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Abstract 

In affirmation of the existence of control interventions for the eradication of Ebola virus infection as a remedy 

to complete lack of outright medical cure, the present study seek and formulated using continuous ordinary 

differential equations an extended BEB-SEIR 4-Dimensional mathematical Ebola dynamic model vested with 

the scope of establishing the epidemiological impact of identified structured Ebola control measures. Derived 

model was presented as an optimal control problem subjected to structured dual treatment functions. Moreso, 

following the validity of model state components as representatives of living organisms and the establishment 

of existence of boundedness of solutions; we performed our analysis using classical Pontryagin’s maximum 

principle with which the optimality system of the model was established. Numerical simulations of derived 

model via Runge-Kutter of order 4 in a Mathcad surface were conducted. Result clearly indicated enhanced 

impact of intermediary and secondary control interventions as Ebola virus treatment functions with high 

significant maximization of susceptible population devoid of Ebola infection. Both the exposed and infectious 

classes were maximally reduced to near zero with possibilities of achieving complete eradication if time 

interval could be extended exceeding the 21days of Ebola life-cycle. Furthermore, recovery rate of removed 

class justified the formulation and application of the model. The study therefore suggests further articulation of 

the model to account for possible intracellular delay in the biological mechanism. 
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1. Introduction 

Despite the multinational and multi-sectorial efforts dissipated to the control of Ebola virus disease (EVD) 

since it advent in 1976, like the human immunodeficiency virus (HIV) among other transmittable diseases, 

cogent medical cure is yet to be established other than schematic vaccines that are in most cases not found in 

remote community setups. The only nascent approach to medical treatment of the disease had been structured 

control intervention strategies [1]. Identifiably, virologic investigation had uncovered a varying number of 

Ebola strains, which varies from localities through countries and continents. Notable Ebola virus includes: 

Ebola-Zaire, Ebola-Sudan, larger species known as Bundibugyo Ebolavirus, Reston Ebolavirus (in Philippines), 

Tai Forest Ebolavirus (from Chimpanzee in Ivory Coast) and recently, clades of Ebola-Guinea, which are 

separate from known EBOV [1-3]. 

In reality, due to the death-defying nature of Ebola disease, couple with the non-identification of Ebola 

reservoir, Ebola virus infection has assumed the fastest killing infectious disease globally. Precisely, from 

biological history of the evolution of Ebola virus – Ebola hemorrhagic Fever popularly known as Ebola Virus 

Disease first emanated from River Ebola in Zaire and Sudan. [4-6]. This informed the incessant and prevalence 

of Ebola virus infection outbreak in the West African region. The studies [7, 8] presented more on the 

literatures of the spread and infection of Ebola virus.  

The outbreak of Ebola virus infection in 2014, which affected countries like Sierra Leone, Guinea, and 

Liberia with seeded cases in Nigeria, Senegal, Span, USA and Mali, presented the most severe epidemic in the 

last 40 year of Ebola discovery as evidenced by high morbidity and mortality rate [9-11]. Although this 

epidemic causing outbreak posed an unprecedented situation in the affected countries, the clinical investigation 

of the dynamics of infection and transmission of the virus are essentially similar to those of EVD [12]. 

Revealed by that study, were the possible causes of Ebola infection, which includes: signs a d symptoms with 

incubation period identified to be11.4days and serial interval of15.3days giving 70.8%  fatality rate. 

From the literature point of models [1, 2, 12-14], the incubation period of Ebola is within 2 21days with 

mutation of infection period of 4 10days . Ebola virus are conspicuously spread through body fluid contact 

of symptomatic patient, secretions, tissue and semen from infected patients, lack of safety cremation of dead 

bodies with Nosocomial transmissibility as the most recent clinical ineptitude [2, 12, 13, 15]. Of note, the most 

affected are children of less than 2 years of age, the elderly and the pregnant women among others [1, 16-18]. 

The major characteristic symptoms of Ebola virus infection are identified by clinical features to include early 

gastrointestinal infection, high fever, severe headache, malaise, which rapidly progress to vomiting, severe 

diarrhea, rash, severe bleeding (both internal and external) and shock with lethal outcome – death [1, 2, 16, 19, 

20]. Since mutation period has maximum of10days , infectious individuals in regions with no established 

medical control interventions are left with greater option of death from date of initial infection, with

50% 90% of such cases in sub-Saharan and West Africa [1, 2, 8, 17]. A situation that has caused somewhat 

rise in the specter of increasing local and international dimension of the virus (for more details, see [21]). 

Furthermore, it has become of reckon that due to lack of coherent specified hospital conditions, the most 

established approach in studying the spread of the disease and the impact of available schematic medical care 

has been the application of mathematical modeling. Through this later approach, a number of preventive 

control intervention strategies have been identified and established. These factors ranges from surveillance, 

contact tracing, screening, quarantine of suspected individuals, Barrier nursing technique and rapid cremation 

of dead bodies. For instance, the result of the findings by [2] showed that education and contact tracing 

followed by quarantine reduces the final epidemic size by a factor of 2 relative to the final size with 2-week 

delay in implementation. The model [12] studied Ebola virus disease in West Africa using logistic-regression 

models to investigate five key time periods that characterizes the progression of Ebola infection.  The control 

data indicated that without drastic improvements in control measures, the numbers of cases of death from Ebola 

virus disease are expected to be on the increase of thousands per week. 
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From the studies [1, 2, 6] core control intervention strategies were identified to include surveillance, contact 

tracing, random screening and quarantine of suspects; barrier nursing technique and rapid cremation of death 

bodies. In our earlier investigation [1], on the impact of control intervention for transmission of Ebola virus, we 

established the use of SEIR (susceptible-exposed-infectious-removed) model for clinical classification of 

control interventions into four major control indicators. The model uses difference of equation in its analysis 

and result indicated that in the absence of outright medical cure, intermediary and secondary interventions 

proves to be the most admirable means for both the treatment and prevention of Ebola virus infection. 

