
I.J. Modern Education and Computer Science, 2017, 8, 49-56

Published Online August 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2017.08.07

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 8, 49-56

A Modified Particle Swarm Optimization

Algorithm based on Self-Adaptive Acceleration

Constants

Sudip Mandal
Department of Electronics and Communication Engineering,

Global Institute of Management and Technology, Krishna Nagar, India-741102.

Email: sudip.mandal007@gmail.com

Received: 14 March 2016; Accepted: 25 July 2017; Published: 08 August 2017

Abstract—Particle Swarm Optimization (PSO) is one of

most widely used metaheuristics which is based on

collective movement of swarm like birds or fishes. The

inertia weight (w) of PSO is normally used for

maintaining balance between exploration and exploitation

capability. Many strategies for updating the inertia weight

during iteration were already proposed by several

researchers. In this paper, a Modified Particle Swarm

Optimization (MPSO) algorithm based on self-adaptive

acceleration constants along with Linear Decreasing

Inertia Weight (LDIW) technique is proposed. Here, in

spite of using fixed values of acceleration constants, the

values are updated themselves during iteration depending

on local and global best fitness value respectively. Six

different benchmark functions and three others inertia

weight strategies were used for validation and

comparison with this proposed model. It was observed

that proposed MPSO algorithm performed better than

others three strategies for most of functions in term of

accuracy and convergence although its execution time

was larger than others techniques.

Index Terms—Metaheuristic; Optimization; Modified

Particle Swarm Optimization (MPSO); Inertia Weight;

Acceleration Constant.

I. INTRODUCTION

Metaheuristic optimization techniques have become

very popular over the last two decades [21]. They have

been mostly inspired by very simple concepts. The

inspirations are typically related to physical phenomena,

animals’ behaviors, or evolutionary concepts.

Regardless of the differences between the meta-

heuristics, a common feature is the division of the search

process into two phases: exploration and exploitation.

The exploration phase refers to the process of

investigating the promising area(s) of the search space as

broadly as possible. An algorithm needs to have

stochastic operators to randomly and globally search the

search space in order to support this phase. However,

exploitation refers to the local search capability around

the promising regions obtained in them exploration phase.

Finding a proper balance between these two phases is

considered a challenging task due to the stochastic nature

of meta-heuristics.

There is a question here as to why metaheuristics have

become remarkably common. The answer to this question

can be summarized into four main reasons: simplicity,

flexibility, derivation- free mechanism, and local optima

avoidance.

First, metaheuristics are fairly simple. The simplicity

allows computer scientists to simulate different natural

concepts, propose new meta-heuristics, hybridize two or

more metaheuristics, or improve the current meta-

heuristics.

Second, flexibility refers to the applicability of

metaheuristics to different problems without any special

changes in the structure of the algorithm assuming

problems as black boxes. So, all a designer needs is to

know how to represent his/her problem for meta-

heuristics.

Third, the majority of meta-heuristics have derivation-

free mechanisms i.e. meta-heuristics optimize problems

stochastically. The optimization process starts with

random solution(s), and there is no need to calculate the

derivative of search spaces to find the optimum. This

makes meta-heuristics highly suitable for real problems

with expensive or unknown derivative information.

Finally, meta-heuristics have superior abilities to avoid

local optima compared to conventional optimization

techniques. This is due to the stochastic nature of meta-

heuristics which allow them to avoid stagnation in local

solutions and search the entire search space extensively.

One of the interesting branches of the population-based

metaheuristics is Swarm Intelligence (SI). The

inspirations of SI techniques originate mostly from

natural colonies, flock, herds, and schools. Here, the

search agents navigate using the simulated collective and

social intelligence of creatures. Some of the most popular

SI techniques are Particle Swarm Optimization (PSO) [1],

Ant Colony Optimization (ACO) [22], Artificial Bee

Colony (ABC) [23] and Bat Algorithm (BA) [24] etc.

Among these, Particle Swarm Optimization (PSO) is

one of the most efficient optimization strategies for

50 A Modified Particle Swarm Optimization Algorithm based on Self-Adaptive Acceleration Constants

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 8, 49-56

continuous nonlinear optimization problems. J. Kennedy

et al. [1] first proposed PSO that is inspired by the

collective social behaviors of swarm like movements of

flocks of birds or schools of fish in search of foods. The

main advantages of PSO are that PSO is very simple and

efficient in nature (no need of gradient of the problem

etc.); there are few parameters (no need of different

complex genetic operators etc.) needed to be adjusted. In

addition to the huge number of theoretical works, PSO

has been applied in various fields of study DC-Side

Voltage Control [25], Task Scheduling [26], Workflow

Scheduling [27] and Transportation Network design [28]

problems etc.

