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Abstract 

The present study is concerned with the estimation of Inverse Exponential distribution using various Bayesian 

approximation techniques like normal approximation, Tierney and Kadane (T-K) Approximation. Different 

informative and non-informative priors are used to obtain the Baye’s estimate of Inverse Exponential 

distribution under different approximation techniques. A simulation study has also been conducted for 

comparison of Baye’s estimates obtained under different approximation using different priors. 
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1. Introduction 

The Inverse Exponential distribution was introduced by Keller and Kamath (1982). Due to its inverted 

bathtub failure rate, it is significant competitive model for the Exponential distribution. A comprehensive 

description of this model is given by Lin et al (1989) as a lifetime model. Consider a random variable X

following an exponential distribution and then the variable 
X

Y
1

  will have an inverted exponential 

distribution (IED). Thus, if X follows the Inverse Exponential distribution with a scale parameter  0 , 

then the cumulative density function (cdf) and the probability density function (pdf) of the model are 

respectively given by: 

* Corresponding author. 

E-mail address: kawsarfatima@gmail.com 

http://www.mecs-press.net/ijwmt
mailto:kawsarfatima@gmail.com


50 Bayesian Approximation Techniques of Inverse Exponential Distribution with Applications in Engineering  

2
( ) ; 0, 0xf x e x

x







                                                                                                                           (1) 

The cdf of X is: 

( ) ; 0, 0xF x e x





                                                                                                                                (2) 

Inverted exponential distribution as a life distribution model from a Bayesian viewpoint was considered by 

Sanku Dey (2007) while Gyan Prakash (2012) obtained the estimation of the Inverted exponential distribution 

by using symmetric and asymmetric loss functions. Singh et al (2015) discussed the estimation of stress 

strength reliability parameter of inverted exponential distribution. They obtained Bayes estimator for 

parameters of inverted exponential distribution by using informative and non-informative priors. They also 

compared the classical method with Bayesian method through the simulation study. 

2. Material and Methods 

The Bayesian paradigm is conceptually simple and probabilistically elegant. Sometimes posterior 

distribution is expressible in terms of complicated analytical function and requires intensive calculation 

because of its numerical implementations. It is therefore useful to study approximate and large sample behavior 

of posterior distribution. Thus, our present study focuses to obtain the estimates of the parameter of inverted 

exponential distribution using two Bayesian approximation techniques i.e. normal approximation and T-K 

approximation. 

3. Normal Approximation 

The basic result of the large sample Bayesian inference is that the posterior distribution of the parameter 

approaches a normal distribution. If the posterior distribution  xp |  is unimodal and roughly symmetric, it 

is convenient to approximate it by a normal distribution centered at the mode; that is logarithm of the posterior 

is approximated by a quadratic function, yielding the approximation 

   1)]ˆ([,ˆ~|  INxp , 

where 
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xP
I                                                                                                                      (3) 

If the mode, ̂ is in the interior parameter space, then )(I  is positive; if ̂ is a vector parameter, then

)(I  is a matrix. 

Some good sources on the topic is provided by Ahmad et.al (2007, 2011) discussed Bayesian analysis of 

exponential distribution and gamma distribution using normal and Laplace approximations. Sultan et al. (2015a, 

2015b) obtained the Baye’s estimates under different informative and non-informative priors of shape 

parameter of Topp-Leone and Kumaraswamy Distribution using Bayesian approximation techniques. 
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In our study the normal approximations of Inverse Exponential distribution under different priors is to be 

obtained as under: 

The likelihood function of (1) for a sample of size n is given as 
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Under Quasi prior   0,
1

 dg
d

 , the posterior distribution for is as 
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The first derivative is  

  T
dn

xP 











|log , 

from which the posterior mode is obtained as 
T

dn )(ˆ 
 . 