Therefore, in this present study, following the innovative ideas of models [1] and then [2], we denotes these 

classes of control interventions (intermediary and secondary) as predominant treatment functions for Ebola 

virus infection. We then introduce the idea of optimal control theory to effectively maximize the concentrations 

of recovery and susceptible population at minimize cost of control interventions while eradicating infectious 

class from susceptible population. Therefore, the novelty of this present study is informed by the identification 

and application of intermediary and secondary control interventions as multiple treatment measures that 

quantify the performance index based on the concentration of recovered and susceptible under minimized 

systemic cost. 

Appreciably, the entire work is divided into six sections with section 1 covering the introductory aspect. In 

section 2, we concentrated on the mathematical formulation of the model for an untreated Ebola virus infection, 

followed by justification of the model state variables as true representative of living organisms and existence of 

boundedness of solution. With the introduction of control interventions as treatment factors, we present in 

section 3, the model as an optimal control problem. The characteristic properties of the optimal control and the 

existence of an optimal control pair for the model are also established here. Section 4 is devoted to the 

derivation of the model optimality system and the uniqueness of optimality system. Numerical simulations and 

succinct discussion of the resulting outcome forms the fulcrum of section 5. Finally, incisive conclusion and 

remarks are constructed in section 6. The present investigation is hoped to vindicate and strengthened the 

impact of intermediary and secondary control interventions as essential treatment functions for Ebola virus 

epidemic. 

2. Mathematical Formulation for an Untreated Ebola Infection Model 

Presumably, due to the quick transformation of the life-cycle of Ebola virus infection, the seeming must 

acceptable representation of the deadly virus is the SEIR (susceptible-exposed-infectious-removed) flow-chart 

model adopted by [1, 2]. In conducting this present investigation guided by its scope, we shall dwell in the 

reformulation of this model via the innovative ideas of the above SEIR epidemic models. Therefore, this 

section shall be devoted to the formulation of a simple continuous differential equation model as well as the 

validity of the model state variables positivity and boundedness of solutions. 

2.1.  Continuous Differential Equation Model 

For a continuous differential equation model, the standard model [1] will be adopted as pivot step in the 

formulation of this present model. In that model, the system was governed by the following epidemiological 

equations: 
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where,
( )0 ( )0 ( )0(0) , (0) , (0)i i i i i is s e e y y    and 

( )0(0)i ir r for all 0t t . 

From model (1), we structurally observed that ( )is t  - represent the susceptible class of individuals at time t ;

( )ie t  - exposed class of individuals to virus at time t ; ( )iy t  - infectious class of individuals at time t ; ( )ir t  - 

recover or dead (removed) population at time t  and   assumed uniform status for all the state components. 

Unlike this model (1), this parameter alongside other new incorporated model parameters and constants have 

been varied. Thus, for an untreated Ebola model, equation (1) is modified to give the following epidemiological 

BEB-SEIR (name after the author of this work) equation: 

1
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                                                                                                                       (2) 

where 1 2 30, 0, 0     are varying death rates of exposed, infectious and removed Ebola patients and 

with 
( )0 ( )0 ( )0(0) , (0) , (0)i i i i i is s e e y y    and 

( )0(0)i ir r for all 0t t . Here, we note that if ( )iN t is 

the effective population size at time t under investigation and N , the sum total population, then 

( )

i
c i

y
B y

m t


  , since

( )
( ) 1i

i i i i

N t
m t s e y r

N
      . 

Model (2) is therefore our basic equations with which we conduct our present investigation. Furthermore, 

model (2) is analogous to the stochastic model (continuous time Markov chain) by [2]. Basically, the BEB-

SIER model (2) is constructed by considering the continuous four mutations: exposed, infectious, removed 

(recover or die) and susceptible. Thus, the corresponding transition rates are defined as in table 1 below: 

Table 1. BEB-SIER Ebola Model 

Mutation Effect Transition rate 

Exposed ( , , , ) ( , , , )i i i i i i i is e y r s e y r      i iy s   

Infectious ( , , , ) ( , , , )i i i i i i i is e y r s e y r     ike   

Removed ( , , , ) ( , , , )i i i i i i i is e y r s e y r     iy   

Susceptible ( , , , ) ( , , , )i i i i i i i is e y r s e y r     ( )p ib qr   

 

Remark 1:  The mutation time is continuous within the finite circulating transmutation life-span of 

epidemiology of virus i.e. 0it   for all
0[ , ],i 1,...,i f ft t t t  . Therefore, it  is the mutation time an 

individual transmute between different stages. 

For proper assimilation of model (2), we present the epidemiological description of the terms as follows: 
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from first equation, the first term
pb define the natural source of susceptible population, which is proliferated by 

the rate of recovered treated infectious individuals ( )iqr t of second term. The third term ( )is t  represents 

natural death rate of susceptible population, while the last term ( ) ( )i iy t s t describe the differential product 

of average contact of susceptible with infected cells and the probability of this differential product transmitting 

the virus. 