In case of PSO, a particle (i.e. bird or fish) denotes a

potential solution for the optimization problem. A set of

particles is known as a swarm, where particles are

initially distributed or positioned in random manner in d-

dimensional search space of the problem. Swarm is flown

through the search space and the position of each particle

is updated based on the experiences (fitness value at that

point) of all neighbors particle including itself [2]. Every

particle is considered as intelligent and knows its own

current fitness value, its own best value so far (locally

best solution), the best fitness value of the whole swarm

(globally best solution), and its own velocity [3].

For, d-dimensional optimization problem, the position

of i-th particle of a swarm (consist of N particles) at t-th

iteration is given as 𝑋𝑖,𝑑
𝑡 = (𝑥𝑖1, 𝑥𝑖2, … . , 𝑥𝑖𝑑) and the

velocity is represented by 𝑉𝑖,𝑑
𝑡 = (𝑣𝑖1, 𝑣𝑖2, … . , 𝑣𝑖𝑑) .

Locally best solution by i-th particle at current iteration is

given as 𝑃𝑏𝑒𝑠𝑡,𝑖,𝑑
𝑡 = (𝑃𝑖1, 𝑃𝑖2, … . , 𝑃𝑖𝑑) and global best

solution is denoted by 𝐺𝑏𝑒𝑠𝑡,𝑑
𝑡 = (𝐺1, 𝐺2, … . , 𝐺𝑑) . As

iteration proceeds, the velocity and position of the

particles are updated according to following rules [1].

𝑉𝑖,𝑑
𝑡+1 = 𝑉𝑖,𝑑

𝑡 + 𝐶1 ∗ 𝑟𝑎𝑛𝑑(1, 𝑑) ⊙ (𝑃𝑏𝑒𝑠𝑡,𝑖,𝑑
𝑡 − 𝑋𝑖,𝑑

𝑡)

+𝐶2 ∗ 𝑟𝑎𝑛𝑑(1, 𝑑) ⊙ (𝐺𝑏𝑒𝑠𝑡,𝑑
𝑡 − 𝑋𝑖,𝑑

𝑡) (1)

𝑋𝑖,𝑑
𝑡+1 = 𝑉𝑖,𝑑

𝑡+1 + 𝑋𝑖,𝑑
𝑡 (2)

Where 𝐶1 and 𝐶2 are called as acceleration constants,

also named as cognitive learning rate and social learning

rate respectively. 𝑟𝑎𝑛𝑑(1, 𝑑) is generate a d-dimensional

array of random values within [0,1]. ⊙ denotes element

wise multiplication.

However, one of the main reasons behind the success

of a metaheuristic is a delicate balance between

exploration and exploitation capability of the algorithm.

Several authors [4-18] proposed different methods to

achieve better accuracy and convergence. However, in

this paper, we have proposed a Modified Particle Swarm

Optimization (MPSO) Algorithm based on self-adaptive

acceleration constants. The rest of this paper is organized

as follows. Section II describes different existing PSO

strategies. The proposed Modified PSO is described

Section III which is followed by results and analysis

section. Next, conclusion and references are provided.

II. RELATED WORKS

To get a better control between the global and local

search characteristics of PSO, Shi and Eberhart [4]

proposed a modified PSO where the velocity of each

particle is updated based on inertia weight (𝜔). So, the

velocity update rule is modified according to following

equation.

𝑉𝑖,𝑑
𝑡+1 = 𝑉𝑖,𝑑

𝑡 ∗ 𝜔𝑡 + 𝐶1 ∗ 𝑟𝑎𝑛𝑑(1, 𝑑) ⊙ (𝑃𝑏𝑒𝑠𝑡,𝑖,𝑑
𝑡 − 𝑋𝑖,𝑑

𝑡)

+𝐶2 ∗ 𝑟𝑎𝑛𝑑(1, 𝑑) ⊙ (𝐺𝑏𝑒𝑠𝑡,𝑑
𝑡 − 𝑋𝑖,𝑑

𝑡) (3)

Recently, researchers give lots of attentions to the

inertia weight parameter for improving the performance

of original PSO. Lots of strategies were already proposed

for updating inertia weight during the course of iteration.

In 1998, Shi and Eberhart [4] proposed Constant

Inertia Weight (CIW) technique where they claimed that

large constant value of Inertia Weight is suitable for

exploration while a small constant value of Inertia

Weight is suitable a exploitation. So, CIW can be

described using following equation.

𝜔𝑡 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (4)

Further, in case of Random Inertia Weight (RIW) [5],

the value of inertia weight is selected in random manner

and it is very efficient to find out the optima in a dynamic

system. For RIW, the value of inertia weight is assigned

using following equation

𝜔𝑡 = 0.5 + 𝑟𝑎𝑛𝑑/2 (5)

Where 𝑟𝑎𝑛𝑑 is a function that generates random

number within [0, 1]. Therefore, value of inertia weight is

uniformly distributed over [0.5, 1] and this technique

partially solve the problem of selection for constant of

CIW.

