedded Computer

and Electronic Systems laboratory, University of Turku, Turku,

Finland, as a visiting researcher in 2009, 2011 and 2012. His

research interests include fault-tolerant system design, on-chip

networks, computer arithmetic, reversible logic, chip-

multiprocessor and many-core systems, and computer

architecture.

How to cite this paper: Maryam Mohajer, Mojtaba Valinataj,"A Novel Reduced-Precision Fault-Tolerant Floating-

Point Multiplier", International Journal of Modern Education and Computer Science(IJMECS), Vol.9, No.6, pp.17-24,

2017.DOI: 10.5815/ijmecs.2017.06.03

