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Abstract 
We consider a recently developed new approach so-called the flow curvature method based on the differential 
geometry to analyze the Lorenz-Haken model. According to this method, the trajectory curve or flow of any 
dynamical system of dimension n considers as a curve in Euclidean space of dimension n . Then the flow 
curvature or the curvature of the trajectory curve may be computed analytically. The set of points where the 
flow curvature is null or empty defines the flow curvature manifold. This manifold connected with the 
dynamical system of any dimension n  directly describes the analytical equation of the slow invariant manifold 
incorporated with the same dynamical system. In this article, we apply the flow curvature method for the first 
time on the three-dimensional Lorenz-Haken model to compute the analytical equation of the slow invariant 
manifold where we use the Darboux theorem to prove the invariance property of the slow manifold. After that, 
we determine the osculating plane of the dynamical system and find the relation between flow curvature 
manifold and osculating plane. Finally, we find the nature of the fixed point stability using flow curvature 
manifold. 
 
Index Terms: Flow Curvature Method, Slow Manifold, Dynamical System, Differential Geometry. 
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1. Introduction 

 According to [1, 2, 3] singularly perturbed systems can have invariant manifolds where the trajectories of 
the flow moves slowly and these slow manifolds are invariant with respect to the flow. Several methods have 
been developed to find out the analytical slow manifold equations of the singularly perturbed systems. In [4, 5, 
6, 7, 8, 9, 10, 11], introduces the geometric singular perturbation technique to establish the existence of the 
slow manifold equation along with the local invariance of the slow manifold for the singularly perturbed 
system. In the case of non-singularly perturbed system like that of L-H model this technique fails to provide the 
slow manifold. 
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The flow curvature method [12, 13, 14, 15, 16] is the new method in recent publications for computing the 
analytical implicit equation of the slow manifold. This method can be applied to any autonomous or non-
autonomous dynamical systems in n dimensions whether it is singularly perturbed or not. Recent applications 
of the flow curvature method of the singularly perturbed systems are FitzHugh-Nagumo model, Brusselator 
model, Van der pol model, Chua’s model, etc and the applications of the flow curvature method of the non-
singularly perturbed systems are Lorenz model, Rikitake model, etc. [17] used the flow curvature method to 
construct the slow invariant manifold of the heartbeat model.  In [18], author developed the slow invariant 
manifold analytical implicit equation of the generalized Lorenz-Krishnamurthy model and conservative 
generalized Lorenz-Krishnamurthy model. The most important feature of this method is that, the flow curvature 
manifold directly gives us the analytical equation of the slow manifold. Without using any asymptotic 
expansions, this method allows us to find the flow curvature manifold and hence slow invariant manifold 
equation. To the best of our knowledge, this method is the best to find the analytical equation of the slow 
invariant manifold for any dimensional dynamical system and this study advances the field from the previous 
related work. 

Several attempts have been taken to compute the slow manifold equation of the Lorenz-Haken (L-H) model. 
In [19], an Iterative approach is studied where the implicit equation of the slow manifold of the L-H model is 
calculated. Then [20] proposed a new technique to compute the equation of the slow manifold of the L-H 
model and this method is based on the slow eigenvectors of the local tangent systems. [21] identified the slow 
manifold of the L-H model by using the geometric singular perturbation theory. So, our goal of this present 
paper is to apply the flow curvature method on the three dimensional laser system called L-H model to find the 
analytical implicit equation of the slow invariant manifold. The invariance of the slow manifold of the    L-H 
model is then proved by using the Darboux theory. We also find osculating plane of the L-H model where 
osculating plane passes through the fixed points of the dynamical system. We discuss also the nature of the 
fixed points stability by using the flow curvature manifold. To simulate the L-H model, we use 
MATHEMATICA as a software tool.   

The remainder part of this paper is organized as follows. In section 2, we describe the nonlinear optical slow-
fast L-H model. We discuss the flow curvature method based on the differential geometry in section 3. We also 
present the Darboux theorem in this section which represents the invariance condition of the slow manifold of a 
dynamical system. In section 4, we express the slow manifold analytical equation of the L-H model. Osculating 
plane equations of the L-H model is also determined in section 5. In section 6, we discussed about the fixed 
points stability using flow curvature manifold. Some conclusions are given in section 7. 