Linear Decreasing Inertia Weight (LDIW) [6-8] is very

popular and efficient technique in improving the fine-

tuning characteristics of the PSO where the value of

inertia weight is linearly depend on the iteration number.

In case of LDIW, the value of 𝜔 is linearly decreased

from an initial large value (𝜔𝑚𝑎𝑥) to a final small value

(𝜔𝑚𝑖𝑛) according to the following equation:

𝜔𝑡 = 𝜔𝑚𝑎𝑥 − {
𝜔𝑚𝑎𝑥−𝜔𝑚𝑖𝑛

𝑡𝑚𝑎𝑥
} × 𝑡 (6)

Where 𝑡 is iteration index and 𝑡𝑚𝑎𝑥 denotes maximum

number of iteration. LDIW has better efficiency over the

others technique due to smooth transition from initial

global search to local search during iteration process [20].

 There are lots of others strategies for variation of

inertia weight like Adaptive Inertia Weight [9], Sigmoid

Increasing Inertia Weight [10], Chaotic Inertia Weight

[11], Oscillating Inertia Weight [12], Global-Local Best

Inertia Weight [13], Simulated Annealing Inertia Weight

[14], Exponent Decreasing Inertia [15], Natural Exponent

Inertia Weight Strategy [16], Logarithm Decreasing

Inertia Weight [17], Nonlinear Decreasing Variant of

 A Modified Particle Swarm Optimization Algorithm based on Self-Adaptive Acceleration Constants 51

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 8, 49-56

Inertia Weight [18] and Bat-PSO hybridization [19] etc.

However, in this context, our proposed technique is

compared with only other 3 strategies which CIWPSO,

RIWPSO and LDIWPSO for validation purpose

III. METHODOLODY

Fine parametric tuning of evolutionary algorithms is

very important aspect to improve accuracy and efficiency.

Earlier approaches [6-8] were mainly focused on the

variation of inertia weight to increase the efficiency of

PSO. However, they normally used fixed acceleration

constants 𝐶1 and 𝐶2 (𝐶1 = 𝐶2 = 2 𝑓𝑜𝑟 𝑚𝑜𝑠𝑡 𝑐𝑎𝑠𝑒𝑠)

during the course of iteration.

In this work, instead of using fixed acceleration

constants, a weight based acceleration variables 𝐶1𝑤𝑃
𝑡 and

𝐶2𝑤𝐺
𝑡 is proposed that depends on the current best particle

solution and global best particle solution respectively.

These variables are updated adapted themselves

depending on difference between best and worst fitness

value. The velocity update rule for modified PSO can be

written as according to following equations

𝑉𝑖,𝑑
𝑡+1 = 𝑉𝑖,𝑑

𝑡 ∗ 𝜔𝑡 + 𝐶1𝑤𝑃
𝑡 ∗ 𝑟𝑎𝑛𝑑(1, 𝑑) ⊙ (𝑃𝑏𝑒𝑠𝑡,𝑖,𝑑

𝑡 −

𝑋𝑖,𝑑
𝑡) + 𝐶1𝑤𝐺

𝑡 ∗ 𝑟𝑎𝑛𝑑(1, 𝑑) ⊙ (𝐺𝑏𝑒𝑠𝑡,𝑑
𝑡 − 𝑋𝑖,𝑑

𝑡) (7)

Where 𝐶1𝑤𝑃
𝑡 and 𝐶2𝑤𝐺

𝑡 are defined as following way

𝐶1𝑤𝑃
𝑡 =

𝑓(𝑃𝑏𝑒𝑠𝑡,𝑖,𝑑
𝑡)− 𝑓𝑊𝑜𝑟𝑠𝑡

𝑡

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐵𝑒𝑠𝑡
𝑡 −𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑊𝑜𝑟𝑠𝑡

𝑡 (8)

𝐶2𝑤𝐺
𝑡 =

𝑓(𝐺𝑏𝑒𝑠𝑡,𝑑
𝑡)− 𝑓𝑊𝑜𝑟𝑠𝑡

𝑡

𝑓𝐵𝑒𝑠𝑡
𝑡 −𝑓𝑊𝑜𝑟𝑠𝑡

𝑡 (9)