To construct the approximation, we need the second derivatives of the log-posterior density, 

    TdnxP   logconstantlog|log .                                                                                              (6) 

The second derivative of the log-posterior density is 
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Thus, the posterior distribution can be approximated as 
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Under extension of Jeffrey’s prior    Rcg
c 12

,
1

1
 , the posterior distribution for is as 
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Thus, the posterior distribution can be approximated as 
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Under the Pareto1 prior   0;0,,)1(    bcbcg bb

 

where b and c are the known hyper 

parameters, the posterior distribution for is as
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from which the posterior mode is obtained as 
T
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 . 
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The second derivative of the log-posterior density is 
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Under the Inverse Levy prior   ,0;0;
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where a is the known hyper 

parameter, thus the posterior distribution for  is as 
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Thus, the posterior distribution can be approximated as 
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4. T-K Approximation 

In Lindley’s approximation one requires the evaluation of third order partial derivatives of likelihood 

function which may be cumbersome to compute when the parameter is a vector valued parameter thus, Tierney 

and Kadane (1986) gave Laplace method to evaluate  xhE |)(  as 
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Thus, for Inverse Exponential distribution Laplace approximation for parameter can be calculated as 
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5. Simulation Study and Data Analysis 

5.1. Simulation Study 

In our simulation study we have generated a sample of sizes n=25, 50 and100 to observe the effect of small, 

medium, and large samples on the estimators. The results are replicated 5000 times and the average of the 

results has been presented in the tables. To examine the performance of Bayesian estimates for parameter of 

inverse exponential distribution under different approximation techniques, estimates are presented along with 

posterior variances given in parenthesis in the below tables. 

Table 1. Posterior Mean and Posterior Variance (In Parenthesis) under Normal Approximation 

n    
Quasi Prior Extension of Jeffrey’s prior Pareto 1 prior Inverse levy prior 

2.0d  2.1d  4.01 c  4.11 c  5.0b  5.1b  3.0a  3.1a  

25 

0.5 
1.90423 

(0.19964) 

1.82744 

(0.19159) 

1.85816 

(0.19480) 

1.70459 

(0.17871) 

1.80441 

(0.18917) 

1.727626 

(0.18112) 

1.85977 

(0.19202) 

1.79177 

(0.17608) 

1.5 
0.56752 

(0.02604) 

0.54463 

(0.02499) 

0.55378 

(0.02542) 

0.50802 

(0.02331) 

0.53777 

(0.02468) 

0.51488 

(0.02363) 

0.55873 

(0.02548) 

0.55243 

(0.02468) 

2.5 
0.40159 

(0.00495) 

0.38541 

(0.00475) 

0.39188 

(0.00483) 

0.35949 

(0.00443) 

0.38055 

(0.00469) 

0.36435 

(0.00449) 

0.39578 

(0.00486) 

0.39261 

(0.00480) 

50 

0.5 
1.95662 

(0.07606) 

1.91732 

(0.07453) 

1.93304 

(0.07514) 

1.85446 

(0.07208) 

1.90554 

(0.07407) 

1.866251 

(0.07255) 

1.93343 

(0.07472) 

1.89639 

(0.07190) 

1.5 
0.79184 

(0.00684) 

0.77594 

(0.00670) 

0.78230 

(0.00676) 

0.75050 

(0.00648) 

0.77117 

(0.00666) 

0.75527 

(0.00652) 

0.78520 

(0.00677) 

0.77902 

(0.00669) 

2.5 
0.41094 

(0.00273) 

0.40269 

(0.00267) 

0.40599 

(0.00269) 

0.38949 

(0.00258) 

0.40022 

(0.00265) 

0.39196 

(0.00260) 

0.40796 

(0.00270) 

0.40628 

(0.00268) 

100 

0.5 
2.47011 

(0.05355) 

2.44536 

(0.05302) 

2.45526 

(0.05323) 

2.40576 

(0.05216) 

2.43793 

(0.05286) 

2.41318 

(0.05232) 

