
I.J. Modern Education and Computer Science, 2017, 9, 53-59

Published Online September 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2017.09.06

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 9, 53-59

Simplified FDD Process Model

Zahid Nawaz, Shabib Aftab, Faiza Anwer

Department of Computer Science, Virtual University of Pakistan

Email: forzahid1@gmail.com, shabib.aftab@gmail.com, faiza.anwer28@gmail.com

Received: 09 June 2017; Accepted: 25 July 2017; Published: 08 September 2017

Abstract—Feature driven development (FDD) is a

process oriented and client centric agile software

development model which develops a software according

to client valued features. Like other agile models it also

has adaptive and incremental nature to implement

required functionality in short iterations. FDD mainly

focus on designing and building aspects of software

development with more emphasis on quality. However

less responsiveness to changing requirements, reliance on

experienced staff and less appropriateness for small scale

projects are the main problems. To overcome these

problems a Simplified Feature Driven Development

(SFDD) model is proposed in this paper. In SFDD we

have modified the phases of classical FDD for small to

medium scale projects that can handle changing

requirements with small teams in efficient and effective

manner.

Index Terms—Software Process Model, Agile Modeling,

Customized Feature Driven Development Model,

Tailored FDD, Modified FDD

I. INTRODUCTION

Agile software development is one of the most popular

research areas now days. The agile models have become

the need of the software developers due to their ability to

incorporate change, rapid development and emphasis on

quality [1]. These models have shifted the focus from

“process” to “people” and gave importance to those

aspects of software development that were neglected by

traditional development models [4]. Extreme

Programming (XP), Scrum, Test Driven Development

(TDD), Dynamic System Development Method (DSDM),

Feature Driven Development (FDD) and Crystal family

are some of the well-known agile models [6] [29] [30].

These models provide the feature of agility in software

development life cycle [5]. Alistair Cockburn, one of the

initiators of the agile movement has defined agile

software development as “agile implies being effective

and maneuverable" [5]. The agile manifesto has defined

twelve principles. These principles are highly focused

around the involvement and satisfaction of the customer,

incremental delivery of software and stakeholder’s

collaboration during development [7] [8] [29] [30]. These

principles make agile process models more adaptive and

efficient which obviously help to handle changing

requirements effectively during software development [8]

[9]. FDD is a process oriented agile development model

that mainly focuses on design and building phases of

software development [1] [2] [3]. The development

process is completed in five sub processes that have

clearly defined entry and exit criteria [2]. The five sub

processes/phases are: Develop an Overall Model, Build a

Features List, Plan by Feature, Design by Feature and

Build by Feature. Every phase/process has different tasks

[1] [3] [11]. These phases are based on well-known

pattern called ETVX. FDD develops the software

according to client valued functionality by using the

iterative and incremental approach [10]. It uses eight best

practices including domain object modeling, development

by feature, individual class ownership, feature teams,

inspection, configuration management, regular builds and

progress reporting [1] [2].

First phase of FDD starts by developing overall model

of the system after discussing the scope and context of

the project in a walkthrough meeting [1] [2]. The

modeling authority selects one best model for initiating

further process [1]. Then different domain experts

develop object models. In the second phase, feature team

define a comprehensive list of features to be developed

and grouped in feature sets [2] [3]. In plan by feature

phase, priorities are assigned to every feature [1].

Features with higher priority are considered in early

iterations. Every feature is checked against its business

need after assigning a priority. It helps to check whether

these features are according to the project’s requirements.

The development team identify feature dependency and

measure the complexity of every feature. Feature

ownership is assigned to every developer in the form of

classes. In design by feature phase the development team

design the sequence diagrams, write classes and refine

overall model [1]. Moreover different design packages

are produced for each class [1] [3].

These design packages are actually implemented and

developed in build by feature phase. The activities of this

phase include coding, code inspection, unit testing and

integration testing [1] [2]. These activities are performed

iteratively. FDD define six key roles, five supporting and

three additional roles [1] [2]. Key roles include project

manager, chief architect, development manager, chief

programmer, class owner and domain experts. Supporting

roles comprises of release manager, language guru, build

engineer, tool smith and system administrator Whereas

three additional roles of FDD are testers, deployers and

technical writers.

mailto:forzahid1@gmail.com

54 Simplified FDD Process Model

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 9, 53-59

No doubt, FDD strive for quality throughout the

development process however there are some problems

which are needed to be resolved to make FDD more

flexible and applicable for small to medium scale projects.