Where 𝑓(𝑃𝑏𝑒𝑠𝑡,𝑖,𝑑
𝑡) , 𝑓(𝐺𝑏𝑒𝑠𝑡,𝑑

𝑡) are fitness values

corresponding to the local best for i-th particle and global

best solution respectively. 𝑓𝐵𝑒𝑠𝑡
𝑡 and 𝑓𝑊𝑜𝑟𝑠𝑡

𝑡 are the best

and worst fitness for all particles in current iteration. For

a function minimization problem, 𝑓𝐵𝑒𝑠𝑡
𝑡 and 𝑓𝑊𝑜𝑟𝑠𝑡

𝑡 are

defined as follows

𝑓𝐵𝑒𝑠𝑡
𝑡 = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑜𝑟 𝑋1,𝑑

𝑡 , 𝑋2,𝑑
𝑡 , …… . . , 𝑋𝑁,𝑑

𝑡

(10)

𝑓𝑊𝑜𝑟𝑠𝑡
𝑡 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑜𝑟 𝑋1,𝑑

𝑡 , 𝑋2,𝑑
𝑡 , …… . . , 𝑋𝑁,𝑑

𝑡
(11)

The particles are moving to the optimal point based on

above self adaptive mechanism. However, if all particles

move to an optimal point during iteration, minimum and

maximum fitness value will be same. In that case, 𝐶1𝑤𝑃
𝑡

and 𝐶2𝑤𝐺
𝑡 will be undefined. To avoid such case during

iteration, we introduce a condition that when 𝑓𝐵𝑒𝑠𝑡
𝑡 and

𝑓𝑊𝑜𝑟𝑠𝑡
𝑡 are different, 𝐶1𝑤𝑃

𝑡 and 𝐶2𝑤𝐺
𝑡 are updated

according to equation 8 and 9 else 𝐶1𝑤𝑃
𝑡 = 𝐶2𝑤𝐺

𝑡 = 2 will

be considered.

Moreover, 𝜔𝑡 is also updated according to LDIW

technique i.e. equation 6. The pseudo code of Modified

Particle Swarm Optimization (MPSO) algorithm is given

as

Start MPSO Algorithm
Define 𝑁, 𝑑, 𝑡𝑚𝑎𝑥, 𝑋𝑚𝑎𝑥, 𝑋𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥 , 𝜔𝑚𝑖𝑛 and objective
function;
for i=1 to N (number of particles)
 Initialize 𝑋𝑖,𝑑 and 𝑉𝑖,𝑑;
 𝑃𝑏𝑒𝑠𝑡,𝑖,𝑑 = 𝑋𝑖,𝑑;
end;

Evaluate fitness value 𝑓(𝑋𝑖,𝑑)for all N particle position

(i=1, 2,…., N);
Gbest,d= Min (𝑓);
Assign value of 𝜔𝑡 according to LDIW [Equation 6];
While (𝑡 ≤ 𝑡𝑚𝑎𝑥)
 for i=1 to N
 𝑓𝐵𝑒𝑠𝑡

𝑡 = Min (𝑓);
 𝑓𝑊𝑜𝑟𝑠𝑡

𝑡 = Max (𝑓);
 Evaluate 𝑓(𝑃𝑏𝑒𝑠𝑡,𝑖,𝑑

𝑡), 𝑓(𝐺𝑏𝑒𝑠𝑡,𝑑
𝑡);

 if (𝑓𝐵𝑒𝑠𝑡
𝑡 ≠ 𝑓𝑊𝑜𝑟𝑠𝑡

𝑡)
 Calculate 𝐶1𝑤𝑃

𝑡 and 𝐶2𝑤𝐺
𝑡 using equation 8

 and 9 respectively;
 else
 𝐶1𝑤𝑃

𝑡 =𝐶2𝑤𝐺
𝑡 =2;

 end if;
 Update the velocity 𝑉𝑖,𝑑using equation 7;
 Update the position 𝑋𝑖,𝑑using equation 2;
 Evaluate fitness value for 𝑓(𝑋𝑖,𝑑);

 if 𝑓(𝑋𝑖,𝑑) < 𝑓(𝑃𝑏𝑒𝑠𝑡,𝑖,𝑑
𝑡)

 𝑃𝑏𝑒𝑠𝑡,𝑖,𝑑
𝑡 =𝑋𝑖,𝑑;

 end if;
 if 𝑓(𝑃𝑏𝑒𝑠𝑡,𝑖,𝑑

𝑡) < 𝑓(𝐺𝑏𝑒𝑠𝑡,𝑑
𝑡)

 𝐺𝑏𝑒𝑠𝑡,𝑑
𝑡 = 𝑃𝑏𝑒𝑠𝑡,𝑖,𝑑

𝑡 ;

 end if;
 end for;
 𝑋∗ = 𝐺𝑏𝑒𝑠𝑡,𝑑

𝑡 ;

end while;
Return 𝑋∗;
End MPSO Algorithm

IV. EXPERRIMANTAL RESULTS

To validate the proposed MPSO algorithm, we have

chosen 6 different benchmark functions which are Ackley,

De Jong, Easom, Easom, Griewank, Rastrigin and

Rosenbrock function respectively. All of these functions

are multimodal except De Jong function (also known as

square function) which is unimodal in nature. The details

of these functions, respective search ranges of variables

and corresponding global minima points are shown in

table 2. We have considered 10 dimensional optimization

problem (d=10) for all functions.

