
I.J. Mathematical Sciences and Computing, 2017, 2, 55-61
Published Online April 2017 in MECS (http://www.mecs-press.net)

DOI: 10.5815/ijmsc.2017.02.05

Available online at http://www.mecs-press.net/ijmsc

A Fast Heuristic Algorithm for Solving High-Density Subset-Sum

Problems

Akash Nag

Dept. of Computer Science, The University of Burdwan, Rajbati, Burdwan 713104, India

Abstract

The subset sum problem is to decide whether for a given set of integers A and an integer S, a possible subset of

A exists such that the sum of its elements is equal to S. The problem of determining whether such a subset

exists is NP-complete; which is the basis for cryptosystems of knapsack type. In this paper a fast heuristic

algorithm is proposed for solving subset sum problems in pseudo-polynomial time. Extensive computational

evidence suggests that the algorithm almost always finds a solution to the problem when one exists. The

runtime performance of the algorithm is also analyzed.

Index Terms: Subset-sum problem, NP-complete, heuristics, search, algorithms.

© 2017 Published by MECS Publisher. Selection and/or peer review under responsibility of the Research

Association of Modern Education and Computer Science

1. Introduction

The subset sum problem is a NP-complete problem [1] and is defined as follows: Given a set

}1:{ niaA i  of integers (usually called weights) and an integer S (called the sum), determine whether

or not there exists a subset B of A, such that:

ABBkBbSb i

k

i

i 


,,
1

 (1.1)

Besides the decision problem, an exact solution to the problem would be to additionally determine B (given

A and S), provided such a B exists. This latter problem can be alternatively defined in the form of a 0-1

knapsack or 0-1 integer programming problem: determine a vector x of size n, such that:

* Corresponding author.

E-mail address:

56 A Fast Heuristic Algorithm for Solving High-Density Subset-Sum Problems

AnxAaSxa ii

n

i

ii 


,}1,0{,.
1

 (1.2)

Several public-key cryptosystems are based on this problem, the most basic such system being the Merkle-

Hellman cryptosystem [2], which was broken by Shamir in 1983 [3]. Such systems use a public-key, which is

the given set of weights A, and the binary representation of the plaintext is the vector x in Eq. 1.2. The

calculated sum S is then transmitted to the receiver as the cipher-text.

Decrypting the cipher-text S is then an instance of the subset-sum problem, which is known to be NP-hard

and hence difficult to solve. However, the weights are chosen in such a way so that the problem is easily solved

by the received given knowledge of some trapdoor information.

The density D of the set of weights },...,,{ 21 naaaA  , is then defined as:

ni
ia

n
D





1
2)max(log

 (1.3)

For the purposes of this paper, the bounds on the weights is defined to be the range R of the set, i.e.

    niRaR
i  11

22
1 . A novel algorithm, called the CP Algorithm (Card-Players’

Algorithm), is now proposed for solving the subset-sum problem.

In Section 2, we look at some relevant work that has been done in this field, and in Section 3, we present the

proposed algorithm using the analogy of a card-game. In Section 4, we present our results and discuss its

performance, and conclude with remarks about the current state of this field in Section 5.

2. Related Work

The hardness of solving the subset-sum problem varies directly with the density of the set of weights. There

can be two cases:

a) D≤1: These low-density subset-sum problems are efficiently solved by reduction to a short vector in a

lattice, as presented by Brickell [4]; Lagarias and Odlyzko [5]; Martello and Toth [6]; Coster et al. [7].

b) D>1: These medium and high-density subset-sum problems are solvable by dynamic programming

techniques or using analytical number theory, such as those presented in Chaimovich et al. [8]; Galil

and Margalit [9]; Flaxman and Przydatek [10]; with some of these failing to find a solution if certain

bounds for n or R are not respected.

In this paper, a novel, heuristic but non-deterministic, algorithm is proposed for the latter case of high-

density problems.

