
I.J. Modern Education and Computer Science, 2017, 6, 25-31
Published Online June 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2017.06.04

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 6, 25-31

SXP: Simplified Extreme Programing Process

Model

Faiza Anwer
Department of Computer Science, Virtual University of Pakistan

Email: faiza.anwer28@gmail.com

Shabib Aftab
Department of Computer Science, Virtual University of Pakistan

Email: shabib.aftab@gmail.com

Abstract—Extreme programming is one of the widely

used agile models in the software industry. It can handle

unclear and changing requirements with the good level of

customer satisfaction. However Lack of documentation,

poor architectural structure and less focus on design are

its major drawbacks that affects its performance. Due to

these problems it cannot be used for all kinds of projects.

It is considered suitable for small and low risk projects. It

also has some controversial practices that cannot be

applied in each and every situation like pair programming

and on-site customer. To overcome these limitations a

modified version of XP called “Simplified Extreme

Programming” is proposed in this paper. This model

provides solution of these problems without affecting

simplicity and agility of extreme programming.

Index Terms—Agile models, Extreme programming,

Drawbacks, Improved Extreme Programming, SXP

I. INTRODUCTION

Agile software development models provide an

iterative and incremental way of software development

that delivers the product with more emphasis on customer

satisfaction, team collaboration and managing changing

requirements [20]. Agile manifesto contains twelve

foundation principles of agile software development.

These principles are about frequent team communication,

customer satisfaction, managing frequent requirements

changing and early delivery of partial working software.

A number of agile software development models exist

but extreme programming (XP) is one of the most widely

used agile model [1]. It was developed by Kent Beck in

2000 when software industry was seeking for new

software development methods to reduce the risk of

failure caused by traditional development models. It

contains all salient features of agile development. XP is

an iterative and incremental model that simply uses small

iterations starting from the very basic features of the

system to complete software in later releases. XP’s

Development process consists of six phases called

Exploration phase, Planning phase, Iteration to release

phase, Productionizing phase, Maintenance phase and

Death phase [21].

During exploration phase user requirements are

gathered in the form of story cards [35]. Customer writes

story cards for each feature. In planning phase, a release

plan and iteration plan is prepared [21]. During this phase

collected requirements are prioritized using numerical

and ranking prioritization technique [26]. Actual

development activities take place in Iteration to release

phase that incorporate the basic development activities

like designing, coding, testing and integration [22].

Programmers (in pair) select tasks to implement, design

simply and then write code for these tasks. Unit and

integration testing is performed after coding that are good

source of instant feedback. In case of any problem code

can be refactored to make it according to requirements.

These activities are performed iteratively until a workable

product is ready to release in productionizing phase [21]

[22] [31].

XP practices, values and principles are distinguishing

features of XP that provide a guideline throughout the

development process. There are twelve XP practices

namely planning game, small releases, metaphor, pair

programming, refactoring, collective code ownership, on-

site customer, continuous testing, simple design,

continuous integration, 40 hour work and coding

standards [20] [27] [30]. Although XP has a lot of

advantages, there are some limitations too. Some of its

major drawbacks are weak documentation, absence of

proper architectural structure and system design. In XP,

focus remains on coding not on software design. Software

design activity is performed by developers at the start of

iteration for a short time that cannot be considered as

proper design phase. No design documents or diagrams

are produced during this activity. Absence of good design

may distract the development team that result in a lot of

refactoring [23]. Lack of documentation in XP is also a

big hindrance when the system is maintained over a long

time [24].

Along with these problems some of XP practices can

cause inconvenience during development like pair

programming and on-site customer [23] [25]. Pair

programming practices require mutual understanding and

common skill set of programmers otherwise it will be

difficult for them to work together [25]. On-site customer

practice is difficult to implement. Sometimes customer

does not understand the importance of their feedback or it

26 SXP: Simplified Extreme Programing Process Model

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 6, 25-31

may not be possible for customer to remain at site

regularly [23]. It is very rare that professionals have

enough time to spend on site regularly.