The second equation is characterized by the inflow of proliferation of the differential product ( ) ( )i iy t s t  

as the first term and the second term 1( ) ( )ik e t    as the sum of gradual transformation of exposed class 

becoming infectious with associated natural death rate and clearance rate due to exposure to virus. From the 

third equation, the first term ( )ike t  denotes the rate of inflow of exposed individual that become actively 

infectious. In this case, we consider the viral source to be directly proportional to infectious population 

attributed by k  [22]. The second term here, 2( ) ( )iy t     present the sum of natural death rate of 

infectious group, the death rate due to chronic infection and the per-capita rate at which infectious may recover 

(or die). In this case, we consider the viral source to be directly proportional to the infectious class, which is 

attributed to k [22].
 

The last equation describes the recover (or death) population of which the first term ( )iy t defines the rate 

of inflow of per-capita of infectious that may recover (or die). The last term represent the sum rate of natural 

death of possible recovered group, the clearance rate in the removed process and the rate at which actual 

recovered class are recruited to the susceptible class. 

 

Remark 2:  i) The chamber denoted by ( )C t is not an epidemiological quantity rather, a descriptive constant 

that defines the cumulative number of cases of incidence upon onset of symptoms.  ii) We expect a 

complete transformation of basic model (2) following the introduction of treatment functions (control 

interventions). 

Thus, model (2) and the application of cogent control intervention functions are schematically represented by 

fig. 1 below. 

From model (2) and fig. 1, the following assumptions hold: 

 

Assumption 1:  The realization of the present model is a consequence of the following limitations: i) Contact 

tracing is inconsistent and unsystematic. ii) Preventive intervention is only at infection point. iii) There exists 

lack of cogent and comprehensive barrier nursing technique. iv) Insignificant counseling against unhealthy 

sexual practices and condom use. v) Cremation is incomprehensive. 

 

Assumption 2:  For a realistic Ebola model, the following conditions must be satisfied: i) Significant control 

interventions (i.e. intermediary and secondary, which in our present investigation are considered treatment 

functions denoted by 1 and 2 respectively. ii) Core predominant parameters 0  and 0k  . iii) Recovered 

is recruited to susceptible class. iv) Recovered are immune from infection but not for life i.e. 0q  for all

0t  . 

Now, since the state variables are representative of living organism, we need to verify that these key 

components are completely non-negative and there exist boundedness of solutions. 
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Fig.1. Schematic Transmission Dynamics of Ebola Virus Infection. 

2.2.  Positivity of State Variables and Boundedness of Solutions 

Here, we shall show using fundamental theory of functional differential equations [23, 24] that there exist 

unique solutions ( ), ( ), ( ), ( )i i i is t e t y t r t to model (2) with initial values  

( ), ( ), ( ), ( )i i i is e y r C     .                                                                                                                      (3) 

Biologically, equation (3) is assumed to be non-negative i.e.  

 ( ), ( ), ( ), ( ) \ 0,i i i is e y r C C      for all 0[ , ]ft t 
                                                                       

(4) 

Therefore, the positivity and boundedness of model (2) for which initial value function satisfies conditions (3) 

and (4) is defined by the following theorem. 

 

Theorem 1:  Given that ( ), ( ), ( )i i is t e t y t and ( )ir t are solutions of model (2) and satisfying conditions (3) 

and (4). Then, ( ), ( ), ( )i i is t e t y t and ( )ir t are all non-negative and are boundedness for all 0t   at which the 

solutions exists. 

 

Proof:  We start by showing that state variables of the system are life varying integers. That is, from equations 

of model (2), we differentiate each of them to justify their non-negativity. 

From the first equation, we have 
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i
p i i i i

ds
b qr s y s

dt
     . 

Differentiating with respect to is we obtain i
i

ds
s

dt
     0i

i

ds
s

dt
  . 

The inequality here implies that is is finite and positive or is   , since 0t   (from Thm.). Taking the 

integrating factor, we have
dt tIF e e

   . Then multiplying by the integrating factor, we get 

{ ( )} 0t

i ie s s t    . 

Rewriting the left hand side of the equation, we have  ( ) 0t

i

d
e s t

dt

  . Integrating both side becomes

( )t

ie s t C  . We now divide through by the integrating factor to get ( ) t

is t Ce . 

Applying the initial conditions i.e. 0t  , such that ( ) (0). (0)i i is t s s C  . Then, ( ) (0) 0,t

i is t s e   

for 0t  .  

When , ( ) 0it s t  . Therefore, ( ) 0is t  . 

From the second equation,  

1( )i
i i i

de
y s k e

dt
     

 
, we have 

1( )i
i

de
k e

dt
        

1( )i

i

de
k dt

e
      

i.e.  ( )i

i

de
k dt

e
      . Therefore, 1( )

( ) (0) 0, 0
k t

i ie t e e t
   

    for 0t  .  

 

Similarly, from the third equation, 

2( )i
i i

dy
ke y

dt
      , we have 

2( )i
i

dy
y

dt
       

  
2( )i

i

dy
dt

y
       

i.e.  
2( )i

i

dy
dt

y
       . Therefore, 2( )

( ) (0) 0, 0
t

i iy t y e t
    

    for 0t  .  

Finally, the fourth equation is given as 



 Optimal Control Dynamics: Control Interventions for Eradication of Ebola Virus Infection 49 

 

3( )i
i i

dr
y q r

dt
      , then we have 

3( )i
i

dr
q y

dt
        

3( )i

i

dr
q dt

r
      

i.e.  
3( )i

i

dr
q dt

r
      . Therefore, 3( )

( ) (0) 0, 0
q t

i ir t r e t
   

    for 0t  .  