2. L-H Model 

In [22], Haken introduced an optical model. Since the Haken model is similar to the Lorenz model, hence the 
system is called L-H model. The slow-fast nonlinear system of equations in three variables for the standard L-H  
model is given by:    

 
 

 (1) 
 
 

                                                                                                                                         
     In the laser system (1), the real amplitude of the electromagnetic field is denoted by E , the polarization of 
the cavity medium  is denoted by P  and n  is the inversion of the state within the two levels of the 
development due to the pumping. Also, k and γ  are the relaxation rate parameters and B is the pump 

parameter. If we consider , ,x y z  in place of , ,E P n respectively and also consider ,µ δ in place of ,k γ , then  
equation (1) can be written as the following system of non-linear ordinary differential equations. 

( ),
,

( ).

E k P E
P nE P
n B n EPγ

= −

= −
= − −






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(2) 

 

3. Flow Curvature Method 

In this part, we briefly discuss the flow curvature method in terms of differential geometry. This method 
uses the properties of curvatures of trajectory curve or flow of the dynamical system. Using this method, one 
can define the flow curvature manifold corresponding to the dynamical system. Any n-dimensional dynamical 
system can have the (n-1) dimensional flow curvature manifold that means flow curvature manifold contains 
the information about the flow with highest curvature. 

3.1 Analytical Implicit Equation of the Slow Manifold of the Dynamical System 

Invariant manifold implies a very significant role to explain the stability as well as dynamical behavior of a 
system, especially for a slow-fast dynamical system. Although geometric perturbation technique is well known 
to find the analytical equation of slow manifold, the main difference between geometric perturbation technique 
and the flow curvature method is that it neither uses asymptotic expansions nor eigenvectors. Another 
difference is that this method can be used for any dynamical system which may or may not singularly perturbed. 

 
Proposition 3.1 The set of points where the curvature of the flow of the model (2) vanishes represented by the 
following flow curvature manifold equation of the dynamical system. 

( ) ( )( ) det , , 0X X X X X X Xψ = ⋅ ∧ = =
     
     


 

Proof See [13,14] 
 
Note that for any n-dimensional dynamical system, maximum (n-1)th flow curvature is possible.  

 
Proposition 3.2 The flow curvature manifold of the dynamical system (2) directly provides its implicit 
analytical equation of the slow manifold. 
 
Proof  See [13,14] 

3.2 Darboux Invariance Theorem 

According to [23, 24], the concept of the invariant manifold is first introduced by G. Darboux (1878, p. 71). 
We consider the trajectories of the dynamical system (2) is represented by a motion of a point in a three 
dimensional space and the coordinates of the point is ( , , )X x y z=


and the velocity vector of this point is 

( , , )V x y z=


   . 

Proposition 3.3 Consider ( )( ) det , , 0X X X Xψ = =
 
 


is a slow manifold of the dynamical system (2) where ψ is 

a first time continuously differentiable function, then this manifold is invariant with respect to the flow of (2) if 
there exist a first time continuously differentiable function called cofactor ( )C X


which satisfies the following 

equation: 

( ) ( ) ( ),V X C X Xψ ψ=
  

L

( ),
,

( ).

x y x
y zx y
z B z xy

µ

δ

= −
= −
= − −






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with the Lie derivative defined as the following: 
 

( )V X V d dtψ ψ ψ= ⋅ ∇ =
  

L  
Proof  See [13, 14] 

3.3 The Osculating Plane Equation  

Definition 3.1 The osculating plane is the plane which passes through a fixed point *X


of the dynamical 
system and parallel to the unit tangent and normal vectors to a three dimensional curve and also spanned by the 
velocity vector and acceleration vector. The Osculating plane can be defined using for a dynamical system (2) 
as the following 

 
( ) ( )*( ) 0P X X X X X= − ⋅ ∧ =

  
 



 
 Theorem 3.4 The Flow curvature manifold ( )Xψ


 of the three-dimensional dynamical system (2) merges with 

its Lie derivative ( )V Xψ


L  and with its osculating plane ( )P X


 in the vicinity of the fixed point *X


. 
 
