
I.J. Modern Education and Computer Science, 2017, 6, 32-39
Published Online June 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2017.06.05

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 6, 32-39

Fault Repairing Strategy Selector for Service-

Oriented Architecture

Guru Prasad Bhandari
DST-CIMS, Banaras Hindu University, Varanasi, 221005, India

Email: guru.bhandari@gmail.com

Ratneshwer
Department of Computer Science, MMV, BHU, Varanasi, 221005, India

Email: ratnesh@bhu.ac.in

Abstract—The success of a service oriented computing

significantly depends on its reliability and availability. To

achieve better reliability and availability, any fault of the

service oriented computing has to be properly handled.

Low performance on handling the service fault becomes

the most proliferated challenge on fault handling

approaches. In this paper, a priority based fault handling

strategy selection approach for fault recovery of SOA

(Service Oriented Architecture) is proposed using priority

selector and fault handler. This approach starts from fault

detection method and select the first priority level

strategies promptly and if fault could not be handled by

first highest level then fault handler selects the second

level or intermediate priority level for average

performance. As a final in the worst case, least level

strategies are applied to resolve the faulty situation.

Through experiment, the correctness of the proposed

algorithm and the efficiency of the approach are proved.

This approach results better performance and high rate of

fault repairing.

Index Terms—Fault handling, Fault repairing, Reliability,

Logging, Replication.

I. INTRODUCTION

Service Oriented Architecture (SOA) is a popular

design paradigm provides architectural style for

distributed system to enable applications to be built using

service as a key element. Service Oriented Computing

(SOC) employs services to support rapid, cost effective

development of distributed applications in heterogeneous

environments. Interoperability, self-adaptability, dynamic

bound are the highly demanded emerging features of

SOA but these features are also highly susceptible to

service fault. Service fault may be generated by high

adaptability and complexity of SOC that eventually may

result SOA-based system failure any stage of SOA life

cycle.

The objective of this study is to present fault handling

or repairing strategies with strategy selector associating

with nature of fault. Researchers have focused on general

software recovery actions even for the SOA-based fault

handling in the same way. Since SOA lies in

heterogeneous system, some standalone approaches may

not be proper solution for the service-oriented fault

handling approach. Degree of heterogeneity makes fault

tolerance approach highly desirable and difficult to

achieve. Some participating components of the SOA-

based system may be owned by several organizations

thus backward recovery (rollback) techniques to handle

fault would not be suitable due to various authentication

and authorization access control to different services that

belong to different organizations. We have studied

various type of SOA-based faults and categorized these

and modelled them on priority basis according to their

suitability for the whole recovery performance

improvement.

From our literature review, we found reliability and

performance are the highly concentrated challenges.

Besides these two major challenges, other challenges like

adaptation, interoperability, scalability, security,

management have also obtained great concern of the

researchers. Service composition is a great feature but

most challenging feature to realize Service Oriented

Computing (SOC). Researchers were highlighting on

fault analyzing approaches and techniques of SOA same

like distributed system till the end of 2012 but later

onward machine learning approaches used as optimizing

the reliability and performance on fault handling

techniques.

La et al. [1] have defined a fault as a problem that

occurs when a service invocation made by a service based

system results in some abnormality at runtime. The fault

analysis takes fault data as input and determines a

suitable remedial strategy for the fault instance [2]. A

service may be healthy, impacted or faulty at any stage of

SOA life cycle.

Rest of this paper is organized as section II discusses

related work. Section III focuses on commonly preferred

fault handling strategies of the service-oriented

computing (SOC). Overview of our proposed approach

with brief description of strategy selector among the

collection of strategies according to the fault situation is

presented in section IV. Performance analysis is

calculated in section V. Finally, section VI summarizes

our work with the conclusion.

mailto:ratnesh@bhu.ac.in

 Fault Repairing Strategy Selector for Service-Oriented Architecture 33

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 6, 32-39

II. RELATED WORK

Some relevant related works are presented in this

section with the recent state-of-art on fault handling of

service-oriented system. From our literature review, we

found that local recovery and backward recovery are the

commonly used recovery strategies. Local recovery tries

to fix the fault in current state of error in a way that is

similar to compensation using exception handling

approaches. Backward recovery assists to restore the

system to a previous stable version where the fault was

not occurred at all.