Hence, positivity of all model state variables is guarantee and conditions (3) and (4) are satisfied. Next, we 

verify the boundedness of solution. 

Let ( ) ( ) ( ) ( ) ( )
2

i i i i

q
P t q s t q e t y t r t       and 1 2 3min{ , , 2, }n     . By positivity of 

solution, it follows that 

[ ( )] [ ( ) ( ) ( ) ( )]p i i i i

d
P t q b qr t s t y t s t

dx
       

2
1 1( ) ( ) ( ) ( ) ( ) ( ) ( )

2
i i i i i i

q
q y t s t k q e t q e t y t q r t


              

2
1( ) ( ) ( ) ( )

2

( ).

p i i i i

i

q
q b q s t q e t y t r t

q s nP t


    



    

 

 

Hence, ( )P t is bounded and so are ( ), ( ), ( )i i is t e t y t and ( )ir t . Therefore, proof completed. 

 

Remark 3:  It becomes obvious that from Thm. 1 together with conditions (3) and (4), for (0)ie , (0)iy such 

that (0) 0ir  , then ( )is t , ( )ie t ( )iy t and ( )ir t are all positive and thus boundedness of solution exist for all 

0t  . 

So we have seen that our model key components satisfy positivity and have bounded solutions. Therefore, in 

affirmation of system model (2) and assumptions (1 and 2) we generate (as in table 2 below) from known 

certify clinical data for both state variables and parameters with which the model can be simulated. 
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Table 2 Description of State Variables and Parameter for Optimal Control of Ebola Intervention Strategies. 

Variables  
Dependent variables  

Initial values Units  
Description 

is   Susceptible class of individuals at time t  0.5 

 

ce
ll

s/
m

m
3
 

ie  Exposed class of individuals to virus at time t  0.2 

iy  Infectious class of individuals at time t  0.2 

ir  Removed (recover or dead) population at time t  0.1 

 
Parameters and Constants  

Values 

 

Units Description 

pb  Natural source of susceptible class 0.2 

   
  

  
  

  
  
  

  
  

m
m

3
d

a
y-1

 

   Natural death rate for all state variables 0.02 

1  Death rate of expose class to virus 0.05 

2  Death rate of active infectious class due to virus 0.07 

3  Death rate at removed class 0.02 

k   Rate at which exposed becomes symptomatic and infectious 0.02 

   Per-capita rate at which infectious recovers (or die) 0.15 

 q   Recruitment rate of recovered to susceptible class 0.04 

    Average number of contacts by susceptible with infectious class 0.5 

 

1day

 

    Probability of transmission by infectious per day 
0.2 

 

 
1,2i 

 

1A  

Treatment control functions for , , ,i i i is e y r  

Optimal weight ratio for 1   

[0,1)i   

 

 2A   Optimal weight ratio for 2  25 

Note: Table 2 is a reflection of data from models [1, 2] clinically = modified to accommodate the present novel model. 

 

Not to lose focus at this point, we must be guided by the fact that the motivational goal of this study is the 

derivation of a mathematical and quantitative approach for the maximization of the performance index 

measured by the benefit on susceptible population and amount of recovered class under minimized control 

intervention cost (treatment functions). Therefore, we are obliged to transform model (2) to an optimal control 

problem defined by an objective functional. 

3. Optimal Control Problem and Characterization 

To allow the appreciation of cogent control intervention schedules, we are bound to represent our derived 

model (2) as an optimal control problem. This is followed by a flow-chart description for a typical Ebola virus 

model under dual treatment functions. The last part of this section is the establishment of the optimal control 

characteristics and thus shows that the model optimal control pair exists.  
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3.1.  Optimal Control Problem for system Model 

For a typical model (2), we seek to redefine the model to yield an optimal control pair, which maximizes 

healthy susceptible population under a minimized systemic cost of control interventions and maximal 

suppression of infectious population. From assumption 2, if our control interventions is the treatment functions 

denoted by 1 and 2  defined by lower and upper bounds i.e. ( , )i ia b where

1 2 1 2{ , \ ( , ) : , [0,1], 1,2}i i i ia b a b i       , then the maximal cost of control interventions is given 

by
2

1 2( ( ) ( ))t t  . The implication is that if 1i  , we experience total effective control intervention and 

for 0i  , there exist off control intervention. Hence, for 0i  , model (2) is justified. 

Therefore, we opt for an optimal control intervention pair
* *

1 2,  such that 

* *

1 2 1 2 1 2
0 1

( , ) max{ ( , ) \ ( , ) }
i

Z Z S


     
 

   

where,  1 2: ( , ) \ iS    is Lebesgue-measurable with 0, [ , ], 1,2i i fa b t t t fori    is the control set. 

Mathematically, the objective functional that maximizes the concentration of healthy susceptible population 

and amount of recovered population is governed by 

0

2 21 2
1 2 1 2( , ) { ( ) ( ) [ ( (t)) ( (t)) ]}

2 2

ft

i i

t

A A
Z s t e t dt                                                                        (5) 

Subject to the state system 

1

1 1

2 2

2 3

(1 ( ))[ ]

(1 ( ))[ ] ( )

(1 ( )) ( )

(1 ( )) ( )

i p i i i i

i i i i

i i i

i i i

s b qr s t y s

e t y s k e

y t ke y

r t y q r

  

   

   

   

     

     

     

     

                                                                                                  (6) 

where infection rate on susceptible class under control function is 1(1 ( ))t   and virus production by 

infectious class under control intervention is given by 2(1 ( ))( )t k   respectively. However, for cases of 

severities arising from control interventions, the following proposition holds: 

 

Proposition 1:  Assume there exist control intervention hazardous effect then, the inequality of the optimal 

weight factors
1,2iA 

 is such that 0 1i i ia b    is satisfied [25]. 