2.45357 

(0.05302) 

2.42369 

(0.05182) 

1.5 
0.60776 

(0.00556) 

0.60167 

(0.00551) 

0.60412 

(0.00553) 

0.59197 

(0.00542) 

0.59984 

(0.00549) 

0.59375 

(0.00544) 

0.60538 

(0.00554) 

0.60354 

(0.00549) 

2.5 
0.35861 

(0.00141) 

0.35502 

(0.00139) 

0.35646 

(0.00139) 

0.34927 

(0.00136) 

0.35394 

(0.00138) 

0.35035 

(0.00137) 

0.35734 

(0.00140) 

0.35670 

(0.00139) 
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Table 2. Posterior Mean and Posterior Variance (In Parenthesis) under T-K Approximation 

n    

Quasi Prior Extension of Jeffrey’s prior Pareto 1 prior Inverse levy prior 

2.0d  2.1d  4.01 c  4.11 c  5.0b  5.1b  3.0a  3.1a  

25 

0.5 
1.43544 

(0.24807) 

1.37982 

(0.23845) 

1.40207 

(0.24230) 

1.29083 

(0.22307) 

1.36313 

(0.22307) 

1.30752 

(0.22595) 

1.40701 

(0.23813) 

1.36924 

(0.21668) 

1.5 
0.81404 

(0.02375) 

0.78249 

(0.02283) 

0.79511 

(0.02319) 

0.73202 

(0.02135) 

0.77303 

(0.02255) 

0.74148 

(0.02163) 

0.80078 

(0.02326) 

0.78841 

(0.02257) 

2.5 
0.48704 

(0.00997) 

0.46817 

(0.00958) 

0.47572 

(0.00974) 

0.43797 

(0.00896) 

0.46251 

(0.00947) 

0.44364 

(0.00908) 

0.48002 

(0.00980) 

0.47555 

(0.00961) 

50 

0.5 
2.27920 

(0.09236) 

2.23434 

(0.09054) 

2.25228  

(0.09127) 

2.16256 

(0.08764) 

2.22088 

(0.08999) 

2.17602 

(0.08818) 

2.25059 

(0.09065) 

2.20154 

(0.08693) 

1.5 
0.58738 

(0.00807) 

0.57583 

(0.00791) 

0.58045  

(0.00797) 

0.55733 

(0.00766) 

0.57236 

(0.00786) 

0.56079 

(0.00771) 

0.58291 

(0.00799) 

0.57956 

(0.00789) 

2.5 
0.33876 

(0.00324) 

0.33209 

(0.00317) 

0.33476  

(0.00320) 

0.32143 

(0.00307) 

0.33009 

(0.00315) 

0.32343 

(0.00309) 

0.33643 

(0.00321) 

0.33531 

(0.00318) 

100 

0.5 
2.14694 

(0.05977) 

2.12564 

(0.05917) 

2.13416 

(0.05941) 

2.09156 

(0.05823) 

2.11925 

(0.05900) 

2.09795 

(0.05841) 

2.13373 

(0.05916) 

2.11132 

(0.05775) 

1.5 
0.75066 

(0.00538) 

0.74322 

(0.00533) 

0.74619 

(0.00535) 

0.73131 

(0.00524) 

0.74098 

(0.00531) 

0.73354 

(0.00526) 

0.74759 

(0.00536) 

0.74483 

(0.00532) 

2.5 
0.44258 

(0.00147) 

0.43819 

(0.00145) 

0.43995 

(0.00146) 

0.43116 

(0.00142) 

0.43687 

(0.00144) 

0.43248 

(0.00143) 

0.44097 

(0.00146) 

0.44001 

(0.00145) 

5.2. A Real Data Example 

In this section, we analyze the real life data set is given by Pavur et al (1992). The results recorded as the 

following which are the number of revolutions (in the millions) to failure of 23 ball bearings in a life test study. 