Some of the mechanisms are implemented as WS-

BPEL plug-ins. Baresi et al. [3] have used WSCol and

WSRel to improve the performance on fault handling.

WSRel is used for backward recovery to restore the

service state with the previous stable state. They have

developed event handler, fault handler and compensation

handler. Event handler responds two types of events;

message events and alarms based on timers. Fault handler

catches faults in local scope, tries to handle it with

suitable strategies if not possible then the fault is

propagated to the enclosing scope. Finally, compensation

handler works for backward recovery in fault case and

applies the transactional constraint and initiates the

handler programmatically.

BPEL does not provide any recovery strategies for

SOA faults unless predefined by developers at design

time. Friedrich et al. [4] defines reparability as “An

activity Ai is repairable iff, after Ai has been executed, it

is possible to execute a sequence of repair”. Ruan et al. [5]

have developed TEHL (Task Level Exception Handling

Language) that reduces abnormal events that interrupts

the normal execution of workflows. TEHL implements

exception handling strategies like delay, repeat etc. Wang

et al. [2] have concerned about integrated handling of

business constraint violations and runtime environment

faults for dynamic service composition. SOA specific

fault can be categorized as publishing fault, discovering

fault, composition fault, binding fault and execution fault

according the SOA life cycle stages as proposed by [6].

Service unavailability fault [7] [8], byzantine fault [9]

[10], prescribed policy violation [11], timeout exception

[12], SLA (Service Level Agreement) claim fault [13],

latent errors and dormant faults[14], adaptation faults

[15], interaction faults [16], network traffic [17] of

service-oriented computing faults are noted to be highly

emphasized faults by the researchers.

Detecting a faulty service is very difficult task. The

fault can only be detected in execution step when the

service is actually executed. Several fault detection

techniques are proposed by the researchers like impact

analysis [7], dependency discovery [18], set-covering

algorithm [19] [19] [20] [21] [22], fuzzy reasoning based

diagnosis algorithm [23] [23] [24], process structure

analyzing [4], timed-automata [25], logging as traces

collection mechanism [26] [27] [28] [29], pattern-based

technique [30], event-based approach [31], etc.

Several researchers have emphasized on mainly two

recovery techniques; internal recovery and external

recovery. Ermagan et al. [32] have proposed fault

tolerance approach based on architectural pattern using

interactions among components and interception/routing

mechanism. Jensen et al. [33] have proposed fault

propagation approach for service composition. It ensures

the flexibility and robustness in fault handling. They have

mainly categories fault recovery into three techniques;

internal recovery, forward recovery and third backward

recovery. The proposed FaultHandler service takes

appropriate measures. Performance analysis is not

calculated on their study.

III. SERVICE ORIENTED ARCHITECTURE

Service oriented architecture is a popular design

paradigm for distributed system. According to IBM

definition [34]- “SOA is a set of architectural principles,

patterns and criteria that address characteristics such as

modularity, encapsulation, loose coupling, separation of

concerns, reuse and composability. Microsoft defines it as

a loosely-coupled architecture designed to meet the

business needs of the organization [35]. SOA is basically

a collection of services. Every service is designed to

fulfill a certain activity. Although, it is a loosely-coupled,

two or more services could involve coordinating some

activity dynamically to achieve a certain task using the

concept of service composition. A service is a well-

defined function that is self-contained and does not

depend on the environment or state of other services.

Service is a black-box for its consumers. A service may

consist of underlying other services. So, service

consumers need not worry about the inner logic of the

service. Dynamically bound, loose coupling, self-

adaptation, platform independent, highly modular,

interoperability, discoverability are the common features

of SOA.

For realization of SOA, the technology of Web

Services is the simplest connection technology for

implementing a loosely coupled SOA. SOA is an

architectural style, whereas web service is a technology

that can be used to implement on SOAs. Web service

technology consists of several published standards SOAP

(Simple Object Access Protocol), WSDL (Web Service

Description Language) and CORBA (Common Object

Request Broker Architecture). As adopted in mobile

technology, social media, cloud computing and big data

analytics, SOA concept is gaining more popularity than

ever before for providing integrated environments and

systems from end to end. Oracle SOA Suite [36] is an

example technology that simplifies connectivity by

providing a unified experience to integrate across cloud,

on-premise, and business to business.