A. Parameters Setting

In this work, CIWPSO, RIWPSO, LDIWPSO and

proposed MPSO were applied for above mentioned

function minimization problems. Performance of MPSO

is also compared with others for validation purpose. For

52 A Modified Particle Swarm Optimization Algorithm based on Self-Adaptive Acceleration Constants

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 8, 49-56

this, a swarm of 50 particles and 1000 maximum iteration

was taken. Following table shows values of respective

different inertia weight parameters and acceleration

constants for different techniques. All the techniques

were implanted using Matlab 7.6 with 2 GB RAM, Dual

Core processor and Windows7 operating System.

B. Analysis of Results

In this research work, all techniques are executed for

all benchmark functions and result analysis is done based

on five different criteria i.e. best fitness, average fitness,

worst fitness, average execution time and convergence

speed.

As the performance of PSO is also depending on

initialization of particles, therefore, each program for

each function is simulated for 50 times with different

initialization. The best and worst fitness is the minimum

and maximum fitness value respectively among those 50

optimal outputs corresponding to 50 times run. Average

fitness and execution time is the mean of all cases of

output fitness and execution time respectively.

Table 3 shows a comparative study among different

strategies for all six benchmark problems on the basis of

best fitness, average fitness, worst fitness and average

execution time where best values are shown in bold letter

and worst values are denoted by inverted letter.

Next, we have observed the convergence of each

algorithm for each of the functions. Followings figures

depicts how the fitness value decreases with respect to

iteration number for all strategies and functions.

From Table 3, it can be observed that proposed MPSO

gives best fitness for all function except De Jong and

Easom functions. Though the best fitness for De Jong is

quite satisfactory, but MPSO underperformed for Easom

function. MPSO has been stuck to a local minima point

(𝑓∗=0) for Easom function. LDIWPSO performs better

with respect to average fitness and worst fitness while

CIWPSO is the fastest technique on the basis of average

execution time. However, execution time of MPSO is

slightly higher than others due to incorporation of self

adaptive technique in the algorithm. Now, if we observe

the convergence graph for different algorithm, we

observed that MPSO converge faster than other methods

for all functions except Easom. RIWPSO is the worst

technique on the basis all performance parameters except

average execution time.

Table 4 summarizes the output of this study where best

and worst techniques for different parameters are

mentioned. Best technique is selected on the basis of

maximum voting for each parameter against all functions.

However, best fitness and convergences are most

important parameters for an optimization technique. It

can be observed that MPSO is better technique on the

basis of best fitness and convergence. So, MPSO is

preferable than others technique such as LDIWPSO,

CIWPSO and RIWPSO.

Table 1. Different Benchmark functions

Function name Function Range of search Global minima point

Ackley −20 exp

[

1

5
√

1

𝑑
∑𝑥𝑖

2

𝑑

𝑖=1
]

− exp [
1

𝑑
∑cos(2𝜋𝑥𝑖)

𝑑

𝑖=1

] + 20 + 𝑒 −30 ≤ 𝑥𝑖 ≤ 30 𝑓∗= 0 at (0,0,…0)

De Jong ∑𝑥𝑖
2

𝑑

𝑖=1

 −5.12 ≤ 𝑥𝑖 ≤ 5.12 𝑓∗= 0 at (0,0,…0)

Easom (−1)𝑑+1 ∏cos (𝑥𝑖)

𝑑

𝑖=1

 exp [−∑(𝑥𝑖 − 𝜋)2

𝑑

𝑖=1

] −30 ≤ 𝑥𝑖 ≤ 30 𝑓∗= -1 at (𝜋, 𝜋, … . , 𝜋)

Griewank
1

400
∑𝑥𝑖

2

𝑑

𝑖=1

− cos (
𝑥𝑖

√𝑖
) + 1 −600 ≤ 𝑥𝑖 ≤ 600 𝑓∗= 0 at (0,0,…0)

Rastrigin 100𝑑 + ∑[𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖)]

𝑑

𝑖=1

 −5.12 ≤ 𝑥𝑖 ≤ 5.12 𝑓∗= 0 at (0,0,…0)

Rosenbrock ∑[(𝑥𝑖 − 1)2 + 100(𝑥𝑖+1 − 𝑥𝑖
2)2]

𝑑−1

𝑖=1

 −5 ≤ 𝑥𝑖 ≤ 5 𝑓∗= 0 at (1,1,…,1)

