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Abstract—Particle Swarm Optimization (PSO) is one of 

most widely used metaheuristics which is based on 

collective movement of swarm like birds or fishes. The 

inertia weight (w) of PSO is normally used for 

maintaining balance between exploration and exploitation 

capability. Many strategies for updating the inertia weight 

during iteration were already proposed by several 

researchers. In this paper, a Modified Particle Swarm 

Optimization (MPSO) algorithm based on self-adaptive 

acceleration constants along with Linear Decreasing 

Inertia Weight (LDIW) technique is proposed. Here, in 

spite of using fixed values of acceleration constants, the 

values are updated themselves during iteration depending 

on local and global best fitness value respectively. Six 

different benchmark functions and three others inertia 

weight strategies were used for validation and 

comparison with this proposed model. It was observed 

that proposed MPSO algorithm performed better than 

others three strategies for most of functions in term of 

accuracy and convergence although its execution time 

was larger than others techniques. 

 

Index Terms—Metaheuristic; Optimization; Modified 

Particle Swarm Optimization (MPSO); Inertia Weight; 

Acceleration Constant. 

 

I.  INTRODUCTION 

Metaheuristic optimization techniques have become 

very popular over the last two decades [21]. They have 

been mostly inspired by very simple concepts. The 

inspirations are typically related to physical phenomena, 

animals’ behaviors, or evolutionary concepts.  

Regardless of the differences between the meta-

heuristics, a common feature is the division of the search 

process into two phases: exploration and exploitation. 

The exploration phase refers to the process of 

investigating the promising area(s) of the search space as 

broadly as possible. An algorithm needs to have 

stochastic operators to randomly and globally search the 

search space in order to support this phase. However, 

exploitation refers to the local search capability around 

the promising regions obtained in them exploration phase. 

Finding a proper balance between these two phases is 

considered a challenging task due to the stochastic nature 

of meta-heuristics. 

There is a question here as to why metaheuristics have 

become remarkably common. The answer to this question 

can be summarized into four main reasons: simplicity, 

flexibility, derivation- free mechanism, and local optima 

avoidance. 

First, metaheuristics are fairly simple. The simplicity 

allows computer scientists to simulate different natural 

concepts, propose new meta-heuristics, hybridize two or 

more metaheuristics, or improve the current meta-

heuristics. 

Second, flexibility refers to the applicability of 

metaheuristics to different problems without any special 

changes in the structure of the algorithm assuming 

problems as black boxes. So, all a designer needs is to 

know how to represent his/her problem for meta-

heuristics. 

Third, the majority of meta-heuristics have derivation-

free mechanisms i.e. meta-heuristics optimize problems 

stochastically. The optimization process starts with 

random solution(s), and there is no need to calculate the 

derivative of search spaces to find the optimum. This 

makes meta-heuristics highly suitable for real problems 

with expensive or unknown derivative information. 

Finally, meta-heuristics have superior abilities to avoid 

local optima compared to conventional optimization 

techniques. This is due to the stochastic nature of meta-

heuristics which allow them to avoid stagnation in local 

solutions and search the entire search space extensively.  

One of the interesting branches of the population-based 

metaheuristics is Swarm Intelligence (SI). The 

inspirations of SI techniques originate mostly from 

natural colonies, flock, herds, and schools. Here, the 

search agents navigate using the simulated collective and 

social intelligence of creatures. Some of the most popular 

SI techniques are Particle Swarm Optimization (PSO) [1], 

Ant Colony Optimization (ACO) [22], Artificial Bee 

Colony (ABC) [23] and Bat Algorithm (BA) [24] etc.  

Among these, Particle Swarm Optimization (PSO) is 

one of the most efficient optimization strategies for 
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continuous nonlinear optimization problems. J. Kennedy 

et al. [1] first proposed PSO that is inspired by the 

collective social behaviors of swarm like movements of 

flocks of birds or schools of fish in search of foods. The 

main advantages of PSO are that PSO is very simple and 

efficient in nature (no need of gradient of the problem 

etc.); there are few parameters (no need of different 

complex genetic operators etc.) needed to be adjusted.  In 

addition to the huge number of theoretical works, PSO 

has been applied in various fields of study DC-Side 

Voltage Control [25], Task Scheduling [26], Workflow 

Scheduling [27] and Transportation Network design [28] 

problems etc. 