Remaining part of this paper has related work in

section II. Section III defines the problem and in section

IV we propose SFDD process model as a solution.

Section V finally concludes this paper.

II. RELATED WORK

In the last decade, many researchers have discussed the

FDD with different aspects. Here we listed some studies

that customized FDD to reduce the identified problems or

integrated with other software process models to combine

the strengths and eliminate the weaknesses of both

models.

Doshi and Patil [13] presented Competitor Driven

Development (CDD). It is a hybrid process model that

integrated the practices from Extreme Programming and

Feature Driven Requirement Reuse Development

(FDRD). FDRD is an enhanced version of FDD presented

in [16]. Authors claimed that CDD is a self-realizing

requirement generation model. This model keeps track of

market trends as well as competitor’s next product launch

to extract requirements. It considers the market

orientation of product to guess the product’s success rate.

However this model failed to provide any guidance about

managing the changing requirements.

In [14] authors proposed a hybrid model SCR-FDD

that integrated Scrum and FDD. This model taken

schedule related aspects from Scrum and quality related

aspects from FDD to cover the limitations of both agile

models. This model resolved the problems regarding

schedule, quality and deployment which were considered

as the big hindrance during the development and release

of software product. However the authors in this research

did not provide clear and complete steps of

implementation of SCR-FDD. Without detailed

instructions for implementation it is hard to give feedback

regarding success factors of this model.

Mahdavi, Hezave and Ramsin in [15] presented

Feature-Driven Methodology Development (FDMD), an

extension of Feature Driven Development. FDMD

incorporated the features of object oriented approach with

Situational Method Engineering (SME). In this model

requirements are represented as features. These features

are based on object oriented principles which are defined

using action, result and object. This model tried to

eliminate the issues of maintainability and reusability but

remained silent about other issues of FDD.

Firdaus et al. [16] proposed an enhanced version of

FDD called Secure Feature Driven Development (SFDD)

for the purpose of secure software development. This

model tried to cover security related issues of FDD by

making some changes in classical FDD process model.

Along with adding “In-phase Security “ element in each

phase, this model also incorporated two additional phases

called “ Build security by feature” and “ Test security by

feature”. To ensure secure software development,

proposed model also introduced a new role called

security master. SFDD resolved security related problems

but remained silent on other issues such as requirement

gathering and non-suitability for small projects.

Thakur and Singh [17] proposed an enhanced version

of FDD by introducing reusability in it. Feature Driven

Reuse Development (FDRD) model considers re-useable

feature sets along with new requirements. Although

authors claimed that FDRD enhanced productivity and

quality of product but it also required experienced staff to

decide about re-useable components.

In [18] authors proposed an ontology based feature

driven development model for semantic web application.

This model used domain ontology concepts that are

widely known in domain knowledge modeling. Each

phase of this model has ontology as a basic building

block. Ontology languages like RDF and OWL helped to

overcome language ambiguity and inconsistency. This

ontology based model can be evaluated using automated

tools. However by adding domain ontology concepts in

each phase the agility nature of FDD will be

compromised.

In [19] authors conducted a case study to check the

suitability of FDD for secure web site development.

Authors found that by integrating more iterations,

security practices and other helping tools can make the

FDD suitable for secure software development. However

there are no clear recommendations in the research for

customizing FDD for secure software development.

Kumar et al. [20] proposed a framework to handle

changing requirements efficiently. The proposed model is

based on Adaptive Software Development and Cognizant

Feature Driven Development (CFDD) that is a

customized version of FDD. CFDD is not a complete

development process. It is the collection of best practices

which are mostly used during designing and development

phases of process models. The proposed model is simple

and easy to implement however it remained silent on

other issues of FDD.

Kanwal et al. [21] have proposed a hybrid software

architecture evaluation method (SAEM) by integrating

Quality Attribute Workshop (QAW), Architecture Trade-

off Analysis Method (ATAM) and Active Review for

Intermediate Designs (ARID) with FDD. This model only

deals with architecture evaluation issues and remained

silent on other issues of FDD.

Rychlý and Tichá [22] presented a supporting tool for

the implementation of FDD for software development.