1.788, 2.892, 3.300, 4.152, 4.212, 4.560, 4.848, 5.184, 5.196, 5.412, 5.556, 6.78, 6.864, 6.864, 6.988, 8.412, 

9.312, 9.864, 10.512, 10.584, 12.792, 12.804, 17.340 

Table 3. Posterior Mean and Posterior Variance (In Parenthesis) under Normal Approximation based on Data Set 

  
Quasi Prior Extension of Jeffrey’s prior Pareto 1 prior Inverse levy prior 

2.0d  2.1d  4.01 c  4.11 c  5.0b  5.1b  3.0a  3.1a  

0.5 
1.83498  

(0.35697) 

1.75450 

(0.34131) 

1.78669  

(0.34758) 

1.62573 

 (0.31626) 

1.73035  

(0.33662) 

1.64987 

(0.32096) 

1.78923  

(0.33941) 

1.72081  

(0.30127) 

1.5 
0.50870 

(0.02054) 

0.48638 

(0.01964) 

0.49531 

(0.01999) 

0.45069 

(0.01819) 

0.47969 

(0.01937) 

0.45738 

(0.01846) 

0.50033 

(0.02008) 

0.49483 

(0.01950) 

2.5 
0.56449 

(0.00654) 

0.53973 

(0.00625) 

0.54964 

(0.00637) 

0.54964 

(0.00579) 

0.53231 

(0.00617) 

0.50755 

(0.00588) 

0.55500 

(0.00642) 

0.54824 

(0.00632) 

Table 4. Posterior Mean and Posterior Variance (In Parenthesis) under T-K Approximation based on Data Set 

  

Quasi Prior Extension of Jeffrey’s prior Pareto 1 prior Inverse levy prior 

2.0d  2.1d  4.01 c  4.11 c  5.0b  5.1b  3.0a  3.1a  

0.5 
2.08222 

(0.42191) 

1.99476 

(0.40418) 

2.02974  

(0.41127) 

1.85483  

(0.37582) 

1.96852  

(0.39886) 

1.88106 

(0.38114) 

2.02936  

(0.40044) 

1.94537 

(0.35287) 

1.5 
0.57897 

(0.01837) 

0.55465 

(0.01760) 

0.56438 

(0.01791) 

0.51574  

(0.01636) 

0.54735 

(0.01737) 

0.52304  

(0.01659) 

0.56959 

(0.01799) 

0.56278 

(0.01750) 

2.5 
0.32019 

(0.01108) 

0.30674 

(0.01061) 

0.31212 

(0.01080) 

0.28522 

(0.00987) 

0.30271  

(0.01047) 

0.28926  

(0.01001) 

0.31552 

(0.01087) 

0.31342 

(0.01064) 
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6. Discussion 

In this paper the focus was to study the importance of Bayesian approximation techniques. We presented 

approximate to Bayesian integrals of Inverse Exponential distribution depending upon numerical integration 

and simulation study and showed how to study posterior distribution by means of simulation study. We observe 

that under informative as well as non- informative priors, the normal approximation behaves well than T-K 

approximation, although the posterior variances in case of T-K approximation are very close to that of normal 

approximation. 

7. Conclusion 

From the findings of above tables it can be observed that the large sample distribution could be improved 

when prior is taken into account. In both cases normal approximation as well as T-K approximation, posterior 

variance under Extension of Jeffrey’s prior are less as compared to other assumed priors especially the 

Extension of Jeffrey’s prior c1=1.4. We also, observe that under informative as well as non- informative priors, 

the normal approximation behaves well than T-K approximation, although the posterior variances in case of T-

K approximation are very close to that of normal approximation. Further we conclude that the posterior 

variance based on different priors tends to decrease with the increase in sample size. It implies that the 

estimators obtained are consistent. 

It is observed that the real life data also confirms to the simulated data results. Therefore we conclude that 

the extension of Jeffrey’s prior performs well in the IE distribution. 
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