In case of PSO, a particle (i.e. bird or fish) denotes a 

potential solution for the optimization problem. A set of 

particles is known as a swarm, where particles are 

initially distributed or positioned in random manner in d-

dimensional search space of the problem. Swarm is flown 

through the search space and the position of each particle 

is updated based on the experiences (fitness value at that 

point) of all neighbors particle including itself [2]. Every 

particle is considered as intelligent and knows its own 

current fitness value, its own best value so far (locally 

best solution), the best fitness value of the whole swarm 

(globally best solution), and its own velocity [3]. 

For, d-dimensional optimization problem, the position 

of i-th particle of a swarm (consist of N particles) at t-th 

iteration is given as 𝑋𝑖,𝑑
𝑡 = (𝑥𝑖1, 𝑥𝑖2, … . , 𝑥𝑖𝑑)  and the 

velocity is represented by 𝑉𝑖,𝑑
𝑡 = (𝑣𝑖1, 𝑣𝑖2, … . , 𝑣𝑖𝑑) . 

Locally best solution by i-th particle at current iteration is 

given as 𝑃𝑏𝑒𝑠𝑡,𝑖,𝑑
𝑡 = (𝑃𝑖1, 𝑃𝑖2, … . , 𝑃𝑖𝑑)  and global best 

solution is denoted by 𝐺𝑏𝑒𝑠𝑡,𝑑
𝑡 = (𝐺1, 𝐺2, … . , 𝐺𝑑) . As 

iteration proceeds, the velocity and position of the 

particles are updated according to following rules [1]. 

 

𝑉𝑖,𝑑
𝑡+1 = 𝑉𝑖,𝑑

𝑡 + 𝐶1 ∗ 𝑟𝑎𝑛𝑑(1, 𝑑) ⊙ (𝑃𝑏𝑒𝑠𝑡,𝑖,𝑑
𝑡 − 𝑋𝑖,𝑑

𝑡 ) 

+𝐶2 ∗ 𝑟𝑎𝑛𝑑(1, 𝑑) ⊙ (𝐺𝑏𝑒𝑠𝑡,𝑑
𝑡 − 𝑋𝑖,𝑑

𝑡 )              (1) 

 

𝑋𝑖,𝑑
𝑡+1 = 𝑉𝑖,𝑑

𝑡+1 + 𝑋𝑖,𝑑
𝑡   (2) 

 

Where 𝐶1 and 𝐶2  are called as acceleration constants, 

also named as cognitive learning rate and social learning 

rate respectively.  𝑟𝑎𝑛𝑑(1, 𝑑) is generate a d-dimensional 

array of random values within [0,1]. ⊙ denotes element 

wise multiplication. 

However, one of the main reasons behind the success 

of a metaheuristic is a delicate balance between 

exploration and exploitation capability of the algorithm. 

Several authors [4-18] proposed different methods to 

achieve better accuracy and convergence. However, in 

this paper, we have proposed a Modified Particle Swarm 

Optimization (MPSO) Algorithm based on self-adaptive 

acceleration constants. The rest of this paper is organized 

as follows. Section II describes different existing PSO 

strategies. The proposed Modified PSO is described 

Section III which is followed by results and analysis 

section. Next, conclusion and references are provided.  

 

II.  RELATED WORKS 

To get a better control between the global and local 

search characteristics of PSO, Shi and Eberhart [4] 

proposed a modified PSO where the velocity of each 

particle is updated based on inertia weight (𝜔). So, the 

velocity update rule is modified according to following 

equation. 