Interestingly, we illustrate using flow-chart as in fig. 2 below, the investigation of the treatment function via 

optimal control strategy for the present model. Here, we see that predominant control functions are streamlined 

into two major control indicators: 
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Fig.2. Flow-chart of Ebola Treatment Functions (BNT – C = Barrier Nursing Technique and Cremation). 

3.2.  Characterization of an Optimal Control 

The derivation of a realistic property of an optimal control requires the application of classical Pontryagin’s 

maximum principle with which the objective functional is the Hamiltonian arguments [26], defined by the 

following Lagrangian: 

1 2 1 2 3 4( ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ))i i i iL s t e t y t r t t t t t t t      2 21 2
1 2( ) ( ) [ ]

2 2
i i

A A
s t e t       

1 1[ (1 ( ))[ ]]p i i i ib qr s t y s        2 1 1[(1 ( ))[ ] ( ) ]i i it y s k e                                 (7) 

3 2 2[(1 ( )) ( ) ]i it ke y         4 2 3[(1 ( )) ( ) ]it yi q r        
 

11 1 1 12 1 1 21 2 2 22 2 2( )( ) ( )( a ) ( )( ) ( )( a )u t b u t u t b u t            

where 11 12 21 22( ), ( ), ( ), ( ) 0u t u t u t u t   are penalty multipliers satisfying 

11 1 1 12 1 1( )( ) 0, ( )( a ) 0u t b u t      at optimal 
*

1  

and 

21 2 2 22 2 2( )( ) 0, ( )( a ) 0u t b u t       at optimal 
*

2 . 

The penalty multipliers ensure that
1,2i 

 remains bounded in the domain [0,1]i  and ( ), 1,..,4i t i  are 
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the model adjoint variables, which determine the adjoint system. Of note, the adjoint system together with the 

state variables determines the model optimality system. Therefore, we are to establish all possible control of i  

including those on the boundary{0,1} . 

i) The case of the set
*{ / 0 ( ) 1}: 0,i ijt t u    , 1,2i j  . 

Here, for an unconstrained optimal control
*

1,2i  , the Pontryagin’s maximum principle is satisfied if 

*

1

0
L







and

*

2

0
L







. 

Then, we have to find 
*

, 1,2
i

L
i







 and solve for

*

1 and 
*

2  by setting our partial derivative of L equal to 

zero, i.e. 

*

1 1 1 2 11 12*

1

( ) ( )( ) ( )( ) 0i i i i

L
A t t y s t y s u u    




      


 at 

*

1  

and 

*

2 2 3 4 21 22*

2

( ) ( ) ( ) 0i i

L
A t t ke t y u u   




      


 at 

*

2  

  
* 1 2 11 12
1

1

( )( ) ( )( )i i i it y s t y s u u

A

   


  
 . 

Solving for the optimal control 
*

1  for 0,iju   , 1,2i j  , then our optimal control 
*

1 is characterized by 

* 1 2
1

1

( )( ) ( )( )i i i it y s t y s

A

   



 . 

Similarly,
*

2 is characterized by 
* 3 4
2

2

( ) ( )i it ke t y

A

  



  . 

Moreso, for boundary cases of
* 0i  and

* 1i  , we compute as follows: 

ii) The case of the set the set
*

1 2{ / 0 ( ) 0, 1,2}, 0, 0, , 1i j it t i u u i j      . 
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Then, the optimal control is derive as  

1 2 1

1

( )( ) ( )( )
0

i i i i jt y s t y s u

A

    
 . 

By definition, since 1 0ju  , the above implies that 

1 2( )( ) ( )( ) 0i i i it y s t y s      

Thus, to insure that
*

1  is never negative, we rewrite
*

1  with the notation  

* 1 2
1

1

( ( ) ( ))
( ) i iy s t t
t

A

  




 
  
 

 

Similarly,  

* 3 4
2

2

( ) ( )i it ke t y

A

  




 
  

 
. 

iii) For the case of the set the set
*

1 2{ / 0 ( ) 1, 1,2}, 0, 0, , 2i i jt t i u u i j      . 

Then, the optimal control is obtain as  

1 2 2

1

( )( ) ( )( )
1

i i i i jt y s t y s u

A

    
 . 

This implies that 

1 1 2 10 ( ) ( )( ) ( )( )j i i i iu t t y s t y s A        

or  

*1 2
1

1

( )( ) ( )( )
1i i i it y s t y s

A

   



   

Similarly,



 Optimal Control Dynamics: Control Interventions for Eradication of Ebola Virus Infection 55 

 

*3 4
2

2

( ) ( )
1i it ke t y

A

  


 
   
 

. 

So, on this set, we must choose 

* 1 2
1

1

( ( ) ( ))
( ) min ,1i iy s t t
t

A

  


 
  

 
 

and 

* 3 4
2

2

( ) ( )
( ) min ,1i it ke t y
t

A

  


   
   

   
. 