These problems need a solution. Although a number of

customized and extended versions of XP exist that are

helpful in using XP for some specific purpose. However

these models do not pay attention towards solving above

mentioned problems. Furthermore adding more practices

to the phases of XP might make it complex and difficult

to implement. A modified XP model is needed that can

solve these problems without effecting its simplicity and

agility.

Remaining part of this paper contains related work in

section II. Section III defines problem statement. Section

IV provides detailed description of proposed SXP model.

Finally section V concludes this paper.

II. RELATED WORK

In [1] an enhanced extreme programming model is

proposed that tries to cover the problems of

documentation, design and quality without effecting

agility. This is done by executing parallel quality iteration

to basic XP iteration. However proposed model does not

support development of software with higher

interdependencies among subsystems. This paper lacks

empirical proof of the model.

A process model based on XP is proposed for software

maintenance in [2]. This model uses XP practices in

software maintenance process to improve the productivity.

Proposed model is evaluated using academic projects

only, whereas real business projects are far more complex

than academic projects. The proposed model should be

evaluated using real projects.

In [3] authors conducted field studies on backup

behavior of developer’s interaction in different

environments. The results showed that there are different

kinds of interaction among team members which require

different level of formality of pair programming. This

study also explains why there are so many conflicts in

perceiving the benefits of pair programming. However

the observational results presented in this paper are

limited to only two project’s data.

Authors proposed a model based on XP for large scale

distributed projects in [4]. This model was applied on

Sudan Automated Traffic Violations project. Proposed

model introduced some new XP practices like code

control, adaptive planning, visual indicators, XP project

management and code gallery. This model is validated for

only one project that cannot guarantee the suitability of

XP for all large scale projects. Interaction and

collaboration among team members is difficult and

sometimes not possible in large scale projects as needed

in XP. This model does not guide how to deal with such

team collaboration problems.

In [5] authors proposed a new solution for service

development by combining XP and SOA (Service

Oriented Architecture) best practices. In proposed

solution seven SOA principles are combined with

supported XP practices for this purpose. This paper lacks

empirical validation to prove the effectiveness of

proposed solution. Furthermore the proposed solution

remains silent on the issue of SOA complexities that can

reduce the agility of XP.

In [6] CRC cards prioritization process is done using

AHP (Analytical Hierarchy Process). AHP is a well-

structured decision making tool. Use of AHP in cards

prioritizing process helped the designers to identify most

influential classes for simple and appropriate design. This

paper lacks real test cases evaluation of proposed model.

Furthermore proposed model is tested by graduate

students, which might have not the enough skills to

evaluate the solution.

In [7] a study was conducted to evaluate the role of

agile techniques and factors associated with the

performance of team using XP. Results showed that

customer and development team are both very important

for XP process however measure of performance was

greatly dependent upon subjective interpretation in this

study.

Authors conducted a study in [8] to prove the

effectiveness of pair programming in defects reduction.

For this purpose data is collected from professionals

working in a large Italian manufacturing company.

Statistical results showed that new defects tend to reduce

with pair programming. But this case study did not

consider the factors like task complexity, skill level and

experience of developers.

In [9] an extended XP model is presented that can be

applied to medium and large scale projects. Proposed

model introduced project planning, analysis & risk

management and design & development phase to handle

medium and large scale projects. Extended XP model

does not provide any detail about parallel development in

large projects. Statistical validation is also needed with

more accurate sample size.

In [10] authors proposed a model that helped

development team as well as the customer in the release

planning activity. This model helped in developing a

release plan by keeping in view the size of stories,

priorities and precedence relations. However tool used in

this model requires a lot of time in data gathering that can

affect responsiveness of XP.

A comparative study was conducted in [11] to compare

the outcomes of XP and Waterfall methodologies on

same project. In this study same project was developed

by fifty different teams over the period of five years.

Results were unexpectedly same for both methodologies.

However this study lacks diversity of data characteristics

and data source as comparison is conducted for same

project repeatedly.

An improved XP framework is proposed in [12] that

fulfills security requirements in e-commerce projects.

This framework incorporate security checks in all phases

of XP but this can affect the agility of the model. It is also

needed to prove the effectiveness of model by using real

life projects.