 

𝑉𝑖,𝑑
𝑡+1 = 𝑉𝑖,𝑑

𝑡 ∗ 𝜔𝑡 + 𝐶1 ∗ 𝑟𝑎𝑛𝑑(1, 𝑑) ⊙ (𝑃𝑏𝑒𝑠𝑡,𝑖,𝑑
𝑡 − 𝑋𝑖,𝑑

𝑡 ) 

+𝐶2 ∗ 𝑟𝑎𝑛𝑑(1, 𝑑) ⊙ (𝐺𝑏𝑒𝑠𝑡,𝑑
𝑡 − 𝑋𝑖,𝑑

𝑡 )           (3) 

 

Recently, researchers give lots of attentions to the 

inertia weight parameter for improving the performance 

of original PSO. Lots of strategies were already proposed 

for updating inertia weight during the course of iteration. 

In 1998, Shi and Eberhart [4] proposed Constant 

Inertia Weight (CIW) technique where they claimed that 

large constant value of Inertia Weight is suitable for 

exploration while a small constant value of Inertia 

Weight is suitable a exploitation. So, CIW can be 

described using following equation. 

 

𝜔𝑡 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡                                   (4) 

 
Further, in case of Random Inertia Weight (RIW) [5], 

the value of inertia weight is selected in random manner 

and it is very efficient to find out the optima in a dynamic 

system. For RIW, the value of inertia weight is assigned 

using following equation 

 

𝜔𝑡 = 0.5 + 𝑟𝑎𝑛𝑑/2                               (5) 
 

Where 𝑟𝑎𝑛𝑑  is a function that generates random 

number within [0, 1]. Therefore, value of inertia weight is 

uniformly distributed over [0.5, 1] and this technique 

partially solve the problem of selection for constant of 

CIW. 

Linear Decreasing Inertia Weight (LDIW) [6-8] is very 

popular and efficient technique in improving the fine-

tuning characteristics of the PSO where the value of 

inertia weight is linearly depend on the iteration number. 

In case of LDIW, the value of 𝜔  is linearly decreased 

from an initial large value (𝜔𝑚𝑎𝑥) to a final small value 

(𝜔𝑚𝑖𝑛) according to the following equation:  

 

𝜔𝑡 = 𝜔𝑚𝑎𝑥 − {
𝜔𝑚𝑎𝑥−𝜔𝑚𝑖𝑛

𝑡𝑚𝑎𝑥
} × 𝑡              (6) 

 

Where 𝑡 is iteration index and 𝑡𝑚𝑎𝑥 denotes maximum 

number of iteration. LDIW has better efficiency over the 

others technique due to smooth transition from initial 

global search to local search during iteration process [20]. 

 There are lots of others strategies for variation of 

inertia weight like Adaptive Inertia Weight [9], Sigmoid 

Increasing Inertia Weight [10], Chaotic Inertia Weight 

[11], Oscillating Inertia Weight [12], Global-Local Best 

Inertia Weight [13], Simulated Annealing Inertia Weight 

[14], Exponent Decreasing Inertia [15], Natural Exponent 

Inertia Weight Strategy [16], Logarithm Decreasing 

Inertia Weight [17], Nonlinear Decreasing Variant of 
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Inertia Weight [18] and Bat-PSO hybridization [19] etc. 

However, in this context, our proposed technique is 

compared with only other 3 strategies which CIWPSO, 

RIWPSO and LDIWPSO for validation purpose  

 

III.  METHODOLODY 

Fine parametric tuning of evolutionary algorithms is 

very important aspect to improve accuracy and efficiency. 

Earlier approaches [6-8] were mainly focused on the 

variation of inertia weight to increase the efficiency of 

PSO. However, they normally used fixed acceleration 

constants 𝐶1  and 𝐶2  ( 𝐶1 = 𝐶2 = 2 𝑓𝑜𝑟 𝑚𝑜𝑠𝑡 𝑐𝑎𝑠𝑒𝑠) 

during the course of iteration.  

In this work, instead of using fixed acceleration 

constants, a weight based acceleration variables 𝐶1𝑤𝑃
𝑡  and 

𝐶2𝑤𝐺
𝑡 is proposed that depends on the current best particle 

solution and global best particle solution respectively. 