Proof  See [14] 

3.4 Stability Analysis of the Fixed Points 

Definition 3.2 The fixed points *X


of any dynamical system may also be fixed points of the flow curvature 
manifold if the following two equations are satisfied:  

*

*

( ) 0

( ) 0

X

X

ψ

ψ

=

∇ =



   

Definition 3.3 The Hessian of a function ( )Xψ


at the point X


is denoted by ( )XHψ
 and defined by 

2 2 2

2

2 2 2

( ) 2

2 2 2

2

X

x y x zx

H
y x y zy

z x z y z

ψ

ψ ψ ψ

ψ ψ ψ

ψ ψ ψ

∂ ∂ ∂
∂ ∂ ∂ ∂∂

∂ ∂ ∂
=
∂ ∂ ∂ ∂∂

∂ ∂ ∂
∂ ∂ ∂ ∂ ∂


 

 
Theorem 3.5 The relative Hessian of the flow curvature manifold ( )Xψ


 of the three-dimensional dynamical 

system (2) enables to determine the stability of the fixed point *X


. 
 
If *( )

ˆ 0XHψ ≥ then both eigenvalues are real and the fixed point *X


is a saddle-node. 

If *( )
ˆ 0XHψ < then eigenvalues are complex conjugated and the fixed point *X


is a saddle-focus or a center. 
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Proof  See [14] 

4. The Slow Invariant Manifold of the L-H model 

According to the flow curvature method, the trajectory curves of any dynamical system which may or may 
not singularly perturbed considered the curves in the Euclidean space. We consider the system model (2) as the 
slow-fast dynamical system.  

We use the parameter values of (2) as mentioned in Table 1 and for the numerical simulation, we consider 
the range of the state variables connected with the dynamical system (2) as the following 
 

min max

min max

min max

[x , x ] = [-4, 4];
[y , y ] = [-4, 4];
[z , z ] = [0, 15];

 

TABLE 1. TYPICAL PARAMETER VALUES OF (2) FOR THE NUMERICAL COMPUTATIONS. 

Parameters                            µ                  δ              B              

Values                                   4.0                 0.4              12.0                

 
By putting right hand side parts of the dynamical system (2), that is, 

 

       
( ) 0,

0,
( ) 0,

y x
yzx y

B z xy

µ

δ

− =
− =
− − =

                                                                                                                                        (3) 

 
we obtain three following  graphs for the three null-clines of the system (2). 
Thus, we get the following three fixed points by solving the system (3)  
 

1 1 1

2 2 2

3 3 3

x  = -3.3166247903554; y = -3.3166247903554; z  = 1;
x  = 0; y  = 0; z = 12;
x  = 3.31662479103554; y  = 3.3166247903554; z  = 1;

 

 

We use explicit Runge-Kutta method to solve the model (2) numerically where we use 

0 0 0( , , ) (1,1,1)x y z = as an initial point. Fig.1 shows the phase diagram represented by (2) where t  ranges 
from 500 to 1000. Also, the three green points in the fig.1 indicate the fixed points of the model (2). 
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(a) (b) 

 
(c) 

 

Fig.1. Nullclines of the model (2). (a) first equation of the system (3), (b) second equation of the system (3) and (c) third equation of the 
system (3). 

Thus, we get the following three fixed points by solving the system (3)  
 

1 1 1

2 2 2

3 3 3

x  = -3.3166247903554; y = -3.3166247903554; z  = 1;
x  = 0; y  = 0; z = 12;
x  = 3.31662479103554; y  = 3.3166247903554; z  = 1;
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We use explicit Runge-Kutta method to solve the model (2) numerically where we use 

0 0 0( , , ) (1,1,1)x y z = as an initial point. Fig.1 shows the phase diagram represented by (2) where t  ranges 
from 500 to 1000. Also, the three green points in the fig.1 indicate the fixed points of the model (2). 

 

 
 

Fig.2. Phase plot analysis for the model (2) along with the three fixed points obtained from the same model. 

Now, in order to calculate the flow curvature manifold of the model (2) using the flow curvature method, we 
need the velocity, acceleration and over-acceleration (Jerk) because of our 3-dimensional dynamical model. 
The velocity vector field of the model (2) can be represented by the following way. 