Table 2. Optimization Parameters for different inertia

Techniques Inertia Weight Acceleration Constant

CIWPSO 𝜔𝑡 = 0.5 𝑐1 = 𝑐2 = 2

RIWPSO 𝜔𝑡 = 0.5 + 𝑟𝑎𝑛𝑑/2 𝑐1 = 𝑐2 = 2

LDIWPSO
𝜔𝑡 = 𝜔𝑚𝑎𝑥 − {

𝜔𝑚𝑎𝑥−𝜔𝑚𝑖𝑛

𝑡𝑚𝑎𝑥
} × 𝑡 where 𝜔𝑚𝑎𝑥 = 0.9 and 𝜔𝑚𝑖𝑛 =

0.4
𝑐1 = 𝑐2 = 2

MPSO
𝜔𝑡 = 𝜔𝑚𝑎𝑥 − {

𝜔𝑚𝑎𝑥−𝜔𝑚𝑖𝑛

𝑡𝑚𝑎𝑥
} × 𝑡 where 𝜔𝑚𝑎𝑥 = 0.9 and 𝜔𝑚𝑖𝑛 =

0.4

Self-Adaptive

[Eq. 8 and 9]

 A Modified Particle Swarm Optimization Algorithm based on Self-Adaptive Acceleration Constants 53

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 8, 49-56

Table 3. Comparative study for different PSO algorithm

Algorithm Function name Ackley De Jong Easom Griewank Rastrigin Rosenbrock

CIWPSO

Best fitness

4.44E-15 1.34E-58 -1 0.352708 0.994981 4.03E-05

RIWPSO 0.100554 0.421686 -0.99951 0.053163 11.29862 5.271942

LDIWPSO 1.64E-13 1.09E-28 -1 0.018774 1.000377 8.87E-05

MPSO 7.99E-15 1.32E-29 -4E-13 0.014455 2.13E-07 2.42E-05

CIWPSO

Average fitness

0.079133 1.26E-27 -1 2.25284 4.803865 6.403575

RIWPSO 3.631267 2.63E-05 -0.35416 0.762569 32.43858 109.912

LDIWPSO 0.000132 4.67E-13 -1 0.089828 4.826136 5.589858

MPSO 0.028382 7.84E-17 -8E-15 0.137153 8.121388 6.935556

CIWPSO

Worst fitness

1.646224 4.3E-26 -0.99996 11.59614 19.89914 96.85403

RIWPSO 13.11975 6.714779 -2E-21 4.920912 80.68314 681.5958

LDIWPSO 0.006591 2.34E-11 -1 0.366723 11.93968 28.53141

MPSO 1.155319 3.39E-15 -1.2E-87 0.50223 17.90925 82.39822

CIWPSO

Average Execution Time (Sec)

30.25599 10.38025 29.75094 29.65551 12.11045 11.20735

RIWPSO 30.56758 10.40836 30.12699 29.53889 12.38601 11.09225

LDIWPSO 30.5915 10.82977 28.99117 29.01396 12.636369 11.626796

MPSO 131.2823 71.70359 128.9571 131.992 85.586803 81.651894

Table 4. Performance Analysis of different algorithm

Performance Parameter Best Techniques Worst Technique

Best fitness MPSO RIWPSO

Average fitness LDIWPSO RIWPSO

Worst fitness LDIWPSO RIWPSO

Average Execution Time CIWPSO MPSO

Convergence MPSO RIWPSO

54 A Modified Particle Swarm Optimization Algorithm based on Self-Adaptive Acceleration Constants

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 8, 49-56

0 200 400 600 800 1000

0

5

10

15

20

F
it
n

e
s
s
 v

a
lu

e
 (

A
c
k
le

y
)

Iteration

 CIWPSO

 RIWPSO

 LDIWPSO

 MPSO

Fig.1. Convergence for Ackley function

0 200 400 600 800 1000

0

5

10

15

20

25

F
it
n

e
s
s
 v

a
lu

e
 (

D
e

 J
o

n
g

)

Iteration

 CIWPSO

 RIWPSO

 LDIWPSO

 MPSO

Fig.2. Convergence for De Jong function

0 200 400 600 800 1000

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

F
it
n

e
s
s
 v

a
lu

e
 (

E
a

s
o

m
)

Iteration

 CIWPSO

 RIWPSO

 LDIWPSO

 MPSO

Fig.3. Convergence for Easom function

0 200 400 600 800 1000

-10

0

10

20

30

40

50

60

70

80

90

100

F
it
n

e
s
s
 v

a
lu

e
 (

 G
ri

e
w

a
n

k
)