These variables are updated adapted themselves 

depending on difference between best and worst fitness 

value. The velocity update rule for modified PSO can be 

written as according to following equations 

 

𝑉𝑖,𝑑
𝑡+1 = 𝑉𝑖,𝑑

𝑡 ∗ 𝜔𝑡 + 𝐶1𝑤𝑃
𝑡  ∗ 𝑟𝑎𝑛𝑑(1, 𝑑) ⊙ (𝑃𝑏𝑒𝑠𝑡,𝑖,𝑑

𝑡 −

𝑋𝑖,𝑑
𝑡 ) + 𝐶1𝑤𝐺

𝑡  ∗ 𝑟𝑎𝑛𝑑(1, 𝑑) ⊙ (𝐺𝑏𝑒𝑠𝑡,𝑑
𝑡 − 𝑋𝑖,𝑑

𝑡 ) (7) 

 

Where 𝐶1𝑤𝑃
𝑡  and 𝐶2𝑤𝐺

𝑡  are defined as following way 

 

𝐶1𝑤𝑃
𝑡  =

𝑓(𝑃𝑏𝑒𝑠𝑡,𝑖,𝑑
𝑡 )− 𝑓𝑊𝑜𝑟𝑠𝑡

𝑡  

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐵𝑒𝑠𝑡
𝑡 −𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑊𝑜𝑟𝑠𝑡

𝑡   (8) 

 

𝐶2𝑤𝐺
𝑡 =

𝑓(𝐺𝑏𝑒𝑠𝑡,𝑑
𝑡 )− 𝑓𝑊𝑜𝑟𝑠𝑡

𝑡  

𝑓𝐵𝑒𝑠𝑡
𝑡 −𝑓𝑊𝑜𝑟𝑠𝑡

𝑡                          (9) 

 

Where 𝑓(𝑃𝑏𝑒𝑠𝑡,𝑖,𝑑
𝑡 ) , 𝑓(𝐺𝑏𝑒𝑠𝑡,𝑑

𝑡 )  are fitness values 

corresponding to the local best for i-th particle and global 

best solution respectively. 𝑓𝐵𝑒𝑠𝑡
𝑡  and 𝑓𝑊𝑜𝑟𝑠𝑡

𝑡  are the best 

and worst fitness for all particles in current iteration. For 

a function minimization problem, 𝑓𝐵𝑒𝑠𝑡
𝑡  and 𝑓𝑊𝑜𝑟𝑠𝑡

𝑡 are 

defined as follows 

 

𝑓𝐵𝑒𝑠𝑡
𝑡 = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑓𝑖𝑡𝑛𝑒𝑠𝑠  𝑓𝑜𝑟 𝑋1,𝑑

𝑡 , 𝑋2,𝑑
𝑡 , …… . . , 𝑋𝑁,𝑑

𝑡  

(10) 

 

𝑓𝑊𝑜𝑟𝑠𝑡
𝑡 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑜𝑟 𝑋1,𝑑

𝑡 , 𝑋2,𝑑
𝑡 , …… . . , 𝑋𝑁,𝑑

𝑡   
(11) 

 

The particles are moving to the optimal point based on 

above self adaptive mechanism. However, if all particles 

move to an optimal point during iteration, minimum and 

maximum fitness value will be same. In that case,  𝐶1𝑤𝑃
𝑡  

and 𝐶2𝑤𝐺
𝑡  will be undefined. To avoid such case during 

iteration, we introduce a condition that when  𝑓𝐵𝑒𝑠𝑡
𝑡  and 

𝑓𝑊𝑜𝑟𝑠𝑡
𝑡  are different,  𝐶1𝑤𝑃

𝑡  and 𝐶2𝑤𝐺
𝑡  are updated 

according to equation 8 and 9 else  𝐶1𝑤𝑃
𝑡 = 𝐶2𝑤𝐺

𝑡 = 2 will 

be considered.  