Service provider creates a web service and deploys it

to the service repository. A service provider can also be a

service consumer. Service broker or service repository or

service registry makes the information about available

web service to the service consumer. Service requester or

service consumer demands for a service or a set of

services according to the need. They have to take it from

34 Fault Repairing Strategy Selector for Service-Oriented Architecture

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 6, 32-39

the service brokers. Fig.1 illustrates a basic SOA

structure.

Fig.1. SOA structure

IV. FAULT HANDLING STRATEGIES OF SERVICES

ORIENTED COMPUTING

We have categorized fault handling strategies of

service oriented computing into two categorized as local

recovery strategies and global recovery strategies as

shown in fig.2. Internal recovery concerns about the

interactions among parameters in a service. Forward

recovery technique is related with the transactional

behaviors of the messages as results all or nothing.

Backward recovery is associated with faults occurring

situation where multiple services interact each other. It

applies any one of the exception handling strategies like

ignore, wait, retry, recompose, retryUntil etc. Backward

recovery means rollback of the faulty service with the

previous healthy version of the same service. Forward

recovery is more optimized than backward recovery. This

technique either ignore the fault service and goes forward

to keep the rest of the system running with no harm or

retry the faulty service again or substitute the faulty

service with the equivalent other service which would be

sufficient to fulfil the task of the current faulty service.

Forward recovery has better performance than backward

recovery and service recomposition and recreation.

V. SERVICE-ORIENTED SYSTEM RECOVERY STRATEGIES

In this section, some of the service-oriented system

recovery strategies are presented with their strengths and

weaknesses. A strategy may be suitable for one condition

of faulty service cannot be appropriate for another

condition. So, fault repairing strategy depends on the

nature of fault. Some of the popular fault handling

strategies are discussed below.

a) Ignore: Ignore strategy just ignores the identified

fault that does not affect the whole system and does

not violates the goal. It is efficient action in case of

performance utilization and reliable system if the

fault is temporal.

b) Replace: During runtime any service can be faulty

and cause a whole system failure with its QoS

constraints violation. In case of service fault,

replace action replaces the faulty service by the

alternative equivalent service with the same

functioning. The replacement action might call for

compensation or rollback to recover. Replacement

of faulty service by healthy service is time-

consuming process but it enhances the reliability of

the system.

c) Retry: Retry the fault generating service repeatedly

till the maximum retry times. Web server is

stateless between transactions; it does not maintain

important state from first and last. The requests

being processed are effectively dropped. Client may

or may not receive complete relies to the in-process

requests. The re-issuing of the request can lead to

further problems since the same request may then

be executed multiple times.

d) Recompose: this action searches for the alternative

process with the same objective discarding the

current faulty process. It may be the last option

while repairing the faulty service because it is the

most time-consuming fault handling strategy. But

this strategy is reliable and suitable for all fault

handling cases.

e) Logging: Logging mechanism is the popular

mechanism to analyse the failure behaviour of

various systems. Logging mechanism stores

intercepted message traces of every transactions of

service interactions. Later, if fault is occurred,

message traces can be used for fault repairing

purpose. It is challenging to recover from faulty

condition using logging mechanism if service fault

does not leave any trace in logs. Incompleteness and

inaccuracy are two issues of logging-based fault

repairing approach.

f) Replication: Replicating same service or process in

several systems as backup requires additional

resources and computational time. Fault service can

be replaced by same version of service from backup

system. N-version programming can be used to

implement replication. In case of composite service,

all candidate services must be available, if one of

the services it consumes is unavailable, the main

service may fail. Thus replication management is

very challenging in this context. It is also

challenging to reduce the number of replicas as

required. This strategy has to detect updates in the

environments automatically.

g) Hybrid strategy : A hybrid technique with

application level logging and connection replication

Service Broker

Service Consumer Service Provider

Discover

Bind

Register

 Fault Repairing Strategy Selector for Service-Oriented Architecture 35

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 6, 32-39

named CORAL (A Client-Transparent Fault-

tolerant) [27] mechanism. CORAL recovers in-

process requests and does not require deterministic

servers or changes to the clients. To achieve the

fault tolerance goals, active replication of the

servers may be used, where every client request is

processed by two (or more) server replicas. Logging

of request is an alternative but two different replies

for the same request may reach the client violating

the requirement for transparent fault tolerance.