In [13] a study was conducted by author to find the

effectiveness of virtual pair programming as a

replacement of classical pair programming.

 SXP: Simplified Extreme Programing Process Model 27

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 6, 25-31

Results from two teams were compared where one

team was using solo programming. Data is compared

using metrics like Lines of Code (LOC), defects per 1000

LOC, code quality and productivity for both teams.

Results showed that virtual pair programming is better

than solo programming. But to validate the results of this

study and prove its authenticity data should be collected

over more semesters.

Table 1. Summary of Related Work

Title Limitations

Proposal of Enhanced Extreme Programming Model

[1]
 Proposed model does not support development of software with higher

interdependencies.

 Adding parallel refinement cycle along with development cycle demands

more resources and team members.

Extended Iterative Maintenance Life Cycle Using

eXtreme Programming [2]
 Proposed solution is validated through academic projects only, it should be

evaluated by real business projects that are more complex than academic

projects.

Cooperation, collaboration and pair-programming:

Field study on backup behavior [3]
 Observational results presented in paper are based on the data of only two

projects.

Extreme Programming Applied in Large Scale

Distributed System [4]
 Proposed solution is validated for only one project that cannot guarantee the

suitability of XP for all large scale projects.

 Team interaction and collaboration is difficult and sometimes not possible

in large scale projects as needed in XP. This model does not guide how to

deal with such team collaboration problems.

Service Agile Development Using XP [5]  This model integrates XP with Service Oriented Architecture (SOA)

practices that effect simplicity of XP.

 SOA complexities can degrade agility of XP.

Prioritizing CRC as a Simple Design Tool in Extreme

Programming [6]
 Proposed model is tested by graduate students, who might not have enough

skills to evaluate a solution.

 This paper lacks real test case evaluation of proposed model.

Successful extreme programming: Fidelity to the

methodology or good team working? [7]
 In proposed solution, performance evaluation depends upon subjective

interpretation.

Pair Programming and Software Defects- a large,

industrial case study [8]
 Case study presented in this paper does not consider the factors like skill

level, experience of programmers and task difficulty etc.

Agile software development methodology for medium

and large projects [9]
 Proposed XP model does not provide any detail about parallel development

in large projects.

 Statistical validation is needed with more accurate sized sample space.

Quantitative release planning in extreme

programming [10]
 The optimization model presented is of exponential complexity.

 Precise data gathering require a lot of time that can affect responsiveness of

XP.

Comparing Extreme Programming and Waterfall

Projects Results [11]
 Comparison is conducted for one project’s data only.

 Lacks diversity of data characteristics and data source.

Improved Extreme Programming Methodology with

inbuilt security [12]
 It is needed to prove the effectiveness of proposed model using real life

projects with security requirements.

 Security checks implementation in each XP iteration can affect agility of

whole process.

Measuring the effect of Virtual Pair Programming in

an Introductory Programming Java Course [13]
 A large sample space can better support the results.

 Data should be collected over more semesters.

Research on Requirement for High Quality Model of

Extreme Programming [14]
 Despite of improvements in communication model it also makes it lengthy

and complicated.

 This paper lacks empirical evaluation of proposed method.

The impact of absorptive capacity on the ex-post

adoption of agile methods: The case of extreme

programming model [15]

 Data should be collected from various sites to generalize the results of

study.

Agile Software Engineering as Creative Work [16]  Evaluation is needed by proposing detailed method to improve XP using

case studies.

An adoptive Software Development Model [17]  Adoptive model has no guidance about project and team management issues

in large projects.

An Improved XP Software Development Model [18]  Proposed model lacks implementation detail about different analysis and

risk management activities.

28 SXP: Simplified Extreme Programing Process Model

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 6, 25-31

In [14] authors tried to solve the problems regarding

customer such as bidirectional communication,

information barriers and misconception about

development process in XP by presenting an analysis

model. This model improves XP demand module by

using Kano model’s quality features. This paper lacks

real life project evaluation of proposed method.