3. The Proposed Algorithm

3.1. Overview

The proposed algorithm is a non-deterministic iterative algorithm, and is hereafter called the Card-Players’

Algorithm (CP Algorithm), after the manner in which the solution is obtained. The algorithm is best explained

using an analogy of two card players: Alice and Bob, playing a game of cards. The deck of cards with which

 A Fast Heuristic Algorithm for Solving High-Density Subset-Sum Problems 57

the game is played is not the usual 52-card deck, but is rather an n-card deck with each card numbered with an

integer a in the range [1-(R/2), (R/2)-1]. The input to the algorithm, which is the set of integers A, is therefore

analogous to the deck of cards in this game.

The game is a challenge game, where Bob picks a number S (or the sum, being the other input to the

algorithm) at the beginning of the game, and challenges Alice to come up with a hand in which the cards add

up to S.

3.2. Initialization

The game begins by shuffling the deck, and then dealing it equally among Alice and Bob, whereupon each

end up with n/2 cards in hand. If n is odd, Alice will end up having one more card than Bob. Bob then chooses

a random number SOBJ, and challenges Alice to come up with a hand in which the cards add up to SOBJ.

Formally, let HAlice and HBob be the two hands of Alice and Bob, A be the total deck of cards, and n be the

total number of cards in the deck. At the beginning of the game, these are defined as:


















































BobAliceiiBob

iiAlice

ii

HHAy
n

iyH

Axn
n

ixH

RRaniaA

,
2

1:

2mod
2

1:

]1
2

,
2

1[}1:{

 (3.1)

3.3. Objective

The objective of the game, for Alice, is to win the challenge thrown by Bob, i.e. to come up with a sum of

SOBJ. During the entire duration of the game, Bob only plays to help Alice achieve her goal, and has no separate

objective of his own.

3.4. Game Play

Prior to the beginning of each turn, an ordered pair formed from the sum of Alice’s hand and that of Bob’s

hand are recorded. Whenever, after a turn, such a sum-pair is repeated in the game, a fair coin is tossed, and

depending on the outcome – either Alice or Bob randomly chooses a card from her/his hand and gives it to the

other. After such a transfer, the sum-pair is again checked for repetition and if it repeats, the coin toss is

repeated again until either the number of such consecutive tosses equals n, or a unique sum-pair is obtained.

The game proceeds if a unique sum-pair is obtained; otherwise, Alice loses the game and declares that she

cannot win the challenge.

Let SAlice and SBob define the sum of all the cards in Alice’s and Bob’s hand respectively. Then the sum-pair

(SAlice, SBob) must be unique at every turn of the game. These are defined as follows:

Bobi

Hn

i

iBob

Alicei

Hn

i

iAlice

HyyS

HxxS

Bob

Alice













)(

1

)(

1
 (3.2)

58 A Fast Heuristic Algorithm for Solving High-Density Subset-Sum Problems

At each turn, Alice makes her decision based on two values: her requirement (denoted by REQ), and the

Closest-Element (denoted by CE). The former is calculated by Alice herself, while she asks Bob for the latter.

These are defined as:

 








































otherwise

yx

yx

yxSIGN

pydpypySIGNdypf

REQf

HyREQfdyddREQfy
CE

SSREQ

Bobiiiikk

AliceOBJ

0,0

0,0

0

1

1

),(

,,1),(:),()(

)(

),(),()min(,)(





(3.3)

Informally, Alice computes what card she needs to achieve her objective, and then asks Bob if he has that

card (i.e. CE). Bob then checks his hand to see if he has that card. If yes (i.e. CE≠ϕ), he gives that card to Alice.

If he does not have such a card (i.e. CE= ϕ), Alice checks how many cards she has in her hand. If she has only

1 card left, she asks Bob for a random card from his hand. If she has more than 1 card left, she calculates the

Appropriate Discardable Element (ADE) as follows:

  
















 G

Gxsssx
ADE

HxxSsxsG

iiikk

AliceiiAliceiii

),()min(

:,

 (3.4)

If no such element is present (i.e. ADE=ϕ), Alice loses the game, and declares that she cannot win the

challenge. If an ADE does exist however, she gives that card to Bob instead, thus completing the current turn.