Their approach has assumed only one host at a time

can be affected by fault and the impact of the fault

can be to either crash a process or crash or hang the

entire host. Rollback and compensation are

analogous to their usual definitions.

Some of the popular fault handling strategies are

shown in fig. 2.

Fig.2. Fault handling strategies

A. Challenges on applying the fault handling strategies:

Several fault handling strategies with their major

drawback and brief introduction are provided in table 1.

Table 1. Fault handling strategies and their drawbacks

Strategy Drawback Details

Replication Time and space complexity (highly complex) It is time-consuming to maintain same version of the service in

several places and it takes storage space in several places.

Replace Replacing faulty service requires overhead. Optimal replacement policy[37] and service process reconfiguration

[38] at code-level

Retry Not suitable for pre-condition constraint violations It is not suitable for those services to repair which are available for

certain time period.

Recompose  Most time-consuming approach,

 It is the last option if any other strategies fail to repair

faulty service.

Discards the faulty service and establishes an alternative process

with the same goal.

Logging  Extra message traffic

 Service delay by message interception

 Cost of agent deployment and execution

 Cost of message storage and analysis

Re-issuing request leads same request may be executed multiple

times.

Rollback Different parts of the systems are owned by different

institutions making it harder to perform true rollback [3].

-It is suitable for database technologies.

-It would not be due to its unique features like interoperability and

platform independent distributed system.

VI. OVERVIEW OF OUR APPROACH

As we have found performance as major challenge on

handling fault in SOA, we have presented a model to

address this challenge, and a priority model for Service-

based System with three priority levels to handle the fault

is proposed. All levels are corresponding with different

fault handling strategies with their different purposes but

we have adopted them here in holistic view irrespective

of the service fault nature. We have proposed priority

model with three levels of recovery strategies. First level

has ignored, replace actions as fault handling strategies.

Replace strategy here we used is optimal service

replacement as proposed in [37]. Second level

corresponds to wait and retry which has average

performance rate. Level 3 resembles repeatUntil,

recomposition, compensate actions, ranking components

[39] as service oriented fault handling strategies. Level 1

fault handling strategies

local recovery

Ignore

Notify

halt

retry

times

wait

terminate

Global recovery

Logging transactional

restore

checkpoint

Backup Cache Hybrid

36 Fault Repairing Strategy Selector for Service-Oriented Architecture

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 6, 32-39

is highly desirable and top priority level if fault occurs

then FaultHandler will try to resolve the fault by ignore,

and replace it by another equivalent substitute, which

takes minimum time on handling service fault. Level 1

fault handling strategies have high performance rate.

There is no any difference in fault reparability rate on

these priority level. Our approach considerably has higher

reparability rate because it deliberates on handling the

fault via selecting the suitable strategy from higher level

with best performance rate to lower level at least

performance rate. Fig. 3 displays the fault handling

strategy selection priority levels.

Fig.3. Level of fault handling strategies

A. Level 1: fault handling strategies:

Priority level 1 associates with ignore and replace

actions as fault handling strategies. Replace strategy is

optimal service replacement [37]. Level 1 is highly

desirable and top priority level if fault occurs then Fault

Handler will try to resolve the fault by ignore, or replace

it by another equivalent substitute, which takes minimum

time on handling the fault.

B. Level 2: fault handling strategies:

Second level corresponds to wait, retry or repeat,

Microboot, logging and cache which have average

performance rate. Firstly, system tries to recover the

faulty service by the level 1 strategies if not possible only

level 2 strategies could be the possible solutions for fault

handling. In this level, fault handling process takes higher

computational time but lower computation time than level

3 fault handling strategies.

C. Level 3: fault handling strategies:

Level 3 resembles repeatUntil, recomposition, compen-

sation, reboot, hybrid and rollback actions as service

oriented fault handling strategies. Level 3 fault handling

strategies are the worst-case situation only when level1

and level 2 fault handling strategies are not possible to

apply. Level 3 strategies are known as goal-preserving

strategies. If the correct execution of the function is very

crucial then this level strategies can be the best suitable

condition to preserve the goal.

This approach can be applied at either platform-level

or application level services in service-oriented

computing. This approach starts from fault detection

method and select the first priority level strategies

promptly and if fault could not be handled by first level

then fault handler selects the second level or intermediate

priority level for average performance. As a final in the

worst case, least level strategies are applied to resolve the

faulty situation. The proposed approach fault handling

technique can reduce the computational cost and

increases the fault repairing rate.

