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Abstract 

The subset sum problem is to decide whether for a given set of integers A and an integer S, a possible subset of 

A exists such that the sum of its elements is equal to S. The problem of determining whether such a subset 

exists is NP-complete; which is the basis for cryptosystems of knapsack type. In this paper a fast heuristic 

algorithm is proposed for solving subset sum problems in pseudo-polynomial time. Extensive computational 

evidence suggests that the algorithm almost always finds a solution to the problem when one exists. The 

runtime performance of the algorithm is also analyzed. 
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1. Introduction 

The subset sum problem is a NP-complete problem [1] and is defined as follows: Given a set 

}1:{ niaA i  of integers (usually called weights) and an integer S (called the sum), determine whether 

or not there exists a subset B of A, such that: 
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                                                                                                  (1.1) 

Besides the decision problem, an exact solution to the problem would be to additionally determine B (given 

A and S), provided such a B exists. This latter problem can be alternatively defined in the form of a 0-1 

knapsack or 0-1 integer programming problem: determine a vector x of size n, such that: 
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Several public-key cryptosystems are based on this problem, the most basic such system being the Merkle-

Hellman cryptosystem [2], which was broken by Shamir in 1983 [3]. Such systems use a public-key, which is 

the given set of weights A, and the binary representation of the plaintext is the vector x in Eq. 1.2. The 

calculated sum S is then transmitted to the receiver as the cipher-text. 

Decrypting the cipher-text S is then an instance of the subset-sum problem, which is known to be NP-hard 

and hence difficult to solve. However, the weights are chosen in such a way so that the problem is easily solved 

by the received given knowledge of some trapdoor information. 

The density D of the set of weights },...,,{ 21 naaaA  , is then defined as: 
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For the purposes of this paper, the bounds on the weights is defined to be the range R of the set, i.e. 
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1 . A novel algorithm, called the CP Algorithm (Card-Players’ 

Algorithm), is now proposed for solving the subset-sum problem. 

In Section 2, we look at some relevant work that has been done in this field, and in Section 3, we present the 

proposed algorithm using the analogy of a card-game. In Section 4, we present our results and discuss its 

performance, and conclude with remarks about the current state of this field in Section 5. 

2. Related Work 

The hardness of solving the subset-sum problem varies directly with the density of the set of weights. There 

can be two cases: 

 

a) D≤1: These low-density subset-sum problems are efficiently solved by reduction to a short vector in a 

lattice, as presented by Brickell [4]; Lagarias and Odlyzko [5]; Martello and Toth [6]; Coster et al. [7]. 

b) D>1: These medium and high-density subset-sum problems are solvable by dynamic programming 

techniques or using analytical number theory, such as those presented in Chaimovich et al. [8]; Galil 

and Margalit [9]; Flaxman and Przydatek [10]; with some of these failing to find a solution if certain 

bounds for n or R are not respected. 

 

In this paper, a novel, heuristic but non-deterministic, algorithm is proposed for the latter case of high-

density problems. 

3. The Proposed Algorithm 

3.1.  Overview 

The proposed algorithm is a non-deterministic iterative algorithm, and is hereafter called the Card-Players’ 

Algorithm (CP Algorithm), after the manner in which the solution is obtained. The algorithm is best explained 

using an analogy of two card players: Alice and Bob, playing a game of cards. The deck of cards with which 
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the game is played is not the usual 52-card deck, but is rather an n-card deck with each card numbered with an 

integer a in the range [1-(R/2), (R/2)-1]. The input to the algorithm, which is the set of integers A, is therefore 

analogous to the deck of cards in this game.  

The game is a challenge game, where Bob picks a number S (or the sum, being the other input to the 

algorithm) at the beginning of the game, and challenges Alice to come up with a hand in which the cards add 

up to S. 

3.2.  Initialization 

The game begins by shuffling the deck, and then dealing it equally among Alice and Bob, whereupon each 

end up with n/2 cards in hand. If n is odd, Alice will end up having one more card than Bob. Bob then chooses 

a random number SOBJ, and challenges Alice to come up with a hand in which the cards add up to SOBJ.  

Formally, let HAlice and HBob be the two hands of Alice and Bob, A be the total deck of cards, and n be the 

total number of cards in the deck. At the beginning of the game, these are defined as: 
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3.3.  Objective 

The objective of the game, for Alice, is to win the challenge thrown by Bob, i.e. to come up with a sum of 

SOBJ. During the entire duration of the game, Bob only plays to help Alice achieve her goal, and has no separate 

objective of his own. 

3.4.  Game Play 

Prior to the beginning of each turn, an ordered pair formed from the sum of Alice’s hand and that of Bob’s 

hand are recorded. Whenever, after a turn, such a sum-pair is repeated in the game, a fair coin is tossed, and 

depending on the outcome – either Alice or Bob randomly chooses a card from her/his hand and gives it to the 

other. After such a transfer, the sum-pair is again checked for repetition and if it repeats, the coin toss is 

repeated again until either the number of such consecutive tosses equals n, or a unique sum-pair is obtained. 

The game proceeds if a unique sum-pair is obtained; otherwise, Alice loses the game and declares that she 

cannot win the challenge. 