Moreover, 𝜔𝑡  is also updated according to LDIW 

technique i.e. equation 6.  The pseudo code of Modified 

Particle Swarm Optimization (MPSO) algorithm is given 

as  

 

Start  MPSO Algorithm 
Define 𝑁, 𝑑, 𝑡𝑚𝑎𝑥, 𝑋𝑚𝑎𝑥, 𝑋𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥 , 𝜔𝑚𝑖𝑛 and objective 
function; 
for i=1 to N  (number of particles) 
     Initialize 𝑋𝑖,𝑑 and 𝑉𝑖,𝑑; 
     𝑃𝑏𝑒𝑠𝑡,𝑖,𝑑 = 𝑋𝑖,𝑑; 
end; 

Evaluate fitness value 𝑓(𝑋𝑖,𝑑)for all N particle position 

(i=1, 2,…., N); 
Gbest,d= Min (𝑓); 
Assign value of 𝜔𝑡 according to LDIW [Equation 6]; 
While ( 𝑡 ≤ 𝑡𝑚𝑎𝑥) 
     for i=1 to N 
 𝑓𝐵𝑒𝑠𝑡

𝑡  = Min (𝑓); 
 𝑓𝑊𝑜𝑟𝑠𝑡

𝑡 = Max (𝑓); 
 Evaluate 𝑓(𝑃𝑏𝑒𝑠𝑡,𝑖,𝑑

𝑡 ), 𝑓(𝐺𝑏𝑒𝑠𝑡,𝑑
𝑡 ); 

 if  (𝑓𝐵𝑒𝑠𝑡
𝑡 ≠ 𝑓𝑊𝑜𝑟𝑠𝑡

𝑡 )  
      Calculate 𝐶1𝑤𝑃

𝑡  and 𝐶2𝑤𝐺
𝑡  using equation 8 

       and 9 respectively; 
 else 
      𝐶1𝑤𝑃

𝑡 =𝐶2𝑤𝐺
𝑡 =2;    

              end if; 
               Update the velocity 𝑉𝑖,𝑑using equation 7; 
               Update the position 𝑋𝑖,𝑑using equation 2;  
               Evaluate fitness value for 𝑓(𝑋𝑖,𝑑); 

 if 𝑓(𝑋𝑖,𝑑) <  𝑓(𝑃𝑏𝑒𝑠𝑡,𝑖,𝑑
𝑡 ) 

    𝑃𝑏𝑒𝑠𝑡,𝑖,𝑑
𝑡 =𝑋𝑖,𝑑; 

 end if; 
 if  𝑓(𝑃𝑏𝑒𝑠𝑡,𝑖,𝑑

𝑡 ) < 𝑓(𝐺𝑏𝑒𝑠𝑡,𝑑
𝑡 )  

     𝐺𝑏𝑒𝑠𝑡,𝑑
𝑡 = 𝑃𝑏𝑒𝑠𝑡,𝑖,𝑑

𝑡 ; 

              end if; 
     end for; 
     𝑋∗ = 𝐺𝑏𝑒𝑠𝑡,𝑑

𝑡 ; 

end while; 
Return 𝑋∗; 
End MPSO Algorithm 

 

IV.  EXPERRIMANTAL RESULTS 

To validate the proposed MPSO algorithm, we have 

chosen 6 different benchmark functions which are Ackley, 

De Jong, Easom, Easom, Griewank, Rastrigin and 

Rosenbrock function respectively. All of these functions 

are multimodal except De Jong function (also known as 

square function) which is unimodal in nature. The details 

of these functions, respective search ranges of variables 

and corresponding global minima points are shown in 

table 2. We have considered 10 dimensional optimization 

problem (d=10) for all functions. 

A.  Parameters Setting 

In this work, CIWPSO, RIWPSO, LDIWPSO and 

proposed MPSO were applied for above mentioned 

function minimization problems. Performance of MPSO 

is also compared with others for validation purpose. For 
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this, a swarm of 50 particles and 1000 maximum iteration 

was taken. Following table shows values of respective 

different inertia weight parameters and acceleration 

constants for different techniques. All the techniques 

were implanted using Matlab 7.6 with 2 GB RAM, Dual 

Core processor and Windows7 operating System. 

B.  Analysis of Results  

In this research work, all techniques are executed for 

all benchmark functions and result analysis is done based 

on five different criteria i.e. best fitness, average fitness, 

worst fitness, average execution time and convergence 

speed.  