 Algorithm for fault repairing strategies selector:

Algorithm 1, illustrates the working mechanism of

strategy selector. The algorithm takes composite system

CS and the system µ as input. We need to check the

composite system to find the location of the faulty service

and the impact region. Impact region should be expanded

if the component services are associated with the faulty

service as proposed by [7] and [40] . Step 1.i) detects

faulty service Sf on composite service CSk. Step 1.j)

tries to apply first level repairing strategies. If fault

repairing process is success by ignoring the faulty service

then the further execution continues. Otherwise, it applies

replace strategy where faulty service Sf is replaced with

equivalent substitute service Sh which is a healthy service.

Step 1.k) concerns with level 2 strategies where firstly

retry the same service again to check whether it is able to

fulfil the same need or not if fulfilled successfully then

workflow executes the next statement other wise it waits

Tx milliseconds time as in Step 1.k)b. If level 2 strategies

are also failed to accomplish the fault repairing task then

it applies Step 1.l) level 3 stragies to repair the fault

condition. In level 3, Firstly it tries with RepeatUntil

action for certain time say y*Tx (y times Tx). If repeating

the same service again and again for fix time duration

achieved the goal then repairing process ends

Algorithm 1 for fault repairing strategies selector

successfully and continues the execution with the next

statement. Otherwise it calls compensation strategies like

trasactional atomicity, logging, replication etc. for

repairing purpose. As a final but reliable strategy as

mentioned in Step 1.l)c, a service is recomposed at a

INPUT: CS, µ
1) For each candidate of composite service CSk Є µ, 1 ≤ k ≥ m;

a) For all i, 1 ≤ i ≥ n;
i) Detect faulty service (Sf, CSk);
j) Apply level1 strategies

a. Ignore Sf , 1 ≤ f ≥ n, if fault repairing is success then go
to Step 3.

b. Replace Sf of Ci by equivalent Sh where 1 ≤ h ≥ n. if fault
repairing is success then go to Step 2.

k) Apply level2 strategies
a. Retry Sf again 1 ≤ f ≥ n, if fault repairing is success then

go to Step 2.
b. Wait for time Tx milliseconds;

l) Apply level3 strategies
a. RepeatUntil, certain time y*Tx (y times Tx), if repairing

is desired after y times of Tx then go to Step 2.
b. Call any compensation strategies like transactional

atomicity, logging, replication etc. for repairing purpose
and after repairing successfully go to Step 2.

c. Recompose Sf , where 1 ≤ f ≥ n and Sf is CSi Є µ
2) Continue the execution
3) Stop

 Fault Repairing Strategy Selector for Service-Oriented Architecture 37

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 6, 32-39

execution time and tries to undertake the duty of faulty

service to accomplish the faulty task.

VII. PERFORMANCE ANALYSIS

In this section, performance overhead has been

calculated with different workloads. We collect

performance on the basis of computation time, average

response time and fault detection rate without our

approach and with our approach. The result of the

experiment is shown in fig. 4 that shows performance

analysis with computation time in milliseconds over

different priority levels of fault handling strategies with

respect to the number of composite services. Overall, the

computational time of the level 1 strategies is

considerably less among all levels for any number of

composite services. However, till 6 composite service,

computational time of level 1 and level 2 strategies seems

idle. Afterward level 2 takes slightly more computational

time. Level 3 strategies appear worst case strategies in

terms of computational time among all strategies.

A. The comparison of computation time between with

and without the approach

The performance analysis with the comparison in terms

of computation time in milliseconds over our proposed

approach and without our approach with respect to the

number of composite services is depicted in Fig.5.

Generally, the computational time of our approach is

considerably less than without our approach irrespective

of the number of composite services. However, there is

less variation when there is fault in less number of

composite services, as number of composite services

increased it becomes complex to handle the fault and

takes a lot of computation time.

Fig.4. Performance analysis of different priority levels

Fig.5. The comparison of computation time with and without our

approach

B. The comparison on average response time between

with our approach and without the approach

Comparison of average response time in milliseconds

of our approach and without our approach over various

number of composite services is shown in Fig.6. Overall,

the average response time of our approach is considerably

less service oriented computing system without our

approach regardless of number of composite services.