Let SAlice and SBob define the sum of all the cards in Alice’s and Bob’s hand respectively. Then the sum-pair 

(SAlice, SBob) must be unique at every turn of the game. These are defined as follows: 
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At each turn, Alice makes her decision based on two values: her requirement (denoted by REQ), and the 

Closest-Element (denoted by CE). The former is calculated by Alice herself, while she asks Bob for the latter. 

These are defined as: 
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Informally, Alice computes what card she needs to achieve her objective, and then asks Bob if he has that 

card (i.e. CE). Bob then checks his hand to see if he has that card. If yes (i.e. CE≠ϕ), he gives that card to Alice. 

If he does not have such a card (i.e. CE= ϕ), Alice checks how many cards she has in her hand. If she has only 

1 card left, she asks Bob for a random card from his hand. If she has more than 1 card left, she calculates the 

Appropriate Discardable Element (ADE) as follows: 
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If no such element is present (i.e. ADE=ϕ), Alice loses the game, and declares that she cannot win the 

challenge. If an ADE does exist however, she gives that card to Bob instead, thus completing the current turn. 

At the end of each turn, the winning condition is checked – if SAlice=SOBJ, then Alice wins the challenge and the 

solution to the subset-sum problem is Alice’s hand HAlice. If not, the game continues. The algorithm is presented 

below. 

 

ALGORITHM 1. The Card-Players’ Algorithm 

ALGORITHM CP(a[0..n-1], target) 

begin 

     sumList=new HashSet(); 

     t=(n/2)+(n mod 2); 

     x[ ]=a[0..t-1]; 

     y[ ]=a[t..n-1]; 

     sx=SUM(x), sy=SUM(y); 

      

     while (sx ≠ target) do 

     begin 

          rc=0; 

          while (SEARCH(sumList, sx, sy) ≠ -1) do 

          begin 

               rc=rc+1; 

               randomly transfer 1 element from x to y or vice-versa and update sx, sy accordingly 

               if (rc=n) then return FAILURE; 
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          end 

          k=GetRequirement(x, target);                                                  // see (3.3) 

          cei=GetClosestElementIndex(y, k);                                         // see (3.3) 

          if (cei>=0) then 

               transfer y[cei] to x and update sx, sy 

          else 

               if (LENGTH(x)>1) then 

                    di=GetAppropriateDiscardIndex(x);                             // see (3.4) 

                    if (di=-1) then return FAILURE; 

                    transfer x[di] to y and update sx, sy 

               else 

                    randomly transfer 1 element from y to x and update sx, sy 

               end if 

          end if 

          add (sx, sy) to sumList; 

     end 

     return x; 

end 

 

4. Results and Discussion 

The algorithm was implemented using Java SE 8 (Update 5) on an Intel Pentium Dual-Core 2.3GHz 

processor, and the observed run-times and outer-loop run-counts are tabulated in Table 1, and the 

corresponding plot shown in Fig. 1. For each (n, R) pair, the experiment was repeated for 1000 random 

instances, and the average values for these instances (when the algorithm was successful in finding a solution) 

is reported in the table. The author believes that much faster run-times for this algorithm are possible if the 

algorithm be implemented in C/C++ and additional optimizations are applied. The outer-loop run-count is 

indeterminate and is dependent on both n and R, while the combined inner processes have time complexity 

O(n), hence the time complexity of the CP Algorithm is O(c.n) for some c dependent on n and R. It is evident 

from the table that the algorithm performs exceptionally well with regards to high density sets. The large values 

for n and the non-deterministic nature of the algorithm, made it impossible to perform an exhaustive search 

(using the power-set) to check indeed that no solution exists when the algorithm reported failure. But 

considering the fact that only very seldom were failures reported, it is strongly believed that the algorithm 

almost always succeeds. 

Table 1. Average Run-Times (Milliseconds) and Outer-Loop Run Counts* 

n 

Run-times (milliseconds)  Outer-loop run-counts 

R 

100 1,000 10,000  100 1,000 10,000 

50 0.000 0.078 1.062  6.347 38.393 396.106 

100 0.000 0.078 1.326  5.713 21.122 204.929 
200 0.015 0.078 1.249  6.010 13.296 96.133 

500 0.062 0.172 1.484  8.457 11.286 41.506 

1,000 0.140 0.374 2.466  12.250 12.222 27.421 
2,000 0.514 0.514 4.632  17.692 15.515 22.653 

5,000 2.139 1.621 11.499  32.099 23.741 26.841 

10,000 7.971 4.620 21.200  57.264 33.753 34.755 

* Averaged over 1000 instances, each instance consisting of a set of n random integers in the interval [1-(R/2), (R/2)-1] 
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Fig.1. Plot of Execution Time vs. Set Size 

5. Conclusion 

The subset-sum problem is one of the most common NP-complete problems that have seen widespread 

research from across the computing community. Due to their applications in knapsack cryptosystems, the lion’s 

share of the focus has been on problems with density less than 1, as discussed in Section 2, in addition to work 

by Daxing & Shaohan [11]. Since the compromise of the Merkle-Hellman cryptosystem by Shamir, almost all 

knapsack based cryptosystems have been broken, and the author believes that such public-key cryptosystems 

no longer have any viable future in the current form. On the other hand, high density subset sums may still have 

other application areas like computer passwords [12], message verification [13], RFID security [14], dealing 

with junk mail [15], etc., and the proposed algorithm is a positive direction in solving such problems. 
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