Iteartion

 CIWPSO

 RIWPSO

 LDIWPSO

 MPSO

Fig.4. Convergence for Griewank function

0 200 400 600 800 1000

0

20

40

60

80

100

120

F
it
n

e
s
s
 v

a
lu

e
 (

R
e

s
tr

ig
in

)

Iteration

 CIWPSO

 RIWPSO

 LDIWPSO

 MPSO

Fig.5. Convergence for Restrigin function

0 200 400 600 800 1000

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

F
it
n

e
s
s
 V

a
lu

e
 (

R
o

s
e

n
b

ro
c
k
)

Iteration

 CIWPSO

 RIWPSO

 LDIWPSO

 MPSO

Fig.6. Convergence for Rosenbrock function

 A Modified Particle Swarm Optimization Algorithm based on Self-Adaptive Acceleration Constants 55

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 8, 49-56

V. CONCLUSION

Several state of art techniques for inertia weight

variation of PSO are already developed to increase the

efficiency of PSO. However, in this paper, a Modified

Particle Swarm Optimization Algorithm based on self-

adaptive acceleration constants is proposed for further

improvement in the accuracy of PSO. Here, acceleration

constants depend on the global best particle solution and

current best particle solution and updated themselves

during the course of iteration. The proposed method is

tested against six different benchmark functions. The

results are also compared with other three strategies i.e.

CIWPSO, RIWPSO and LDIWPSO. It is found that

MPSO is most suitable for function optimization with

best fitness value and convergence. However, its

execution time is slightly higher than others technique. In

future, different strategies for updating acceleration

constants may be employed for further improvement of

the performance of PSO.

REFERENCES

[1] J. Kennedy and R.C. Eberhart, “Particle swarm

optimization,” in IEEE International Conference on

Neuran Networks, pp. 1942–1948, 1995.

[2] A. Nickabadi, M. M. Ebadzadeh, and R. Safabakhsh, “A

novel particle swarm optimization algorithm with

adaptive inertia weight,” Applied Soft Computing, vol.

11(4), pp. 3658-3670, 2011.

[3] M. A. Arasomwan and A. O. Adewumi, “On the

Performance of Linear Decreasing Inertia Weight Particle

Swarm Optimization for Global Optimization,” The

Scientific World Journal, vol. 2013, Article ID 860289, pp.

1-12, 2013.

[4] Y. H. Shi and R.C. Eberhart, “A modified particle swarm

optimizer,” in IEEE International Conference on

Evolutionary Computation, pp. 69–73. 1998.

[5] R. C. Eberhart and Y. H. Shi, “Tracking and optimizing

dynamic systems with particle swarms,” in: Congress on

Evolutionary Computation, 2001.

[6] R. C. Eberhart and Y. H. Shi, “Comparing inertia weights

and constriction factors in particle swarm optimization,”

in IEEE Congress on Evolutionary Computation, pp. 84–

88, 2000.

[7] Y. H. Shi and R. C. Eberhart, “Experimental study of

particle swarm optimization,” in SCI2000 Conference,

2000.

[8] J. Xin, G. Chen, and Y. Hai., “A Particle Swarm

Optimizer with Multistage Linearly-Decreasing Inertia

Weight,” in IEEE International Joint Conference on

Computational Sciences and Optimization (CSO-2009),

pp. 505–508, 2009.

[9] A. Nikabadi and M. Ebadzadeh, “Particle swarm

optimization algorithms with adaptive Inertia Weight: A

survey of the state of the art and a Novel method,” IEEE

journal of evolutionary computation, 2008.

[10] R. F. Malik, T. A. Rahman, S. Z. M. Hashim, and R. Ngah,

“New Particle Swarm Optimizer with Sigmoid Increasing

Inertia Weight,” International Journal of Computer

Science and Security, vol. 1(2), pp. 35-44, 2007.

[11] Y. Feng, G. F. Teng, A. X. Wang, and Y.M. Yao.,

“Chaotic Inertia Weight in Particle Swarm Optimization,”

in Second IEEE International Conference on Innovative

Computing, Information and Control. ICICIC-07, pp.

475-475, 2007.

[12] K. Kentzoglanakis and M. Poole., “Particle swarm

optimization with an oscillating Inertia Weight,” in 11th

Annual conference on Genetic and evolutionary

computation, pp 1749–1750, 2009.

[13] M. S. Arumugam and M. V. C. Rao, “On the performance

of the particle swarm optimization algorithm with various

Inertia Weight variants for computing optimal control of a

class of hybrid systems,” Discrete Dynamics in Nature

and Society, vol. 2006, Article ID 79295, pp. 1-17, 2006.

[14] W. Al-Hassan, M. B. Fayek, and S.I. Shaheen, “PSOSA:

An optimized particle swarm technique for solving the

urban planning problem,” in The IEEE International

Conference on Computer Engineering and Systems, pp

401–405, 2006.