Hence, the complete characterization of the optimal control includes the three cases and is derived as: 

 *

1 1 1 2 1

1

1
( ) min max , ( ( ) ( )) ,i it a y s t t b

A
   

   
    

                                                                         

(8) 

and 

 *

2 2 3 4 2

2

1
( ) min max , ( ) ( ) ,i it a t ke t y b

A
   

   
     

   

.                                                                 (9) 

The results of equations (8) and (9) are completely described by the following proposition: 

 

Proposition 2:  The optimal control for equations (5) and (6) is completely characterized by  

 *

1 1 1 2 1

1

1
( ) min max , ( ( ) ( )) ,i it a y s t t b

A
   

   
    

   

 

and 

 *

2 2 3 4 2

2

1
( ) min max , ( ) ( ) ,i it a t ke t y b

A
   

   
     

   

. 

Thus, it becomes obvious that our control is described in terms of the levels of circulating susceptible, 
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exposed and infectious population as well as their related adjoint variables. 

3.3.  Existence of an Optimal Control Pair 

The existence of optimal control pair for a typical dynamic model (2) is proved using the boundedness of 

solution, which accounts the finite time interval.  

Then, there exist system supersolutions , ,i i is e y and ir  satisfying 

1( )i
p i

ds
b t s

dt
  , ide

ke
dt

   , 

i
i

dy
y

dt
   and i

i

dr
qr

dt
   

and are bounded on a time interval 
0[ , ]ft t t . 

 

Theorem 2:  Given proposition 2 for a control problem with system of equations as in model (6), there exist an 

optimal control pair 
* * *

1 2( , ) S   
r

 that maximize the objective functional 1 2( , )Z   such that 

1 2

* *

1 2 1 2
( , )
max { ( , ) ( , )

S
Z Z

 
   


                                                                                                                   (10) 

Proof:  In proving the above theorem, we invoke the result of (Thm. 4.1, pg. 68-69, [26]) to validate that the 

following conditions are satisfied: 

 

i) The set of all controls ( ), 1,2i t i  are Lebesgue-integrable functions on
0[ , ]ft t with values in the 

admissible control sets and such that the corresponding state components are satisfied and non-empty. 

ii) The control set S is convex and closed. 

iii) The RHS of the state variables is continuous and bounded by a linear function with coefficients 

depending on proposition 2 and on the control variables.  

iv) The integral of the objective functional is concave on S . 

v) There exist constants 1 2, 0x x  and 1  such that the integral 1 2( , , , )i iJ s e   of the objective 

functional satisfies  

2 2 2

2 1 2 2 1 1 2( , , , ) ( )iJ s e x x       . 

This conditions further leads to the invocation of result from (Thm. 9.2.1, pg. 182, [27]), which gives the 

existence of solutions of ODEs of equation (6) with bounded coefficients for condition (i). Then, we see that 

the solutions are bounded and thus, by definition the control set satisfies condition (ii). We notice that state 

system is bilinear in 1 2( , )  , then the RHS of model (6) satisfies condition (iii) and are priori bounded.



 Optimal Control Dynamics: Control Interventions for Eradication of Ebola Virus Infection 57 

 

Furthermore, the integrand of our objective functional 2 2

1 2

1 2

1 1
( ) ( ) [ ( ) ( ) ]i is t e t

A A
    is concave on the 

admissible control set. So, the last condition is satisfied if 

2 22 2

1 2 2 1 1 2

1 2

1 1
( ) ( ) [ ( ) ( ) ] ( )i is t e t x x

A A
          

where 2x depends on the upper bound on is and ie with 1 0x  since 1 2, 0   . Therefore, there exists an 

optimal control pair. 

At this point, following the result of Thm. 2, we can conveniently establish out optimality system and show 

that the system is unique. 

4. Optimality System and Uniqueness 

The optimality system is a vital tool in the concept of optimal control problem. it is the optimality system 

that mirrors the biological and epidemiological behaviours of the model state system following the application 

of chemotherapies, where in this present case, treatment function have been constituted by our control 

interventions. Explicitly, growth rate or clearance rate of state variables are often determined by the presence of 

optimality system. The uniqueness we shall induce by stating a simple leading lemma and allow the proof for 

the uniqueness of the system for our readers. 

4.1.  Optimality System for Treated Ebola Model 

Here, it is important to note that the optimality system consists of the state system coupled with the adjoint 

system with the initial conditions and transversality conditions together with the derived optimal control pair. 

For our model, the adjoint system is given by 

1

i

d L

dt s

 
 


, 

2

i

d L

dt e

 
 


, 

3

i

d L

dt y

 
 


 and 

4

i

d L

dt r

 
 


. 

The simplification of this adjoint system is also a consequence of results of model [26]. Then, taking 

equation (10), which gives the Lagrangian, the following theorem holds: 

 

Theorem 3:  Given optimal control pair
* *

1 2,  and solutions 
* * * *, , ,i i i is e y r of the corresponding state system 

(6), then there exist adjoint variables 1 2 3 4, , ,    satisfying  
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* * * *

1 1 1 2 1

*

2 2 3 2

* * * * *

3 1 1 2 1 3 4 2

4 1 4

1 [ ( ) ( )] [ ( ) ( )]

( )

1 [ ( ) ( )] [ ( ) ( )]

1

i i

i i

t y t t y t

k t k

t s t t s t

q q

      

   

           

  

    

  

      

    

                                                                          (11) 

where ( ) 0, 1,2,3,4i ft i   is the transversality conditions and having 

 *

1 1 1 2 1

1

1
( ) min max , ( ( ) ( )) ,i it a y s t t b

A
   

   
    

   

 

 *

2 2 3 4 2

2

1
( ) min max , ( ) ( ) ,i it a t ke t y b

A
   

   
     

   

. 