At the end of each turn, the winning condition is checked – if SAlice=SOBJ, then Alice wins the challenge and the

solution to the subset-sum problem is Alice’s hand HAlice. If not, the game continues. The algorithm is presented

below.

ALGORITHM 1. The Card-Players’ Algorithm

ALGORITHM CP(a[0..n-1], target)

begin

 sumList=new HashSet();

 t=(n/2)+(n mod 2);

 x[]=a[0..t-1];

 y[]=a[t..n-1];

 sx=SUM(x), sy=SUM(y);

 while (sx ≠ target) do

 begin

 rc=0;

 while (SEARCH(sumList, sx, sy) ≠ -1) do

 begin

 rc=rc+1;

 randomly transfer 1 element from x to y or vice-versa and update sx, sy accordingly

 if (rc=n) then return FAILURE;

 A Fast Heuristic Algorithm for Solving High-Density Subset-Sum Problems 59

 end

 k=GetRequirement(x, target); // see (3.3)

 cei=GetClosestElementIndex(y, k); // see (3.3)

 if (cei>=0) then

 transfer y[cei] to x and update sx, sy

 else

 if (LENGTH(x)>1) then

 di=GetAppropriateDiscardIndex(x); // see (3.4)

 if (di=-1) then return FAILURE;

 transfer x[di] to y and update sx, sy

 else

 randomly transfer 1 element from y to x and update sx, sy

 end if

 end if

 add (sx, sy) to sumList;

 end

 return x;

end

4. Results and Discussion

The algorithm was implemented using Java SE 8 (Update 5) on an Intel Pentium Dual-Core 2.3GHz

processor, and the observed run-times and outer-loop run-counts are tabulated in Table 1, and the

corresponding plot shown in Fig. 1. For each (n, R) pair, the experiment was repeated for 1000 random

instances, and the average values for these instances (when the algorithm was successful in finding a solution)

is reported in the table. The author believes that much faster run-times for this algorithm are possible if the

algorithm be implemented in C/C++ and additional optimizations are applied. The outer-loop run-count is

indeterminate and is dependent on both n and R, while the combined inner processes have time complexity

O(n), hence the time complexity of the CP Algorithm is O(c.n) for some c dependent on n and R. It is evident

from the table that the algorithm performs exceptionally well with regards to high density sets. The large values

for n and the non-deterministic nature of the algorithm, made it impossible to perform an exhaustive search

(using the power-set) to check indeed that no solution exists when the algorithm reported failure. But

considering the fact that only very seldom were failures reported, it is strongly believed that the algorithm

almost always succeeds.

Table 1. Average Run-Times (Milliseconds) and Outer-Loop Run Counts*

n

Run-times (milliseconds) Outer-loop run-counts

R

100 1,000 10,000 100 1,000 10,000

50 0.000 0.078 1.062 6.347 38.393 396.106

100 0.000 0.078 1.326 5.713 21.122 204.929
200 0.015 0.078 1.249 6.010 13.296 96.133

500 0.062 0.172 1.484 8.457 11.286 41.506

1,000 0.140 0.374 2.466 12.250 12.222 27.421
2,000 0.514 0.514 4.632 17.692 15.515 22.653

5,000 2.139 1.621 11.499 32.099 23.741 26.841

10,000 7.971 4.620 21.200 57.264 33.753 34.755

* Averaged over 1000 instances, each instance consisting of a set of n random integers in the interval [1-(R/2), (R/2)-1]

60 A Fast Heuristic Algorithm for Solving High-Density Subset-Sum Problems

Fig.1. Plot of Execution Time vs. Set Size

5. Conclusion

The subset-sum problem is one of the most common NP-complete problems that have seen widespread

research from across the computing community. Due to their applications in knapsack cryptosystems, the lion’s

share of the focus has been on problems with density less than 1, as discussed in Section 2, in addition to work

by Daxing & Shaohan [11]. Since the compromise of the Merkle-Hellman cryptosystem by Shamir, almost all

knapsack based cryptosystems have been broken, and the author believes that such public-key cryptosystems

no longer have any viable future in the current form. On the other hand, high density subset sums may still have

other application areas like computer passwords [12], message verification [13], RFID security [14], dealing

with junk mail [15], etc., and the proposed algorithm is a positive direction in solving such problems.