[15] H. R. Li and Y.L. Gao, “Particle Swarm Optimization

Algorithm with Exponent Decreasing Inertia Weight and

Stochastic Mutation,” in The IEEE Second International

Conference on Information and Computing Science, pp.

66–69, 2009.

[16] G. Chen, X. Huang, J. Jia, and Z. Min, “Natural

exponential Inertia Weight strategy in particle swarm

optimization”, in The IEEE Sixth World Congress on

Intelligent Control and Automation (WCICA-2006), pp.

3672–3675, 2006.

[17] Y. Gao, X. An, and J. Liu., “A Particle Swarm

Optimization Algorithm with Logarithm Decreasing

Inertia Weight and Chaos Mutation”, in IEEE

International Conference on Computational Intelligence

and Security (CIS’08), pp. 61–65, 2008.

[18] A. Chatterjee and P. Siarry, “Nonlinear inertia weight

variation for dynamic adaption in particle swarm

optimization,” Computer and Operations Research, vol.

33 pp. 859–871, 2006.

[19] A. Khan, S. Mandal, R. K. Pal, and G. Saha,

“Construction of Gene Regulatory Networks Using

Recurrent Neural Networks and Swarm

Intelligence,” Scientifica, vol. 2016, Article ID 1060843,

pp. 1-14, 2016.

[20] N. C. Bansal, P. K. Singh, M. Saraswat, A. Verma, S. S.

Jadon, and A. Abraham, “Inertia Weight strategies in

Particle Swarm Optimization,” in Third World Congress

on Nature and Biologically Inspired Computing

(NaBIC’11), pp. 633-640, 2011.

[21] S. Mirjalili, S.M. Mirjalili, and A.Lewis, “Grey wolf

optimizer,” Advances in Engineering Software, vol. 69,

pp.46-61, 2014.

[22] M. Dorigo, M. Birattari, and T. Stutzle,. Ant colony

optimization. IEEE computational intelligence

magazine, 1(4), pp.28-39. 2006.

[23] D. Karaboga, B. Gorkemli, , C. Ozturk, and N. Karaboga,

“A comprehensive survey: artificial bee colony (ABC)

algorithm and applications,” Artificial Intelligence

Review, vol. 42(1), pp.21-57, 2014.

[24] X. S. Yang, “A new metaheuristic bat-inspired

algorithm,” Nature inspired cooperative strategies for

optimization (NICSO 2010), pp. 65-74, 2010.

[25] X. Yingwei, “Research on SVG DC-Side Voltage Control

Based-on PSO Algorithm,” International Journal of

Information Technology and Computer Science, vol. 8(10),

pp.29-38, 2016. DOI: 10.5815/ijitcs.2016.10.04

[26] F. S. Milani and A. H. Navin, “Multi-Objective Task

Scheduling in the Cloud Computing based on the Patrice

Swarm Optimization,” International Journal of

56 A Modified Particle Swarm Optimization Algorithm based on Self-Adaptive Acceleration Constants

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 8, 49-56

Information Technology and Computer Science, vol. 7(5),

pp.61-66, 2015. DOI: 10.5815/ijitcs.2015.05.09

[27] A. Verma and S. Kaushal, “Cost Minimized PSO based

Workflow Scheduling Plan for Cloud Computing”,

International Journal of Information Technology and

Computer Science, vol. 7(8), pp. 37-43, 2015. DOI:

10.5815/ijitcs.2015.08.06

[28] A. Babazadeh, H. Poorzahedy and S. Nikoosokhan,

“Application of particle swarm optimization to

transportation network design problem,” Journal of King

Saud University-Science, vol. 23(3), pp.293-300, 2011.

Author’s Profile

Sudip Mandal received M.Tech. degree in

Electronics and Communication

Enigneering from Kalyani Govt. of

Engineering College on 2011. Now, he

hold the position of Head of Electronics

and Communication Engineering

Department in Global Institute of

Management and Technology,

Krishnanagar, India. He is also pursuing Ph.D. degree from

University of Calcutta. His current research work includes

Computational Biology, Optimization, Soft Computing and

Tomography. He is Editorial Member for Global Journal on

Advancement in Engineering & Science (GJAES) and

Computer Applications: An International Journal (CAIJ) under

AIRCCSE. The author is also member Computational

Intelligence Society and Man, System & Cybernetics Society of

IEEE. The author published 22 International & National journal

and conference papers so far.

How to cite this paper: Sudip Mandal,"A Modified Particle Swarm Optimization Algorithm based on Self-Adaptive

Acceleration Constants", International Journal of Modern Education and Computer Science(IJMECS), Vol.9, No.8,

pp.49-56, 2017.DOI: 10.5815/ijmecs.2017.08.07