This tool allows the implementation in the form of sub

processes in a multi-user web based environment. This

tool has ability to track changes in requirements and map

these modifications in design classes. This research also

remained silent about other issues such as requirement of

experience staff and non-suitability for small projects.

In [23] authors presented a customized model of FDD

for aspect oriented development. Authors showed that

FDD required a small refinement for aspect oriented

software development. This model introduced separation

of concerns that help in handling complexity and

maintenance problems. Refinement in FDD could be

 Simplified FDD Process Model 55

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 9, 53-59

helpful in detecting inconsistencies among features and

helped in smooth transition from one phase to other. This

model does not provide complete solution and only tried

to enhance designing phase of FDD.

Table 1. Summary of the Related Work

Title Summary

Competitor Driven Development

Hybrid Of Extreme Programming and

Feature Driven Reuse Development [13]

Presented Competitor Driven Development (CDD), an Integration of XP and FDRD. CDD is a

self-realizing requirement generation model that develop software product for mass targeted

customers. Failed to properly address the issue of changing requirements.

A Hybrid Agile model using SCRUM and

Feature Driven Development [14]

Proposed a SCR-FDD by integrating Scrum and FDD. SCR- FDD takes schedule related

practices from Scrum and quality related practices from FDD. Failed to provide the clear

strategy for implementation.

FDMD: Feature-Driven Methodology

Development [15]

Presented Feature Driven Methodology Development (FDMD) an extension of FDD. FDMD

used the concept of object oriented approach. The solution only focused on maintainability and

reusability however did not address the remaining issues of FDD.

Secure Feature Driven Development

(SFDD) Model for

Secure Software Development [16]

Proposed an enhanced FDD for Secure Software Development. SFDD customized the FDD by

adding two phases and a new role of security master. The proposed model only focused on

security related issues and remained silent on other issued of FDD.

FDRD: Feature Driven Reuse

Development Process

Model [17]

Presented a customised FDD model called Feature Driven Reuse Development (FDRD). FDRD

introduced the concept of reusability in FDD to enhance quality and productivity. Other issues

of FDD are not addressed.

Ontology Based Feature Driven

Development Life Cycle [18]

Proposed Ontology Based Feature Driven Development Model that used domain ontology as a

basic building block in each phase of FDD. Ontology language OWL is used during

requirement gathering and designing activities. With the proposed ontology feature the agility

will be compromised.

Developing secure websites using feature

driven development (FDD): a case study

[19]

A case study was conducted to check the suitability of FDD for secure software web site

development. No proper and clear guidance is provided to customize the FDD for secure

development.

Change-Oriented Adaptive Software

Engineering by Using Agile Methodology:

CFDD [20]

Presented a customised FDD Model that integrates Adaptive Software Development with

Cognizant Feature Driven Development to handle changing requirements efficiently. Other

issues of FDD are not addressed.

A Hybrid Software Architecture

Evaluation Method for FDD – An Agile

Process

Model [21]

Presented Single Software Architecture Evaluation Method (SAEM) for architecture evaluation

of FDD. This model incorporate evaluation practices in two phases of FDD. . This model only

deals with architecture evaluation issues and remained silent on other issues of FDD.

A Tool for Supporting Feature-Driven

Development [22]

Presented a supporting tool for the implementation of FDD which will help to implement FDD

in multi-user distributed environment. This study also remained silent about the other issues of

FDD such as requirement of experienced staff and non-suitability for small projects.

Refining Feature Driven Development-A

methodology for early aspects [23]

Proposed a refined model that incorporated Aspect Oriented Software Development in FDD.

This helped in handling complexity and improved the maintainability. Refinement in FDD

could be helpful in detecting inconsistencies among features and helped in smooth transition

from one phase to other however it does not provide complete solution and only tried to

enhance designing phase of FDD.

Comparison between adaptive software

development and feature driven

development [27]

FDD was compared with ASD on the basis of two knowledge areas software requirements and

software constructions. Issues such as software quality and dealing with the small projects were

not properly addressed.

Integrating security into agile development

methods [32]

Security relevant features are introduced in FDD. Four step security strategy is followed and

claimed by the authors that this can enable FDD for the development of security critical

projects. The research lacks the proper empirical proof.

Comparing eXtreme Programming and

Feature Driven Development in academic

and regulated environments [33]

FDD was compared with XP on the basis of project management perspective. Many similar and

contrasting features are identified and highlighted that both the models are suitable for different

types of project. The study failed to provide the empirical evaluation.