Authors studied two projects in Canadian organization

in [15]. These projects were shifted from waterfall to XP

process model by using absorptive capacity in

Technology Acceptance Model (TAM). Results showed

the feasibility of XP for future projects but data collected

from single site limits the accuracy of results. Data

should be collected from various sites to generalize the

results of study.

In [16] authors conducted a comparative study among

phases and roles of XP and creativity process. However

this study needs evaluation by proposing detailed method

to improve XP using case studies.

In [17] authors proposed an adoptive XP model.

Proposed model provided better adoptability to different

software projects by including analysis, design and

deployment phases. However there was no empirical

proof in the paper to support the claim. This adoptive

model also remained silent about project and team

management aspects of large projects.

An improved model of XP is proposed for medium and

large scale projects in [18]. Improved version of XP

support component based development with risk

management in distributed environment with large team.

However this paper lacks implementation detail of

analysis and risk management activities. Furthermore

there was no empirical proof given to support the claim.

III. PROBLEM DEFINITION

Extreme programming is one of the most commonly

used agile models. It’s flexible, lightweight and iterative

nature can easily handle changing requirements even in

late phases of software development [1] [19] [29] [30].

XP’s actual strength lies in its principles, values and

practices that provide actual guidance for the software

development process [32]. It works well for small

projects however lack of documentation, complicated

structure and poor system design make it inappropriate

for medium and large scale projects [23] [24]. There is no

upfront architectural structure available in XP as well as

no explicit design activity is performed. Without

architecture and design activities programmers do not get

better understanding of the task. In such situation they

have to rely on code refactoring that increase time and

effort. Furthermore distribution of tasks among team

members is problematic due to absence of system design

[25] [34]. XP lacks the documentation and only the oral

communication among stakeholders cannot be as

effective as documenting the different tasks. For effective

software development and maintenance proper

documentation in different phases of the software

development model is required. [24].

Along with these deficiencies, XP has some

unnecessary norms like pair programming and on-site

customer. Pair programming requires high level of

coordination between two programmers. Difference in

skill level, experience and personalities can degrade its

effectiveness [23] [28] [34]. Sometime programmers feel

easy to work alone without other person’s interruption.

Similarly on-site customer practice is difficult to

implement in its true sense if customer does not

understand importance of feedback [23]. Mostly

professionals from customer’s side have not enough time

to remain present all the time and if this task is assigned

to some inexperienced then it may lead to chaos [33].

Wrong information provided by that person can mislead

the development team.

In the quest of solution to these problems, researchers

tried to extend or modify XP process model for varying

size and type of projects [1]. Although these models tried

to cover limitations but also added complexity by adding

more practices and modifications which brought negative

effects on simplicity and agility. There is a need of a

model that solves these problems and cut unnecessary

norms from the practices of XP such as use of pair

programming and on-site customer. By keeping in view

these problems, we tried to find answer of the following

question in this paper.

How to eliminate XP's limitations without affecting its

true sense of simplicity and agility for small and medium

scale projects?

IV. PROPOSED SXP

Simplified Extreme Programming (SXP) is proposed to

overcome the limitations of classical XP. It provides

more flexible and simple approach for small to medium

scale projects due to explicit focus towards architecture,

design and documentation issues. It also removes

constraints of pair programming and on-site customer to

avoid unnecessary conflicts and interference. There are

five major phases of SXP; initialization phase, analysis

phase, design phase, development & testing phase and

release phase as shown in fig.1. Customer involves in

initialization and release phase only. All other phases are

executed by development team with the complete

coordination. Necessary documentation is produced

during each phase that helps to resolve documentation

and maintenance related issues. Proper analysis and

design phase provide opportunity to explicitly focus on

design after analysis.

A. Initialization Phase

This is the first phase of SXP that focus on requirement

gathering and preparing overall project plan for the

system to be developed. Initialization phase has two

major activities called “Story Writing & Prioritization”

and “Project Planning”. In this phase personnel's from

both customer and developer’s side sit together and

complete the following tasks.