As the performance of PSO is also depending on 

initialization of particles, therefore, each program for 

each function is simulated for 50 times with different 

initialization. The best and worst fitness is the minimum 

and maximum fitness value respectively among those 50 

optimal outputs corresponding to 50 times run. Average 

fitness and execution time is the mean of all cases of 

output fitness and execution time respectively.  

Table 3 shows a comparative study among different 

strategies for all six benchmark problems on the basis of 

best fitness, average fitness, worst fitness and average 

execution time where best values are shown in bold letter 

and worst values are denoted by inverted letter. 

Next, we have observed the convergence of each 

algorithm for each of the functions. Followings figures 

depicts how the fitness value decreases with respect to 

iteration number for all strategies and functions. 

From Table 3, it can be observed that proposed MPSO 

gives best fitness for all function except De Jong and 

Easom functions. Though the best fitness for De Jong is 

quite satisfactory, but MPSO underperformed for Easom 

function. MPSO has been stuck to a local minima point 

(𝑓∗=0) for Easom function. LDIWPSO performs better 

with respect to average fitness and worst fitness while 

CIWPSO is the fastest technique on the basis of average 

execution time. However, execution time of MPSO is 

slightly higher than others due to incorporation of self 

adaptive technique in the algorithm. Now, if we observe 

the convergence graph for different algorithm, we 

observed that MPSO converge faster than other methods 

for all functions except Easom. RIWPSO is the worst 

technique on the basis all performance parameters except 

average execution time.  

Table 4 summarizes the output of this study where best 

and worst techniques for different parameters are 

mentioned. Best technique is selected on the basis of 

maximum voting for each parameter against all functions. 

However, best fitness and convergences are most 

important parameters for an optimization technique. It 

can be observed that MPSO is better technique on the 

basis of best fitness and convergence. So, MPSO is 

preferable than others technique such as LDIWPSO, 

CIWPSO and RIWPSO. 

Table 1. Different Benchmark functions 

Function name Function Range of search Global minima point 

Ackley  −20 exp

[
 
 
 
1

5
√

1

𝑑
∑𝑥𝑖

2

𝑑

𝑖=1
]
 
 
 

− exp [
1

𝑑
∑cos(2𝜋𝑥𝑖)

𝑑

𝑖=1

] + 20 + 𝑒 −30 ≤ 𝑥𝑖 ≤ 30 𝑓∗= 0 at (0,0,…0) 

De Jong ∑𝑥𝑖
2

𝑑

𝑖=1

 −5.12 ≤ 𝑥𝑖 ≤ 5.12 𝑓∗= 0 at (0,0,…0) 

Easom (−1)𝑑+1 ∏cos (𝑥𝑖)

𝑑

𝑖=1

  exp [−∑(𝑥𝑖 − 𝜋)2

𝑑

𝑖=1

] −30 ≤ 𝑥𝑖 ≤ 30 𝑓∗= -1 at (𝜋, 𝜋, … . , 𝜋) 

Griewank 
1

400
∑𝑥𝑖

2

𝑑

𝑖=1

− cos (
𝑥𝑖

√𝑖
) + 1 −600 ≤ 𝑥𝑖 ≤ 600 𝑓∗= 0 at (0,0,…0) 

Rastrigin 100𝑑 + ∑[𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖)]

𝑑

𝑖=1

 −5.12 ≤ 𝑥𝑖 ≤ 5.12 𝑓∗= 0 at (0,0,…0) 

Rosenbrock ∑[(𝑥𝑖 − 1)2 + 100(𝑥𝑖+1 − 𝑥𝑖
2)2]

𝑑−1

𝑖=1

 −5 ≤ 𝑥𝑖 ≤ 5 𝑓∗= 0 at (1,1,…,1) 