In [27] the authors have compared the Feature Driven

Development with Adaptive Software Development. The

comparison mainly focused on two knowledge areas;

software requirements and software construction. The

basic purpose of the comparison is to evaluate the degree

of agility of these two agile models. This comparison

showed that there is no specific practices used for

requirement elicitation and software construction in ASD

however in FDD there are some predefined practices

available for that purpose. Issues such as software quality

and dealing with the small projects were not properly

addressed.

In [32] the authors introduced security relevant features

in Feature Driven Development. FDD was selected

because of its concrete modeling techniques, used for

software development. The authors have followed the

four step security strategy in FDD. According to the

authors, integrating security steps can enable FDD to be

used for the development of security critical software

however there is no empirical proof given to support the

claim.

In [33] the authors compared Feature Driven

Development with Extreme Programming. The

comparison was based on different aspects however the

special focus was on project management perspective.

Results showed that both models have some similar and

contrasting practices for software development which

make them suitable for different project types. Although

this paper presented a detailed comparison but failed to

provide the empirical proof.

56 Simplified FDD Process Model

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 9, 53-59

III. PROBLEM DEFINITION

Feature driven development is a process centric agile

model that is used for adaptive software projects where

requirements are based on client valued functions [4].

Five processes/phases of FDD provide a step by step

procedure to produce quality working results [5]. It also

adds more power by using best practices of software

industry like inspection, class ownership, regular builds

and progress tracking etc. [24]. FDD provide a better

development approach as compared to other agile models.

Other agile models (Like XP, Scrum, ASD) ignore the

quality and design related aspects of software

development for the sake of simplicity and agility [25]

[26]. There are some limitations of FDD that restricts its

benefits to some specific circumstances.

FDD process model does not provide guidance about

whole development process rather it mainly focuses on

design and building phases of software development [1]

[2] [4] [20]. FDD needs supporting activities to complete

development process successfully [24] [25]. For example

in FDD only a walkthrough meeting is conducted for

requirement elicitation [24]. Project tracking,

maintainability, and extensibility are affected negatively

if requirement elicitation activity is not performed

accurately and precisely [27].

FDD lacks the ability to response rapidly changing

requirements [12] that’s why it performs well in large

scale projects with stable and predefined requirements. It

performs well in a situation where requirements have

fewer tendencies to change [3] [12]. FDD greatly relies

on staff’s experience and capabilities for successful

execution of the development process [2] [11]. Especially

feature sets identification is a critical task performed by

chief architect and chief programmer [12] [28]. If they do

not have enough experience to extract required features, it

puts a question mark on FDD's effectiveness.

FDD uses six key roles, five supporting roles and three

additional roles [1] [2]. Although one team member can

take responsibility of more than one role however these

so many roles can fit in large teams. For small and

medium scale projects, this practice will create problems.

Many researchers tried to resolve the problems by

improving or customizing FDD process model [15] [16]

[17] [18] [23]. Some researchers integrated FDD with

other software development models to add the strengths

of both models in one [13] [14]. However these proposed

solutions did not perform effectively. All of the above

discussion forces us to find the answer of following

questions.

1) How to introduce an effective requirement

elicitation technique in FDD which can handle

rapid changing requirements?

2) How to customize the phases and roles of FDD to

make it work effectively for small to medium scale

projects?

IV. PROPOSED MODEL

In this research, Simplified Featured Driven

Development Model (SFDD) is proposed to overcome the

limitations of classical FDD. SFDD is designed for small

to medium scale projects where requirements are more

likely to change. Proposed model not only focuses on

design and building phases but also concentrates on new

requirement elicitation technique of story cards [29] [31].

This model is also intends to improve the software quality

by introducing a testing phase within the iteration. SFDD

also removed the constraint of trained staff which was

one of the key limitations of classical FDD. All these

features make us believe that this model can provide us a

quality product, if all the activities in each phase are

followed accurately and according to proposal. Below we

are going to discuss the phases of SFDD in detail.

A. Develop an overall model

This is the first phase of SFDD in which project scope

and requirements are identified. Chief Programmer and

Domain Expert are the two active participant of this

phase. They will decide the project scope initially. Chief

Programmer is the focal person from the development

team and the Domain Expert will represent the

requirements detail from client side. This role can be

represented by the client himself or can be represented by

any person on behalf of client’s company. Story cards are

introduced as requirement gathering technique [29] [31].