Story Writing & Prioritization: During this activity all

requirements of the desired system are gathered and

 SXP: Simplified Extreme Programing Process Model 29

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 6, 25-31

arranged in accordance to their importance. Requirements

are collected by writing story cards. Customer writes

story cards for each feature/functionality that should be

added in system. A story card consists of name of feature,

type, priority and short description of required

functionality. Customer has to describe feature in a small

paragraph without any technical detail. Customer assigns

priorities to these features that help in defining the order

of their implementation. . For this purpose numerical

Priorities are assigned to these requirements. High

priority requirements are implemented prior to low

priority requirements. Collected requirements are further

categorized in functional and nonfunctional requirements.

Project Planning: During this activity important decision

are taken regarding project scope, cost and tools/

technology to be used for the development. Development

team and customer finalize the project scope and cost.

For the selection of suitable tools and technology,

different available options are considered. After

agreement of both parties, detail about scope, cost and

tools to be used is documented in project plan document.

B. Analysis Phase

In this phase budget and schedule related issues are

addressed. Activities of this phase are conducted by

development team only. Estimation is made about budget

required for the successful completion of the project. An

iteration plan is documented having detail about number

of iterations needed for project completion, number of

stories implemented in each iteration and iteration time.

This iteration plan helps to keep project on track.

Fig.1. Phases of Proposed SXP

For budget and effort estimation, resources such as

hardware and softwares are identified with their

availability. To understand overall project structure, an

architectural diagram is designed by the programmers.

Also the training can be conducted in this phase to make

the development team familiar with tools and technology.

C. Design Phase

This phase consists of two activities namely

“Designing UML Diagrams” and “Test Planning”.

Designing UML Diagrams: System design is very

important for successful software development. To

simply design the system, this model uses only use case

diagrams and sequence diagrams.

Test Planning: In this activity developer writes test

cases for the features to be included in iteration. Writing

tests prior to code help the development team to

understand different design opportunities. Successful

completion of this phase gives a good start of

development phase.

D. Development and Testing Phase

This is an iterative phase in which actual development

activity take place. This phase further consists of

activities namely coding, functional testing, integration

and integration testing.

Coding: In coding activity, a programmer writes code

for selected stories by keeping in view the design

document which was developed during design phase.

Functional Testing: Implemented modules are tested

using test cases written during test planning activity. In

case of any problem during functional testing, coding

activity can be repeated. These tests are performed by

programmers and results are also noted to keep track of

defects.

Integration: After successful completion of functional

testing code is integrated with previously implemented

code.

Integration Testing: After integrating the code,

integration testing is performed to check whether all the

implemented modules are working correctly as a whole

or not. In case of any incompatibility, previous activities

can be repeated. Feedback arrows from development and

30 SXP: Simplified Extreme Programing Process Model

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 6, 25-31

testing phase indicates that any identified problem during

this phase may require the revisit design, analysis or

initialization phase.

E. Release Phase

This is final phase of SXP in which customer

performed acceptance testing. After the customer

approval a workable product which is developed during

current iteration is released. User manual is also

completed in this phase before handing over the workable

product.

If developed product does not satisfy customer then

whole development process is repeated again with

changed or modified set of requirements.

V. CONCLUSION

Extreme programming is a well-known, most widely

used agile model in software industry. It has more focus

towards customer satisfaction, quick response to

changing requirements, team collaboration, rapid

feedback and small releases. Despite of these advantages

there are some limitations also. Lack of documentation,

poor architectural structure, and less focus on design are

big problems of XP. Some of XP practices like Pair

programming and on-site customer are a bit difficult and

controversial from implementation point of view. Many

factors involved in the implementation of these practices

make their effectiveness questionable. A number of

studies were conducted in which researchers extended or

customized XP process model. These models were

proposed to handle different projects varying in size, type

or nature. Some of the proposed models pay more

attention towards customizing its phases and some added

new practices and provided implementation detail. But do

not provide proper guidance about handling XP’s

drawbacks and limitations. Furthermore adding more

practices or modification in phases affects its simplicity

and agility that make it difficult to implement. In this

paper a modified version of XP called Simplified

Extreme Programming (SXP) is proposed that can help to

cover all these limitations without effecting simplicity

and agility. Detail description of each phase gives

stepwise solution of XP’s problems with keeping it

simple to implement.