Table 2. Optimization Parameters for different inertia 

Techniques Inertia Weight Acceleration Constant 

CIWPSO 𝜔𝑡 = 0.5 𝑐1 = 𝑐2 = 2 

RIWPSO 𝜔𝑡 = 0.5 + 𝑟𝑎𝑛𝑑/2 𝑐1 = 𝑐2 = 2 

LDIWPSO 
𝜔𝑡 = 𝜔𝑚𝑎𝑥 − {

𝜔𝑚𝑎𝑥−𝜔𝑚𝑖𝑛

𝑡𝑚𝑎𝑥
} × 𝑡 where 𝜔𝑚𝑎𝑥 = 0.9 and 𝜔𝑚𝑖𝑛 =

0.4 
𝑐1 = 𝑐2 = 2 

MPSO 
𝜔𝑡 = 𝜔𝑚𝑎𝑥 − {

𝜔𝑚𝑎𝑥−𝜔𝑚𝑖𝑛

𝑡𝑚𝑎𝑥
} × 𝑡 where 𝜔𝑚𝑎𝑥 = 0.9 and 𝜔𝑚𝑖𝑛 =

0.4 

Self-Adaptive  

[Eq. 8 and 9] 
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Table 3. Comparative study for different PSO algorithm  

Algorithm Function name Ackley De Jong Easom Griewank Rastrigin Rosenbrock 

CIWPSO 

Best fitness 

4.44E-15 1.34E-58 -1 0.352708 0.994981 4.03E-05 

RIWPSO 0.100554 0.421686 -0.99951 0.053163 11.29862 5.271942 

LDIWPSO  1.64E-13 1.09E-28   -1 0.018774   1.000377 8.87E-05  

MPSO 7.99E-15  1.32E-29   -4E-13 0.014455 2.13E-07  2.42E-05  

CIWPSO 

Average fitness 

0.079133 1.26E-27 -1 2.25284 4.803865 6.403575 

RIWPSO 3.631267 2.63E-05 -0.35416 0.762569 32.43858 109.912 

LDIWPSO 0.000132 4.67E-13   -1 0.089828  4.826136  5.589858 

MPSO 0.028382   7.84E-17  -8E-15 0.137153   8.121388  6.935556  

CIWPSO 

Worst fitness 

1.646224 4.3E-26 -0.99996 11.59614 19.89914 96.85403 

RIWPSO 13.11975 6.714779 -2E-21 4.920912 80.68314 681.5958 

LDIWPSO  0.006591  2.34E-11   -1  0.366723 11.93968  28.53141  

MPSO 1.155319  3.39E-15   -1.2E-87 0.50223   17.90925 82.39822  

CIWPSO 

Average Execution Time (Sec) 

30.25599 10.38025 29.75094 29.65551 12.11045 11.20735 

RIWPSO 30.56758 10.40836 30.12699 29.53889 12.38601 11.09225 

LDIWPSO 30.5915 10.82977 28.99117 29.01396 12.636369 11.626796 

MPSO 131.2823 71.70359 128.9571 131.992 85.586803 81.651894 

Table 4. Performance Analysis of different algorithm 

Performance Parameter Best Techniques Worst Technique 

Best fitness MPSO RIWPSO 

Average fitness LDIWPSO RIWPSO 

Worst fitness LDIWPSO RIWPSO 

Average Execution Time CIWPSO MPSO 

Convergence MPSO RIWPSO 
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Fig.1. Convergence for Ackley function 
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Fig.2. Convergence for De Jong function 
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Fig.3. Convergence for Easom function 
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Fig.4. Convergence for Griewank function 
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Fig.5. Convergence for Restrigin function 
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Fig.6. Convergence for Rosenbrock function 
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V.  CONCLUSION 

Several state of art techniques for inertia weight 

variation of PSO are already developed to increase the 

efficiency of PSO. However, in this paper, a Modified 

Particle Swarm Optimization Algorithm based on self-

adaptive acceleration constants is proposed for further 

improvement in the accuracy of PSO. Here, acceleration 

constants depend on the global best particle solution and 

current best particle solution and updated themselves 

during the course of iteration. The proposed method is 

tested against six different benchmark functions. The 

results are also compared with other three strategies i.e. 

CIWPSO, RIWPSO and LDIWPSO. It is found that 

MPSO is most suitable for function optimization with 

best fitness value and convergence. However, its 

execution time is slightly higher than others technique. In 

future, different strategies for updating acceleration 

constants may be employed for further improvement of 

the performance of PSO.   
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