Domain expert writes story card for each required feature

in the system. These story cards effectively explain the

required functionality without involving any technical

detail. In each story card priority is given by the Domain

expert for those features/requirements which should be

completed in early release. After the completion of

requirement gathering task, the chief programmer (with

other team members) develops the use case diagrams as

per requirements in story cards. Use case diagrams

provide simple graphical view of requirements. After this

task class diagram is developed by keeping in view the

use case diagram. At the end of this phase four

documents are generated: 1) Project Scope, 2) Functional

& Non-Functional Requirements, 3) Use-case Diagrams

and 4) class diagram.

B. Build feature list

This phase provides a foundation for upcoming phases.

In this phase Chief Programmer extracts the features for

the system.

 Simplified FDD Process Model 57

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 9, 53-59

Fig.1. SFDD Process Model

He identifies the features for each domain of the

system to be developed by using the documents produced

in previous phase. Features belong to a specific domain

are called a feature sets. Many interrelated requirements

can be considered as a single feature set. List of features

is documented and approved by the Domain Expert. At

the end of this phase one document is generated named

Feature List which includes the requirements associated

to each feature.

C. Plan by feature

This phase consists of project planning activities and

starts with the meeting between Domain Expert and

Chief Programmer regarding budget and time frame.

When they both agreed then Chief Programmer develops

a Project Plan which is followed by the development

team throughout the process. Keeping in view the total

budget and time frame, Chief Programmer decides about

the number of iterations which are needed to complete

the project smoothly. Features are also documented

which will be developed and included in iterations as per

their priority. Resources such as hardware’s and

software’s are also identified which are needed for the

project. Chief programmer estimates the time and effort

(resource persons) required to complete the each iteration.

After taking these decisions chief programmer assign

classes to class owners. At the end of this phase one

document is generated named Project Plan which

includes detail regarding iterations, resources and class

owners.

D. Design by feature

This phase starts with the process of refining the class

diagrams which were developed in the first phase of the

model. After this process an object model is developed of

the system by Chief Programmer and Class owners. Then

Class owners write pseudo code for the assigned

classes/modules. Complete design of the software is

documented and inspected by the QA a manager. There

is no doubt that a flexible and complete design is very

important for a successful system that is why a role of

QA manager is introduced in this phase which will

thoroughly inspect all design related activities before

taking it to the iteration phases of the model.

E. Build by feature

The iteration starts from this phase. The purpose of the

iteration is to develop and deliver the project in small

workable modules. After the release of first module

every upcoming module is integrated with the previously

released module(s) and this process goes-on until the

project/software is completed. Iteration of this model

consists of two phases Build by feature phase (this one)

and the Test by feature phase (next one). In this

particular phase, features are actually implemented by

class owners. They write code for the classes. A formal

code inspection session is conducted in the supervision of

QA manager to assure that code is written according to

the pseudo code and is working properly. This feature

ensures the quality of the work in this phase. At the end

of this phase small workable module will be ready to go

in the next phase of the iteration. A document named

Inspected Module is generated which will consist of the

detail regarding developed module.

58 Simplified FDD Process Model

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 9, 53-59

F. Test by feature

This is the second phase of iteration and the last phase

of proposed SFDD. It deals with the testing activities to

make sure that the software is bug free and according to

the required features. This phase starts with the unit

testing in which QA manager assured that the developed

module is working properly as per required features. In

case of successful unit testing the module is integrated

with the previously developed and released module (s) by

Chief Programmer. After integration, the integration

testing is performed to check whether integrated module

is working properly or not. After that, when both types of

testing's are performed successfully then Domain expert

final performs the acceptance testing to check whether

the developed software is according to the requirements

or not. At the end of this phase two documents are

developed Testing Document and User's Manual. Testing

Document contains the details regarding bugs (if any)

noted during testing.

V. CONCLUSION

Feature Driven Development (FDD) is an agile

software development process model. It provides a

process oriented and iterative method with more focus on

software quality. It is suitable for large scale projects

with more focus on design and building activities of

software development. There are a number of studies

exist that tried to modify or improve classical FDD.