REFERENCES

[1] M. R. J. Qureshi and J. S. Ikram, “Proposal of Enhanced

Extreme Programming Model,” International Journal of

Information Engineering and Electronic Business, vol. 7,

no. 1, p.37- 42, 2015.

[2] J. Choudhari and U. Suman, “Extended iterative

maintenance life cycle using eXtreme programming,”

ACM SIGSOFT Software Engineering Notes, vol. 39, no.

1, pp.1-12, 2014.

[3] I. D. Coman, P. N. Robillard, A. Sillitti and G.

Succi,"Cooperation, collaboration and pair-programming:

Field studies on backup behavior," Journal of Systems and

Software, vol. 91, p. 124–134, 2014.

[4] E. Abdullah and E.-T. Abdelsatir, "Extreme programming

applied in a large-scale distributed system," in Computing,

Electrical and Electronics Engineering (ICCEEE),

Khartoum, 2013.

[5] F. Carvalho and L. Azevedo, "Service Agile Development

Using XP," in Service Oriented System Engineering

(SOSE), Redwood City, 2013.

[6] S. Alshehri and L. Benedicenti, "Prioritizing CRC cards as

a simple design tool in extreme programming," in

Electrical and Computer Engineering (CCECE), Regina,

SK, 2013.

[7] S. Wood, G. Michaelides and C. Thomson, "Successful

extreme programming: Fidelity to the methodology or

good teamworking?" Information and Software

Technology, vol. 55, no. 4, p. 660–672, 2013.

[8] E. di Bella, I. Fronza, N. Phaphoom, A. Sillitti, G. Succi

and J. Vlasenko, "Pair Programming and Software

Defects--A Large, Industrial Case Study," IEEE

Transactions on Software Engineering, vol. 39, no. 7, pp.

930 - 953 , 2013.

[9] M. Rizwan Jameel Qureshi, "Agile software development

methodology for medium and large projects," IET

Software, vol. 6, no. 4, pp. 358 - 363, 2012.

[10] G. v. Valkenhoef, T. Tervonen, B. d. Brock and D.

Postmus, "Quantitative release planning in extreme

programming," Information and Software Technology, vol.

53, no. 11, p. 1227–1235, 2011.

[11] F. Ji and T. Sedano, "Comparing extreme programming

and Waterfall project results," in Software Engineering

Education and Training (CSEE&T), Honolulu, HI, 2011.

[12] S. Musa, N. Norwawi, M. Selamat and K. Sharif,

"Improved Extreme Programming Methodology with

Inbuilt Security," in Computers & Informatics (ISCI),

Kuala Lumpur , 2011.

[13] N. Zacharis, "Measuring the Effects of Virtual Pair

Programming in an Introductory Programming Java

Course," IEEE Transactions on Education, vol. 54, no. 1,

pp. 168 - 170, 2011.

[14] Z. Li-li, H. Lian-feng and S. Qin-ying, "Research on

Requirement for High-quality Model of Extreme

Programming," in Information Management, Innovation

Management and Industrial Engineering (ICIII),

Shenzhen, 2011.

[15] B. Bahli, Y. Benslimanne and Z. Yang, "The impact of

absorptive capacity on the ex-post adoption of agile

methods: The case of Extreme Programming model," in

Industrial Engineering and Engineering Management

(IEEM), Singapore, 2011.

[16] B. Crawford, C. de la Barra, R. Soto and E. Monfroy,

"Agile software engineering as creative work," in

Cooperative and Human Aspects of Software Engineering

(CHASE), Zurich, 2012.

[17] M. R. J. Qureshi and S. A. Hussain, “An adaptive

software development process model,” Advances in

Engineering Software, vol. 39, no. 8, pp.654-658, 2008.

[18] M. R. J. Qureshi and S. A. Hussain, “An Improved XP

Software Development Model,” arXiv preprint

arXiv:1202.2501, 2008.

[19] G. S. Matharu, A. Mishra, H. Singh, and P. Upadhyay,

“Empirical study of agile software development

methodologies: A comparative analysis,” ACM SIGSOFT

Software Engineering Notes, vol. 40, no. 1, pp. 1-6, 2015.