References

[1] Michael R. Garey, and David S. Johnson. Computers and Intractability: A Guide to the theory of NP-

Completeness. WH Freeman & Co., New York. pp:223. 1979.

[2] Ralph Merkle, and Martin E. Hellman. Hiding information and signatures in trapdoor knapsacks.

Information Theory, IEEE Transactions. 24.5. pp:525-530. 1978.

[3] Adi Shamir. A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem.

Advances in Cryptology. Springer, US. pp:279-288. 1983.

[4] E. F. Brickell. Solving low-density knapsacks. Advances in Cryptology, Proceedings of Crypto '83.

Plenum Press, New York. pp:25-37. 1984.

[5] J. C. Lagarias, A. M. Odlyzko. Solving low-density subset sum problems. Journal of the ACM. 32(1).

pp:229-246. 1985.

[6] S. Martello, and P. Toth. A new algorithm for the 0-1 knapsack problem. Management Science 34.

pp:633-644. 1988.

[7] Matthijs J. Coster et al. Improved low-density subset sum algorithms. Computational complexity 2.2.

pp:111-128. 1992.

 A Fast Heuristic Algorithm for Solving High-Density Subset-Sum Problems 61

[8] Mark Chaimovich, Gregory Freiman, and Zvi Galil. Solving dense subset-sum problems by using

analytical number theory. Journal of Complexity 5.3. pp:271-282. 1989.

[9] Zvi Galil, and Oded Margalit. An almost linear-time algorithm for the dense subset-sum problem. SIAM

Journal on Computing 20.6. pp:1157-1189. 1991.

[10] Abraham D. Flaxman, and Bartosz Przydatek. Solving medium-density subset sum problems in expected

polynomial time. STACS 2005. Springer Berlin Heidelberg. pp:305-314. 2005.

[11] Daxing L., Shaohan M. (1994) Two notes on low-density subset sum algorithm. In: Du DZ., Zhang XS.

(eds) Algorithms and Computation. ISAAC 1994. Lecture Notes in Computer Science, vol 834. Springer,

Berlin, Heidelberg.

[12] Martello, Silvano, and Paolo Toth. "Algorithms for knapsack problems." North-Holland Mathematics

Studies 132 (1987): 213-257.

[13] Sharma, Sonal, Prashant Sharma, and Ravi Shankar Dhakar. "RSA algorithm using modified subset sum

cryptosystem." Computer and Communication Technology (ICCCT), 2011 2nd International Conference

on. IEEE, 2011.

[14] Kate, Aniket, and Ian Goldberg. "Generalizing cryptosystems based on the subset sum problem."

International Journal of Information Security 10.3 (2011): 189-199.

[15] Dwork C., Naor M. (1993) Pricing via Processing or Combatting Junk Mail. In: Brickell E.F. (eds)

Advances in Cryptology — CRYPTO’ 92. CRYPTO 1992. Lecture Notes in Computer Science, vol 740.

Springer, Berlin, Heidelberg.

Author Profile

Mr. Akash Nag completed his Bachelors in Computer Applications from the University of

Burdwan, and his Masters in Computer Science from the University of Calcutta. He is currently

pursuing his Ph.D. from the Dept. of Computer Science at the University of Burdwan. He is

also a guest faculty in the Dept. of Computer Science at M.U.C. Women’s College, Burdwan.

His research interests include algorithmics and bioinformatics.

How to cite this paper: Akash Nag,"A Fast Heuristic Algorithm for Solving High-Density Subset-Sum

Problems", International Journal of Mathematical Sciences and Computing(IJMSC), Vol.3, No.2, pp. 55-61,

2017.DOI: 10.5815/ijmsc.2017.02.05