C. The comparison of fault repairing rate between with

our approach and without the approach

Reliability on fault handling of Service Oriented

Computing system is very big challenge to achieve.

Performance ensures the reliability. Fault repairing rate is

the probability of repairing the faulty service. Fig. 7,

shows comparison of fault repairing rate between our

approach and without our approach with respect to the

number of test suites. Our approach for fault handing of

service computing system has significant fault repairing

rate.

Fig.6. Comparison of average response time between with our approach

and without our approach

38 Fault Repairing Strategy Selector for Service-Oriented Architecture

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 6, 32-39

Fig.7. The comparison of fault repairing rate between with our approach

and without our approach

VIII. CONCLUSION

In this paper, a priority based fault handling strategy

selecting approach for fault recovery is proposed using

priority selector and fault handler. This approach can be

applied at either platform-level or application level

services in service-oriented computing. This approach

starts from fault detection method and select the first

priority level strategies promptly and if fault could not be

handled by first level then fault handler selects the second

level or intermediate level priority level for average

performance. As a final in the worst case, least level

strategies are applied to resolve the faulty situation. The

proposed approach fault handling technique is optimized

and reduces the computational cost and complexity.

Through several experiments, the correctness of our

algorithms and the efficiency of our approach is proved.

This approach results better performance and high rate of

fault repairing than without our approach.

ACKNOWLEDGMENTS

The authors would like to thank ICCR, Ministry of

Foreign Affairs, India (Silver Jubilee Scholarship Scheme)

for providing funds and DST-CIMS, Institute of Science,

BHU, India for providing necessary infrastructure and

facilities for undertaking this research work.

REFERENCES

[1] H. J. La and S. D. Kim, “Static and dynamic adaptations

for service-based systems,” Inf. Softw. Technol., vol. 53,

no. 12, pp. 1275–1296, 2010.

[2] M. Wang, K. Y. Bandara, and C. Pahl, “Integrated

constraint violation handling for dynamic service

composition,” SCC 2009 - 2009 IEEE Int. Conf. Serv.

Comput., pp. 168–175, 2009.

[3] L. Baresi and S. Guinea, “Self-Supervising BPEL

Processes,” IEEE Trans. Softw. Eng., vol. 37, no. 2, pp.

247–263, 2011.

[4] G. Friedrich, M. Fugini, E. Mussi, B. Pernici, and G.

Tagni, “Exception handling for repair in service-based

processes,” IEEE Trans. Softw. Eng., vol. 36, no. 2, pp.

198–215, 2010.

[5] D. Ruan and S. Lu, “Task exception handling in the

VIEW scientific workflow system,” Proc. - 2010 IEEE

7th Int. Conf. Serv. Comput. SCC 2010, pp. 637–638,

2010.

[6] S. Brüning, S. Weißleder, and M. Malek, “A fault

taxonomy for service-oriented architecture,” Proc. IEEE

Int. Symp. High Assur. Syst. Eng., pp. 367–368, 2007.

[7] A. Ismail, J. Yan, and J. Shen, “Analyzing fault-impact

region of composite service for supporting fault handling

process,” Proc. - 2011 IEEE Int. Conf. Serv. Comput. SCC

2011, pp. 290–297, 2011.

[8] L. Wang, A. Wombacher, L. F. Pires, M. J. Sinderen, and

C. Chi, “Robust client/server shared state interactions of

collaborative process with system crash and network

failures,” Proc. - IEEE 10th Int. Conf. Serv. Comput. SCC

2013, pp. 192–199, 2013.

[9] H. Chai and W. Zhao, “Byzantine Fault Tolerance for

Services with Commutative Operations,” 2014 IEEE Int.

Conf. Serv. Comput., pp. 219–226, 2014.

[10] X. Zhu, C. He, R. Ge, and P. Lu, “Boosting adaptivity of

fault-tolerant scheduling for real-time tasks with service

requirements on clusters,” J. Syst. Softw., vol. 84, no. 10,

pp. 1708–1716, 2011.

[11] M. Bartoletti, P. Degano, G. L. Ferrari, and R. Zunino,

“Semantics-Based Design for Secure Web Services,”

IEEE Trans. Softw. Eng., vol. 34, no. 1, pp. 33–49, 2008.