[20] P. Abrahamsson, O. Salo, J. Ronkainen and J. Warsta,

“Agile software development methods: Review and

analysis,” 2002.

 SXP: Simplified Extreme Programing Process Model 31

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 6, 25-31

[21] K. Beck, “Extreme programming explained: embrace

change,” addison-wesley professional, 2000.

[22] M. C. Paulk, “Extreme programming from a CMM

perspective,” IEEE software, vol. 18, no. 6, pp. 19-26,

2001.

[23] A. Dalalah, “Extreme Programming: Strengths and

Weaknesses,” Computer Technology and Application, vol.

5, no. 1, 2014.

[24] R. Fojtik, “Extreme Programming in development of

specific software,” Procedia Computer Science, vol. 3,

pp.1464-1468, 2011.

[25] R. Crocker, “The 5 reasons XP can’t scale and what to do

about them,” Proceedings of XP, 2001.

[26] J. A. Khan, I. U. Rehman, Y. H. Khan, I. J. Khan and S.

Rashid, “Comparison of requirement prioritization

techniques to find best prioritization technique,”

International Journal of Modern Education and Computer

Science, vol. 7, no. 11, p.53-59, 2015.

[27] M. Khalid, S. ul Haq and M. N. A. Khan, “An assessment

of extreme programming based requirement engineering

process,” International Journal of Modern Education and

Computer Science, vol. 5, no. 2, p.41-47, 2013.

[28] S. Beecham, H. Sharp, N. Baddoo, T. Hall and H.

Robinson, “Does the XP environment meet the

motivational needs of the software developer? An

empirical study,” in Agile Conference (AGILE), 2007 pp.

37-49, IEEE.

[29] J. Newkirk, “Introduction to agile processes and extreme

programming,” in Proc. 24th Int. conf. Software

engineering, pp. 695-696, 2002.

[30] E. R. Mahajan and E. P. Kaur, “Extreme Programming:

Newly Acclaimed Agile System Development Process,”

International Journal of Information Technology, vol. 3,

no. 2, pp.699-705, 2010.

[31] R. Juric, “Extreme programming and its development

practices,” in. Proc. 22nd Int. Conf. Information

Technology Interfaces, IEEE, Jun. 2000, pp. 97-104

[32] O. Kobayashi, M. Kawabata, M. Sakai and E. Parkinson,

“Analysis of the interaction between practices for

introducing XP effectively,” in Proc. 28th International.

Conference of Software Engineering, May 2006, pp. 544-

550.

[33] S. A. J. Khalaf, and K. A. Maria, “An Empirical study of

XP: the case of Jordan,” in Information and Multimedia

Technology, 2009. ICIMT'09. International Conference pp.

380-383, IEEE.

[34] K. S. Choi and F. P. Deek, “Extreme Programming Too

Extreme,” New Jersey Institute of Technology, 2002.

[35] S. Shahzad, “Learning from experience: The analysis of

an extreme programming process.,” in Information

Technology: New Generations, 2009. ITNG'09. Sixth

International Conference, pp. 1405-1410, IEEE.

Authors’ Profiles

Faiza Anwer is a MS scholar in

Computer Science Department of

Virtual University of Pakistan. She

completed her undergraduate computer

science degree in 2010 and currently

working as lecturer in Computer Science

Department of Govt. College for

Women Samanabad, Faisalabad. Her

area of research is Software Process

Improvement.

Shabib Aftab is currently working as a

lecturer in Department of Computer

Science of Virtual University of

Pakistan. He obtained his MS degree in

Computer Science from ‘COMSATS

Institute of Information Technology,

Lahore. Previously he has done M.Sc

Information Technology from ‘Punjab

University College of Information

Technology (PUCIT), Lahore. His areas of research are Data

Mining and Software Process Improvement.

How to cite this paper: Faiza Anwer, Shabib Aftab,"SXP: Simplified Extreme Programing Process Model",

International Journal of Modern Education and Computer Science(IJMECS), Vol.9, No.6, pp.25-31, 2017.DOI:

10.5815/ijmecs.2017.06.04