Some of these tried to modify its development process by

introducing new phases or new roles and other tried to

integrate FDD with other models to add up the benefits

of both models. However all of these studies failed to

provide a comprehensive solution and remained silent for

one or more of the following problems. FDD did not

have an efficient requirement gathering technique which

can handle changing requirements as well as it used to

rely on experienced staff for successful projects. It is not

a good choice for small scale projects due to its complex

nature and large number of roles involved. This paper

presents a customized form of FDD called Simplified

Feature Driven Development (SFDD) Model. It provides

the step by step solution of the identified problems

without affecting its flexibility and agility.

REFERENCES

[1] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta,

“Agile software development methods: Review and

analysis.” 2002.

[2] S. R. Palmer and M. Felsing, “A practical guide to

feature-driven development,” Pearson Education, 2001.

[3] S. Goyal, “Major seminar on feature driven

development,” Jennifer Schiller Chair of Applied

Software Engineering. 2008.

[4] F. Anwer, S. Aftab, U. Waheed and S. S. Muhammad,

“Agile Software Development Models TDD, FDD,

DSDM, and Crystal Methods: A Survey,” International

Journal of Multidisciplinary Sciences and Engineering,

vol. 8, no. 2, MARCH 2017.

[5] K. Pathak and A. Saha, “Review of agile software

development methodologies,” International Journal, vol. 3,

no. 2, 2013.

[6] M. Hayat and M. Qureshi, “Measuring the Effect of

CMMI Quality Standard on Agile Scrum Model,” arXiv

preprint arXiv: 1610.03180, 2016.

[7] M. R. J. Qureshi and J. S. Ikram, “Proposal of Enhanced

Extreme Programming Model,” International Journal of

Information Engineering and Electronic Business, vol. 7,

no. 1, pp. 37, 2015.

[8] M. Fowler and J. Highsmith, “The agile manifesto,”

Software

Development, vol. 9, no. 8, pp. 28-35, 2001.

[9] D. Cohen, M. Lindvall, and P. Costa, “An introduction to

agile methods,” ADVANCES IN COMPUTERS, vol. 62,

62, pp.1- 66, 2004.

[10] P. Coad, E. Lefebvre, and J. De Luca Java, “Modeling

In Color With UML,” Enterprise Components and

Process. Prentice Hall International, (ISBN 013011510X),

1999.

[11] B. Boehm, “A survey of agile development

methodologies,” Laurie Williams, 2007.

[12] S. Khramtchenko, “Comparing eXtreme Programming

and Feature Driven Development in academic and

regulated environments,” Feature Driven Development,

2004.

[13] V. P. Doshi and V. Patil, “Competitor driven

development: Hybrid of extreme programming and

feature driven reuse development,” in Emerging Trends in

Engineering, Technology and Science, International

Conference, pp. 1-6, IEEE. February, 2016.

[14] S. S. Tirumala, S. Ali and A. Babu, “A Hybrid Agile

model using SCRUM and Feature Driven Development,”

International Journal of Computer Applications, vol. 156,

no. 5, pp. 1-5, December 2016.

[15] R. Mahdavi-Hezave and R. Ramsin, “Fdmd: Feature-

driven methodology development,” in Evaluation of

Novel Approaches to Software Engineering (ENASE),

International Conference, pp. 229-237 IEEE. 2015

[16] Firdaus, A., Ghani, I. and Jeong, S.R., 2014. Secure

Feature Driven Development (SFDD) Model for Secure

Software Development. Procedia-Social and Behavioral

Sciences, 129, pp.546-553.

[17] S. Thakur and H. Singh “FDRD: Feature driven reuse

development process model,” in Advanced

Communication Control and Computing Technologies,

International Conference, pp. 1593-1598, IEEE.

[18] F. Siddiqui and M. A. Alam, “Ontology Based Feature

Driven Development Life Cycle,” arXiv preprint

arXiv:1307.4174, 2013.

[19] A. Firdaus, I. Ghani and N. I. M. Yasin, “Developing

secure websites using feature driven development (FDD):

a case study,” Journal of Clean Energy Technologies, vol.

1, no. 4, pp.322-326.

[20] K. Kumar, P. K. Gupta and D. Upadhyay, “Change-

oriented adaptive software engineering by using agile

methodology:CFDD,” in Electronics Computer

Technology, 3rd International Conference vol. 5, pp. 11-

14). IEEE, April 2011.