[12] C. M. Tang, W. K. Chan, and Y. T. Yu, “Extending the

Theoretical Fault Localizaton Effectiveness Hierarchy

with Empirical Results at Different Code Abstraction

Levels *,” in IEEE 38th Annual International Computers,

Software and Applications Conference Extending, 2014,

pp. 161–170.

[13] B. R. Kandukuri, R. P. V., and A. Rakshit, “Cloud

Security Issues,” Proc. 2009 IEEE Int. Conf. Serv.

Comput., pp. 517–520, 2009.

[14] F. Balbastro, A. Capozucca, and N. Guelfi, “Analysis and

framework-based design of a fault-tolerant web

information system for m-health,” Serv. Oriented Comput.

Appl., vol. 2, no. 2–3, pp. 111–144, 2008.

[15] M. Sama, D. S. Rosenblum, Z. Wang, and S. Elbaum,

“Multi-layer faults in the architectures of mobile, context-

aware adaptive applications,” J. Syst. Softw., vol. 83, no. 6,

pp. 906–914, 2010.

[16] J. Chen, Q. Li, C. Mao, D. Towey, Y. Zhan, and H. Wang,

“A Web services vulnerability testing approach based on

combinatorial mutation and SOAP message mutation,”

Serv. Oriented Comput. Appl., vol. 8, no. 1, pp. 1–13,

2014.

[17] V. Garousi, L. C. Briand, and Y. Labiche, “Traffic-aware

stress testing of distributed real-time systems based on

UML models using genetic algorithms,” J. Syst. Softw.,

vol. 81, no. 2, pp. 161–185, 2008.

[18] S. Basu, F. Casati, and F. Daniel, “Toward web service

dependency discovery for SOA management,” Proc. -

2008 IEEE Int. Conf. Serv. Comput. SCC 2008, vol. 2, pp.

422–429, 2008.

[19] J. Zhang, Y. C. Chang, and K. J. Lin, “A dependency

matrix based framework for QoS diagnosis in SOA,”

IEEE Int. Conf. Serv. Comput. Appl. SOCA’ 09, vol. 0, no.

c, pp. 299–306, 2009.

[20] J. Zhang, X. Zhang, and K. J. Lin, “An efficient Bayesian

diagnosis for QoS management in service-oriented

architecture,” Proc. - 2011 IEEE Int. Conf. Serv. Comput.

Appl. SOCA 2011, 2011.

 Fault Repairing Strategy Selector for Service-Oriented Architecture 39

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 6, 32-39

[21] Q. He, J. Han, Y. Yang, J. G. Schneider, H. Jin, and S.

Versteeg, “Probabilistic critical path identification for

cost-effective monitoring of service-based systems,” Proc.

- 2012 IEEE 9th Int. Conf. Serv. Comput. SCC 2012, pp.

178–185, 2012.

[22] C. A. Sun, Y. M. Zhai, Y. Shang, and Z. Zhang,

“BPELDebugger: An effective BPEL-specific fault

localization framework,” Inf. Softw. Technol., vol. 55, no.

12, pp. 2140–2153, 2013.

[23] Y. Dai, L. Yang, B. Zhang, and Z. Zhu, “Exception

diagnosis for composite service based on error

propagation degree,” Proc. - 2011 IEEE Int. Conf. Serv.

Comput. SCC 2011, pp. 160–167, 2011.

[24] C. Ye and H. A. Jacobsen, “Whitening SOA testing via

event exposure,” IEEE Trans. Softw. Eng., vol. 39, no. 10,

pp. 1444–1465, 2013.

[25] L. Waszniowski, J. Krákora, and Z. Hanzálek, “Case

study on distributed and fault tolerant system modeling

based on timed automata,” J. Syst. Softw., vol. 82, no. 10,

pp. 1678–1694, 2009.

[26] A. Benharref, R. Dssouli, M. A. Serhani, and R. Glitho,

“Efficient traces’ collection mechanisms for passive

testing of Web Services,” Inf. Softw. Technol., vol. 51, no.

2, pp. 362–374, 2009.

[27] N. Aghdaie and Y. Tamir, “CoRAL: A transparent fault-

tolerant web service,” J. Syst. Softw., vol. 82, no. 1, pp.

131–143, 2009.

[28] M. Cinque, D. Cotroneo, and A. Pecchia, “Event logs for

the analysis of software failures: A rule-based approach,”

IEEE Trans. Softw. Eng., vol. 39, no. 6, pp. 806–821,

2013.

