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Abstract 

In the present paper first and foremost we introduce a generalization of a classical Fibonacci sequence which is 

called a Fibonacci-Like sequence and at hindmost we obtain some relationships between Lucas sequence and 

Fibonacci-Like sequence by using two cross two matrix representation to the Fibonacci-Like sequence. The 

most worth noticing cause of this article is our proof method, since all the identities are proved by using matrix 

methods. 
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1. Introduction 

Fibonacci numbers have many applications as well as interesting properties almost in every field of science 

such as in Physics, Biology, Computer Science, Engineering, Mathematics (Algebra, Geometry and Number 

Theory itself). Furthermore Fibonacci and Lucas numbers have long interested mathematicians for their 

intrinsic theory and applications. Fibonacci numbers and Lucas numbers continue to provide invaluable 

opportunities for exploration, and contribute handsomely to the beauty of mathematics, especially number 

theory, one can see the citations [9, 10, 13]. 

The Fibonacci and Lucas sequences are defined by the recurrence relations: 
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Definition 1. [13] 

For the integer, the Fibonacci sequence is defined by the recurrence relation as 

1 2 0 1, 2, 0, 1n n nF F F n F F                                                                                                           (1) 

Definition 2. [13] 

For the integer, the Lucas sequence is defined by the recurrence relation as 

1 2 0 1, 2, 2, 1n n nL L L n L L                                                                                                            (2) 

The generalized Fibonacci sequence  qpbaWW nn ,;,  is defined as follows: 

1 2 0 1, ,n n nW pW qW W a W b                                                                                                          (3) 

where pba ,,
 
and q  are arbitrary complex numbers with 0q . Since these numbers were first studied by 

Horadam [4], they are called Horadam numbers. Singh et al. in [11] delineated generalized identities on the 

relations between Fibonacci and Lucas sequences. Thongmoon in [12] gave identities about the common 

Factors of Fibonacci and Lucas numbers. Cerin in [2] obtained properties on the factors of summation of 

consecutive Fibonacci and Lucas numbers.  

In 1960 Charles H. King introduced the matrix for classical Fibonacci numbers which is known as Q-matrix 

[9] and Q-matrix is given as 
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Cerda [1] studied Horadam sequence (1.3) by matrix methods. Here the author considered two cases of  nW : 

 

  nU  is defined by
 

00 U  and 11 U  

  nV  is defined by 20 V
 
and pV 1

 

 

Keskin and Demirturk [6] obtained some new identities for Fibonacci and Lucas numbers by matrix methods. 

Kilic [7] obtained some summation identities for Fibonacci numbers by matrix methods. In [8] koken and 

Bozkurt studied and defined a Lucas LQ -matrix which is similar to the Fibonacci Q -matrix [9] and the LQ -

matrix is defined as 
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where 
nF  and 

nL  are the thn  Fibonacci and Lucas numbers, respectively. Jun and Choi in [5] studied the 

properties of generalized Fibonacci numbers by matrix methods they defined the generalized Fibonacci 
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sequence as 

    1,0,2, 1021

1  

 qqnqqbaq nn

nn

n

  

where a
 
and b

 
are positive real numbers and 
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In [5] the authors defined the  22  matrix
 
M for the above sequence. 
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In addition to this Dasdemir in [3] obtained some identities of Pell, Pell-Lucas and Modified Pell numbers by 

the matrix methods, in [3] the author defined some two cross two matrices as  
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2. Fibonacci-Like sequence and its Matrix Representation 

In this section we define a generalization of Fibonacci sequence which is called Fibonacci-Like sequence 

also we introduce a 22  matrix representation for Fibonacci-Like sequence. 