[21] F. Kanwal, K. Junaid and M. A. Fahiem, “A hybrid

software architecture evaluation method for fdd-an agile

process model,” in Computational Intelligence and

Software Engineering International Conference pp. 1-5

IEEE. December, 2010.

[22] M. Rychlý and P. Tichá , “A tool for supporting feature-

driven development,” in Balancing Agility and Formalism

 Simplified FDD Process Model 59

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 9, 53-59

in Software Engineering, Springer Berlin Heidelberg, pp.

196-207, 2008.

[23] J. Pang and L. Blair, “Refining Feature Driven

Development-A methodology for early aspects. Early

Aspects:,” Aspect-Oriented Requirements Engineering

and Architecture Design, p.86. 2004.

[24] M. Umbreen, J. Abbas and S. M. Shaheed, “A

Comparative Approach for SCRUM and FDD in Agile,”

International Journal of Computer Science and Innovation,

vol. 2, pp.79-87, 2015.

[25] E. Mnkandla and B. Dwolatzky, “Agile Software

Methods: State-of-the-Art.” Agile Software Development

Quality Assurance, 1, 2007.

[26] Dalalah, A., 2014. Extreme Programming: Strengths and

Weaknesses. Computer Technology and Application, 5(1).

[27] A. F. Chowdhury and M. N. Huda, “Comparison between

adaptive software development and feature driven

development,” in Computer Science and Network

Technology, International Conference, vol. 1, pp. 363-367,

IEEE, December, 2011.

[28] U. Ismail, S. Qadri and M. Fahad, “Requirement

Elicitation for Open Source Software By using SCRUM

and Feature Driven Development,” International Journal

of Natural & Engineering Sciences, vol. 9, no. 1, 2015.

[29] F. Anwer, S. Aftab, "SXP: Simplified Extreme

Programing Process Model," International Journal of

Modern Education and Computer Science (IJMECS),

Vol.9, No.6, pp.25-31, 2017.

[30] S. Ashraf, S. Aftab, "Latest Transformations in Scrum: A

State of the Art Review," International Journal of Modern

Education and Computer Science (IJMECS), Vol.9, No.7,

pp.12-22, 2017.

[31] F. Anwer, S. Aftab, SSM. Shah, U. Waheed,

"Comparative Analysis of Two Popular Agile Process

Models: Extreme Programming and Scrum,"

International Journal of Computer Science and

Telecommunication, Vol 8, No 2, pp. 1-7, 2017

[32] M. Siponen, R. Baskerville, T. Kuivalainen, "Integrating

security into agile development methods." System

Sciences, 2005. HICSS'05. Proceedings of the 38th

Annual Hawaii International Conference on. IEEE, 2005.

[33] S. Khramtchenko, "Comparing eXtreme Programming

and Feature Driven Development in academic and

regulated environments." Feature Driven

Development (2004). Final paper for CSCIE-275:

Software Architecture and Engineering, Harvard

University May 17, 2004

Authors’ Profiles

Shabib Aftab is working as a Lecturer

in Computer Science Department at

Virtual University of Pakistan. He got

his MS degree in Computer Science

from ‘COMSATS Institute of

Information Technology’, Lahore.

Previously he has completed M.Sc

Information Technology from ‘Punjab

University College of Information

Technology’ (PUCIT), Lahore. His areas of research are Data

Mining and Software Process Improvement.

Zahid Nawaz is student of MS

Computer Science with the

specialization of Software Engineering

in Virtual University of Pakistan. His

areas of interest are Software Process

Improvement and Agile Development

Models.

Faiza Anwer is student of MS

Computer Science with the

specialization of Software Engineering

in Virtual University of Pakistan. Her

areas of interest are Software Process

Improvement and Agile Development

Models.

How to cite this paper: Zahid Nawaz, Shabib Aftab, Faiza Anwer," Simplified FDD Process Model", International

Journal of Modern Education and Computer Science(IJMECS), Vol.9, No.9, pp. 53-59, 2017.DOI:

10.5815/ijmecs.2017.09.06

https://scholar.google.com.pk/citations?view_op=view_citation&hl=en&user=evg6OCwAAAAJ&citation_for_view=evg6OCwAAAAJ:IjCSPb-OGe4C
https://scholar.google.com.pk/citations?view_op=view_citation&hl=en&user=evg6OCwAAAAJ&citation_for_view=evg6OCwAAAAJ:IjCSPb-OGe4C