 
V={4 (-x + y), -y + x z, 0.4 (12 - x y - z)}


 
 

The Jacobian matrix corresponding to the model (2) may be written as 
 

4 4 0
1

0.4 0.4 0.4
J z x

y x

− 
 = − 
 − − − 

 

 

Now we get the acceleration vector by using the formula A JV=
 

and hence, we obtain 
 

2 2 24(4 5 ), 0.4( 12 2.5 13.5 10 ), 1.6(1.2 1.35 0.1 0.25 )A x y xz x y x y xz yz xy y z x z= − + − − − + + − − − + − +


 
 
     Then, the over-acceleration or jerk is calculated according to the formula * ( )A J A TotalDifferential J V= +

  
 

and we get the result as the following. 
* 2

2 2 2

2 2

1.6( 12 2.5 13.5 10 ),3.2( )(12 ) 4 (4 5 )
1.6 (1.2 1.35 0.1 0.25 ) 0.4( 12 2.5 13.5 10 ),
1.6 (4 5 ) 0.64(1.2 1.35 0.1 0.25 ) 0.16 ( 12 2.5

A x y x y xz yz x y xy z z x y xz
x xy y z x z x y x y xz yz
y x y xz xy y z x z x x y x

= − − − + + − − + − − + − + −

− + − + + − − + + − −

− + + − + − + + − − +



2 13.5 10 )y xz yz+ −  
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After that, we find the slow manifold function of the model (2) as the following 

2 4 3 5 2 2 2

4 2 6 2 3 3 3 4 2 4 5

2 4 3 5 2

2 2

8208 144 18702  1218 24 13896 2226 
18  764  110 720 192 120  
3186 282 4462.5   672  1.5  4110 

( , , ) 0.256 
718 

x x x y x y x y y x y
x y x y x y x y y x y x y

x z x z x y z x y z x y z y z
x y z

x y
ψ

− + + + − − − +

+ + − + + − +

− − + − + −
=

4 2 3 3 3 4 2 2 4 2

6 2 2 3 2 2 2 2 2 2 3 2

2 3 4 3 3 3 3 2 3 2 4

20 24  30 160 808.5 45 
2.5 1142   260  1446 425 300  
350 50 75   75  100. 25 

z x y z x y z x y z y z x z x z
x z x y z x y z y z x y z x y z
x z x z x y z x y z y z x z

− − + + − + +

+ − − +

 
 
 
 
 


− +

− − +


 


 + −




 

 Now the analytical implicit equation of the slow manifold of the model (2) can be written as 

 (4) 

In Fig.3(a) shows the graphical representation of the analytical implicit equation of the slow manifold 
represented by the equation (4) and Fig.3(b) represents the slow manifold as well as phase space diagram in the 
same graph. 

(a) (b) 

Fig.3. (a) Graphical representation of the slow manifold analytical equation of the model (2) using flow curvature method, (b) Graphical 
representation of the slow manifold analytical equation along with the phase diagram represented by (2). 

The Lie derivative of the slow manifold function is then evaluated as the following by using the Darboux 
invariance theory to establish the flow curvature invariance of the equation (4). We first find the normal vector 
of the flow curvature manifold and we get 

( , , ) 0x y zψ =
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3 2 4 2

3 2 5 2 3 2 3 4 5 3

2 4 2 3 2 3 2 3

2

{0.256( 16416. 576. 18702. 3654. 120. 4452.

72. 6. 764. 330. 384. 120. 6372. 1128.

4462.5 2016. 7.5 1436. 80. 24. 90.

1617. 180.

x x y x y x y xy

x y x y y x y xy y xz x z

yz x yz x yz xy z x y z y z x y z

xz x

ψ∇ = − + + + − − +

+ + − + − + − −

+ − − − − + −

+



3 2 5 2 2 2 2 2 2 3 2

3 3 3 3 2 3 4 3

5 2 4 6 2 3 2 3

2 3 4

15. 1142. 780. 850. 300.

700. 200. 75. 225. 50. ),0.256(18702. 1218.

24. 27792. 4452. 36. 2. 2292. 330. 2880.

768. 600. 4462.5

z x z yz x yz xy z y z

xz x z yz x yz xz x x

x y x y x y x y xy x y y

x y xy x

+ + − + − +

− − + − + −

− − + + + − + +

− − 3 5 2 4

2 3 2 3 2 3 2 2 2 2

2 2 3 3 3 3 2 4

3 5 2 2 2

672. 1.5 8220. 1436. 40.

72. 90. 640. 1142. 260. 2892. 850.