 

Definition 3 

For the integers 2n  and 1p , the Fibonacci-Like sequence is defined by the recurrence relation as 

1 2 0 1, 2, ,n n nT T T n T p T p                                                                                                            (4) 

and a 22  matrix representation for Fibonacci-Like sequence and  is given by 

1 5

2 2

1 1

2 2

T

 
 

  
 
  

 

3. Main Results 

In this section we present some main results of this article by using a matrix representation T to Fibonacci-

Like sequence defined in equation (4). 
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Lemma 1 If X  is a square matrix with IXX 2  then 

1 2 , 2n

n npX T X T I n                                                                                                                                (5) 

Proof. 

To prove the result we shall use induction on n 

Let 2n , we get 

ITXTpX 01

2   

IppXpX 2  

IXX 2  

Hence the result is true for 2n
. 

Assume that the result is true for n. Now we show that that the 

ITXTpX nn

n

1

1



   

Therefore, 

  ITXTTITXT nnnnn 1211    

  XTTIXITXT nnnn 211    

XTTXITXT nnnn 21

2

1    

XTTXITXT nnnn 21

2

1    

 ITTXXITXT nnnn 211    

 n

nn XpXITXT  1  

1

1



  n

nn pXITXT  

as required. 

Now we show that 

  2,21  

 nITXTpX nn

n
 

Let
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1 XXIY  

Therefore, 

 22 XIY   

222 2 XXIY   

IXXIY  22
 

IXIY 2
 

IYY 2
 

This show that 
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Hence the result. 

Theorem 1 Let 
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Proof. Since ITT 2  then by lemma (3.1), we have 
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Hence the result. 

 

Theorem 2 For the positive integer n, we have 

 2 2 2 2

15 4 1
n

n np L T p                                                                                                                               (7) 

Proof. Since
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Hence we conclude that 
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Hence the result. 

 

Theorem 3  
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Proof. 
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But, 
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Hence the theorem. 

 

Theorem 4  
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Proof. Since 
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Then by theorem (2), we have 
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Proof. Since 
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On the other hand, 
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and 
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Proof.  By the definition of the matrix nT , we have 
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Equating corresponding terms of the the two matrices, we get 

2

11

2

4

5

2 p

TTLLpL zyxsyxzyx  
  

    11

22 2524   zyxzyxzyx TTLLpLp
 

Using theorem (3), we have 

    11111

22 554   zyxyxzyxyxzyx TTLLTLTTLLpLp  

111111

22 5554   zyxzyxzyxzyxzyx TTLTLTLTTLLLpLp
 

 zyxzyxzyxzyxzyx LTTTLTTTLLLLpLp 111111

22 54    

and, 

p

TLLT

p

T zyxzyxzyx

42

1111  
  

    111 224   zyxzyxzyx TpLLTppT  

    1

2

1

2

1

2 224   zyxzyxzyx TLpLTpTp  

Using theorem (3), we have 

    111

2

11

2

1

2 54   zyxyxzyxyxzyx TTTLLpLTLLTpTp  

1111

2

1

2

1

2

1

2 54   zyxzyxzyxzyxzyx TTTTLLpLTLpLLTpTp  

  111111

2

1

2 54   zyxzyxzyxzyxzyx TTTLLLLLTTLLpTp  

Hence the theorem. 

 

Theorem 7  

 

 

2

1 1

2

1 1 1

1
5 , 1 , 1 1

1
, 1 , 1 1

x

y x y z x y z

z x

x

y x y z z x y

z x

L p L L T T x z y y z
L

p
T L T T L x z y y z

L



   





    




      


      

                                                                         (12)



32 On the Relations between Lucas Sequence and Fibonacci-like Sequence by Matrix Methods  

Proof. Let us consider a product 
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From theorem (3), we have 
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Again by theorem (4), we have 
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Proof. Let us consider a product 
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From theorem (3), we have 
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Hence the result 

4. Conclusion 

In this article we presented a generalized Fibonacci sequence called Fibonacci-Like sequence and after that 

some relations have been obtained between Lucas sequence and Fibonacci-Like sequence by matrix methods. 
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