Proof:  The form of the adjoint equations and transversality conditions are standard results from the 

Pontryagin’s maximum principle [28]. Then, taken the differentiation of the Lagrangian as obtained by 

equation (10) together with the state system (6) with the optimal control pair (8) and (9) and the transversality 

conditions (11), we have the following optimality system: 

*

1

*

1 1

*

2 2

*

2 3

* * * *

1 1 1 2 1

( ) ( ) (1 ( ))[ ( ) ( )]

(1 ( ))[ ( ) ( )] ( ) ( )

(1 ( )) ( ) ( ) ( )

(1 ( )) ( ) ( ) ( )

1 [ ( ) ( )] [ ( ) ( )]

i p i i i i

i i i i

i i i

i i i

i i

s b qr t s t t y t s t

e t y t s t k e t

y t ke t y t

r t y t q r t

t y t t y t

  

   

   

   

      

     

     

     

     

    

 *

2 2 3 2

* * * * *

3 1 1 2 1 3 4 2

4 1 4

( )

1 [ ( ) ( )] [ ( ) ( )]

1

i i

k t k

t s t t s t

q q

   

           

  

 

      

    

                                                                   (12) 

with 

 *

1 1 1 2 1

1

1
( ) min max , ( ( ) ( )) ,i it a y s t t b

A
   

   
    

   

 

 *

2 2 3 4 2

2

1
( ) min max , ( ) ( ) ,i it a t ke t y b

A
   

   
     

   
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where ( ) 0, 1,2,3,4i ft i   and 
( )0 ( )0 ( )0(0) , (0) , (0)i i i i i is s e e y y   , 

( )0(0)i ir r , for all 0t t .  

4.2.  Uniqueness of Optimality System 

To establish the proof of the uniqueness of the optimality system, the following leading simple lemma 

(without proof) is necessary. 

 

Lemma 1:  The function
*( ) (min(max( , , )))x x a b   is Lipschitz continuous in x , where a b are some 

positive constants.  

 

Theorem 4:  Given 
ft as sufficiently small time interval, then bounded solutions of the optimality system are 

unique. 

 

Proof:  Omitted. 

 

Remark 4:  The uniqueness and proof of the optimality system is a standard result, which can be found in 

models [29-31]. 

 

5. Numerical Simulations and Discussion 

Keeping in tune with the objective and scope of investigation, which border around control interventions as 

treatment functions studied as an optimality system, we shall accomplish this section by undertaking a number 

of simulations to validate our resulting optimality system as well as demonstrate the benefit on control 

intervention cost. We then collapse this section with the critical analysis of the outcome of our derived result. 

5.1.  Numerical Simulations 

In realizing our numerical simulations, we shall draw a number of computer programs based on model 

equations (12), (8) and (9), which completely describe the objective and scope of the study. Here, we shall 

explore the application of Runge-Kutter of order 4 in a Mathcad platform in the validation of the derived 

optimality system with which we mirror the biological maximization of the model susceptible and recovered 

index and as well, study the level of minimization of cost of corresponding treatment functions.  

For simplicity, since our optimal weight factors are assigned
1 22000, 25A A   with lower and upper 

bounds on treatment functions given as:
1 2 1 20, 0.2, 0.2, 0.8a a b b    such that

1,2ia 
denotes lower 

bounds and
1,2ib 

 upperbounds,  we can conveniently generate several treatment schedules by constant 

regularization until convergence is achieved.  Furthermore, we vectored the state components for compatibility 

with chosen software as follows: 

Let 

8

1 2 3 4

1

{ ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )}i i i i i

i

s t e t y t r t t t t t H   


 such that  
8

1 8

1

,...,

T

i

i

H H H


 and 

satisfying initial values as in table 2. Then, for an Ebola treated model, the optimality system is depicted by fig. 

3 (a-d) below: 
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Fig.3(a-d). Graphical Simulations of Ebola Optimality System with 
* *

1 2( ), ( )t t  as Treatment Functions. 

From fig. 3(a-d), we study the epidemiological transmissibility and methodological application of control 

interventions on Ebola virus infection with ( ),i 1,2i t  , as treatment functions.  Precisely, fig. 3(a) 

investigates the performance index of the susceptible population under cogent structured control intervention of
*

1 ( )t . The graphical simulation shows spontaneous convex-like inclination through the epidemic duration 

with value 30.5 ( ) 4.746 /is t cell mm  at 30ft days . From fig. 3(b), following the adherent to treatment 

function defined by the amount of ( ),i 1,2i t  , we investigate the biological response of exposed class to 

treatment schedule. The graph indicates gradual declination of the exposed class with initial onset value of 

0.2ie  3/cell mm  decreasing to
30.05 /ie cell mm after 30ft days . We note with interest, that 

within 21days of life-cycle of the Ebola virus, the exposed class under treatment surveillance had reduced by

3( ) 0.12 /ie t cell mm at 20ft days .  

Representing the infectious and removed class, fig. 3(c & d) investigate using
*

2 ( )t as treatment function, 

the biological dynamics of infectious Ebola virus. Here, fig.3(c) shows acidulous declination of the infectious 

population with value 3 30.2 ( ) 4.332 10 /iy t cell mm   at 30ft days . The efficacy of the treatment 

function within the active life-cycle of Ebola virus is seen as infectious population decline to as less as 
3( ) 0.01 /iy t cell mm  at 20ft days . Finally, the trend of the removed class following the continuous 
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subjection of patients to 
*

2 ( )t treatment shows that the rate of removed (i.e. die) was on the increase at the 

initial onset of infection with value at 30.1 ( ) 0.126 /ir t cell mm  in the first 4ft days . The situation 

thereafter indicated gradual decline of removed class (i.e. infectious recovering) with declination of 
3( ) 0.06 /ir t cell mm at 20ft days and further declining to 3( ) 0.031 /ir t cell mm after 30ft days .  