[29] D. Jayasinghe, C. Pu, F. Oliveira, F. Rosenberg, and T.

Eilam, “AESON: A model-driven and fault tolerant

composite deployment runtime for IaaS clouds,” Proc. -

IEEE 10th Int. Conf. Serv. Comput. SCC 2013, pp. 575–

582, 2013.

[30] J. Cubo, M. Sama, F. Raimondi, and D. Rosenblum, “A

model to design and verify context-aware adaptive service

composition,” SCC 2009 - 2009 IEEE Int. Conf. Serv.

Comput., pp. 184–191, 2009.

[31] F. Belli and M. Linschulte, “Event-driven modeling and

testing of real-time web services,” Serv. Oriented Comput.

Appl., vol. 4, no. 1, pp. 3–15, 2010.

[32] V. Ermagan, I. Krüger, and M. Menarini, “A fault

tolerance approach for enterprise applications,” Proc. -

2008 IEEE Int. Conf. Serv. Comput. SCC 2008, vol. 2, pp.

63–72, 2008.

[33] M. Jensen, “A fault propagation approach for highly

distributed service compositions,” Proc. - 2008 IEEE Int.

Conf. Serv. Comput. SCC 2008, vol. 2, pp. 507–510, 2008.

[34] IBM, “Service Oriented Architecture(SOA): Simply good

design,” IBM, 2016. [Online]. Available: https://www-

01.ibm.com/software/solutions/soa/. [Accessed: 25-Dec-

2016].

[35] D. Linthicum, “Chapter 1: Service Oriented Architecture

(SOA),” Microsoft, 2016. [Online]. Available:

https://msdn.microsoft.com/en-in/library/bb833022.aspx.

[Accessed: 23-Dec-2016].

[36] Oracle, “Oracle SOA : Service Oriented Architecture

Engineered to Adapt,” Oracle, 2016. [Online]. Available:

http://www.oracle.com/us/products/middleware/soa/overv

iew/index.html. [Accessed: 10-Dec-2016].

[37] S. S. Pillai and N. C. Narendra, “Optimal Replacement

Policy of Services Based on Markov Decision Process,”

2009 Ieee Int. Conf. Serv. Comput., pp. 176–183, 2009.

[38] K. J. Lin, J. Zhang, Y. Zhai, and B. Xu, “The design and

implementation of service process reconfiguration with

end-to-end QoS constraints in SOA,” Serv. Oriented

Comput. Appl., vol. 4, no. 3, pp. 157–168, 2010.

[39] Z. Zheng, T. C. Zhou, M. R. Lyu, and I. King,

“Component Ranking for Fault-Tolerant Cloud

Applications,” IEEE Trans. Serv. Comput., vol. 5, no. 4,

pp. 540–550, 2012.

[40] A. Ismail, J. Yan, and J. Shen, “Incremental service level

agreements violation handling with time impact analysis,”

J. Syst. Softw., vol. 86, no. 6, pp. 1530–1544, 2013.

Authors’ Profiles

Guru Prasad Bhandari is working as a

Research Scholar at DST-CIMS, Institute

of Science, Banaras Hindu University,

Varanasi, India. His research area is

service-oriented computing and reliability

analysis. He is currently working on

‘Fault Analysis of Service-oriented

Computing’. He is pursuing his doctoral

work under the supervision of Dr.

Ratneshwer.

Ratneshwer did his Ph.D. in Component

Based Software Engineering from Indian

Institute of Technology, Banaras Hindu

University, Varanasi (IIT-BHU), India.

His research area is CBSE and SOA. He

is serving as an Assistant Professor in

Department of Computer Science

(MMV), Banaras Hindu University, India.

He is actively involved in teaching and

research for last 8 years. One research monograph is published

by LAP Germany and one book chapter has been published by

IGI Global Publication. He has 16 research papers in

International journals and 16 research papers in

international/national conference proceedings in his credit.

How to cite this paper: Guru Prasad Bhandari, Ratneshwer,"Fault Repairing Strategy Selector for Service-Oriented

Architecture", International Journal of Modern Education and Computer Science(IJMECS), Vol.9, No.6, pp.32-39,

2017.DOI: 10.5815/ijmecs.2017.06.05