Furthermore, we ascertain the quantitative amount of each control pair of treatment function required for the 

eradication of the Ebola virus infection as simulated in fig. 4(a & b) below: 

 

 

 
 

 

 

Fig.4(a-b). Graphical simulation of optimal control pair with
1 22000, 25A A  . 

Here, we show the amount of control pair of treatment functions required under the period of investigation. 

Accounting for any possible control intervention severities, treatment functions have been defined under 

optimal weight factors with lower and upper bounds limits specified in the domain ( , ) [0.1], 1,2i ia b i  . Of 

note, we see from fig. 4(a & b) that both exhibits smooth linear pair dual-like characteristics, which is typical of 

optimal dynamics. Fig. 4(a) exhibits the amount of intermediary intervention (as treatment function) used with 

value in the interval *

10.3 ( ) 0.300015t   for 30t days , which represent significantly small amount of 

control intervention at the susceptible and exposed class stage. Fig. 4(b) representing the secondary 

intervention demonstrates the amount of 
*

2 ( )t required sustaining significant control of Ebola virus epidemic 

with value *

20.5 ( ) 6.5t   for 30t days . 

Finally, we investigate as depicted by fig, 5 below, our objective functional, which obviously describe the 

optimal control pair in relation to the susceptible and removed class with respect to applied control 

interventions. 
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Fig.5. Graphical Simulation of Objective Functional for Pair Control Treatment Functions with
1 22000, 25A A  . 

Fig. 5 shows somewhat smooth linear inclination depicting the overall optimal control required of the 

commercial value for the treatment functions that maximize the susceptible population devoid of Ebola virus. 

Here, we observe that for treatment duration of 30ft days , the overall commercial cost of control 

interventions is at 60

1 20.8 ( , ) 2.824 10Z     .  

5.2.  Discussion 

In this present study, we are confronted with the investigation of the efficacy of existing control 

interventions for the eradication of Ebola virus infection under categorized two predominant indicators – 

intermediary and secondary interventions, explicitly considered as the main Ebola treatment functions in the 

absent of outright medical cure. Furthermore, we seek and presented an extended model formulated around the 

application of intermediary and secondary interventions as Ebola virus infections treatment measures with the 

model presented as an optimal control problem. 

The introduction of optimal control theory for an optimal control problem achieved the vested scope of the 

study, which is the maximization of the performance index based on the level of concentration of susceptible 

population devoid of Ebola infection as well as the rate of recovery of infectious class under minimized system 

cost on control interventions, while suppressing the rate of exposed class and the infectious population. We 

performed our analysis using classical Pontryagin’s maximum principle aided with the establishment of model 

state variables positivity and boundedness of solutions. The derivation of the existence of an optimal control 

pair, optimality system and validation of uniqueness of optimality system were conducted within the ambit of 

our chosen numerical methods.  

In the validation of the derived result, a number of numerical simulations were conducted using Runge-

Kutter of order 4, in a Mathcad platform. Thus, we sought to the available accuracy the possible solutions that 

triggered the positive impact of existing control interventions in the eradication of Ebola virus infection. The 

simulative results as depicted by fig. 3(a), shows maximal increase in the level of susceptible population devoid 

of Ebola virus following cogent introduction and sustained dual treatment functions within the ambit of Ebola 

life-cycle of 21days . Evidently, sample population of 3( ) 0.5 /is t cell mm was significantly increased to

3( ) 4.746 /is t cell mm with sustenance possibilities after 30ft days . Under the same time interval and 

similar treatment conditions, the exposed class was reduced to a minimum of 3( ) 0.05 /ie t cell mm . Moreso, 

the efficacy of the system model is clearly depicted by the acidulous reduction of Ebola infectious class to an 

insignificant value of
3( ) 4.332 10iy t   with possibility of outright eradication after 30ft days (see fig. 
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3(c)). The decrease in the rate of removed class after initial raise in the first 4days  is a true vindication of the 

increase in the performance index of the susceptible class. 

Furthermore, in realization of the second phase of optimal control criteria, we investigated the minimization 

of cost effect on treatment functions as depicted by figures (4 & 5) respectively. Fig. 4(a-b) portrait maximal 

amount of each control interventions required for the maximization of susceptible population from Ebola virus 

infection. The result here indicated that less amount of
*

1 ( )t was required while significant amount of
*

2 ( )t

was needed for the achievement of maximal output by our model. Finally, fig. 5, pictured the commercial cost 

value of the pair treatment functions to achieve the state result. 

6. Conclusion 

In this study, we present a necessary and sufficient optimal control model, analysed using classical numerical 

methods to produce as accurate as possible, a mathematical result that depicted the efficacy of structured 

control interventions for the eradication of Ebola infection epidemic. The study was vested with the 

investigation of the efficacy of existing intermediary and secondary interventions as substantial Ebola infection 

treatment functions following the absent of outright medical cure. The introduction of optimal control 

technique acidulously maximized susceptible population devoid of Ebola virus infection and as well x-rayed 

the rapid recovery of the removed class, which were subsequently recruited to the susceptible class.  

Furthermore, results of numerical analysis proved maximal suppression of both exposed and infectious 

groups under minimized control cost. The investigation thus, encourage the continuous and cogent utilization 

of identified treatment functions for the eradication of Ebola infection in the absent of yet an outright medical 

cure. 
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