900. 75. 75. 200. ),0.256(3186. 282. 4462.5

672. 1.5 4110. 718.

z x z x z yz x yz x yz

xy z x y z y z xz x z yz x yz

xy z xz x z yz x x xy

x y x y y x y

+ − + − − −

+ + + − − + −

− + + − − +

− + − 4 2 3 3 3 4

2 4 6 3 2 2 2 3

2 2 4 2 2 3 2 2 2 2 3

20. 24. 30. 160.

1617. 90. 5. 2284. 520. 2892. 850. 600.

1050. 150. 225 225 300 100 )}

x y xy x y y

x z x z x z xyz x yz y z x y z xy z

x z x z xyz x yz y z x z

− − + + −

+ + + − − + − +

− − + + −

 

 
Now according to proposition 3.3, we compute Lie derivative of the slow manifold as follows 
  

2 4 3 5 2 2 23187.28 144. 7110  455.858 24 4816.06 1386.4 
4 2 6 2 3 3 3 5 3 446.0157  980.913  93.2756 1.25984 37.1654 
2 4 4 4 5142.299 0.472441 100.472  18.897

6.5024 

x x x y x y x y y x y

x y x y x y x y x y y

x y x y x y

ψ

− + + + − − − +

+ + − − − +

+ − +

= −
VL

6 2 46 622.913 247.039 
3 5 2 2 21289.63   780.236  1.26378  1637.62 826.362 

4 2 3 3 3 4 15 2 48.50394 173.606  13.937 31.4961 4.37096 10
2 2 4 2302.846 31.6535 2.5 

y x z x z

x y z x y z x y z y z x y z

x y z x y z x y z y z x y z

x z x z x

+ − −

+ − + − −
−+ + + − × −

+ + 6 2 2 3 2 5 2234.315   139.055  3.14961  
2 2 2 2 2 3 2 4 2 2 3 4 3395.937 302.835 246.457  47.2441 100.709 23.622 

3 3 3 2 3 2 4 4 414.685   38.3858  24.4094 6.49606 2.95276 1.

z x y z x y z x y z

y z x y z x y z y z x z x z

x y z x y z y z x z x z

+ − − −

+ − + + − −

+ + − − − 15 409274 10   x y z

 
 
 
 
 
 


−×


 
 
 
 
 
 
 
 
 

 

 
In Fig.4(a) shows the graphical representation of the equation 0ψ =

VL  that means the graphical 

representation of the flow curvature invariance manifold where the rate of change of ( , , )x y zψ  is equal to zero 
and Fig.4(b) shows the combined graph of  the invariance manifold and phase space plot. 
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(a) (b) 

Fig.4. (a) Graphical representation of the invariance equation of the slow manifold analytical equation of the model (2) according to the 
Darboux theorem (b) Graphical representation of the invariance equation of the slow manifold analytical equation along with the phase 
diagram represented by (2). 

 

5. The Osculating Plane Equation of the L-H Model 

According to the definition 3.1, we calculate the osculating plane equation for the fixed point 
1 1 1x  = -3.3166247903554, y = -3.3166247903554, z  = 1  . We find the first osculating plane expression as the 

following  
 

2 2 3 2

2 2 2 3 2 4 2 3

3 4 2 3

1 2

23.8797 0.6 47.2619 5.475 3.15079 0.35 11.3

4.56036 0.325 0.0829156 0.025 4.14578

0.85 1. 20.3972 0.175 0.829156 6.01138
( ) 6.4

6.1375 0.124373

x x y xy x y x y y

xy x y x y x y y

xy y xz x z x z yz
P X

xyz x yz

− − + + + − −

+ − − + −

+ + + − − +
=

+ +



3 2

16 2 2 2 2 2 2

3 2 4 2 2 2 2 2 2 3

0.0375 3.85

1.15069 10 0.25 1.8656 1.1875

0.207289 0.0625 0.829156 2.125 2.5 0.625

x yz y z

xy z x y z xz x z

x z x z yz xyz y z x z

−

 
 
 
 
 
 

− + 
 × − − + − 
 − + − + − 

 

 
Now the graphical representation of the osculating plane equation 1( ) 0P X =


can be shown as follows:
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Fig.5. Graphical representation of the osculating plane equation corresponding to the fixed point 1 1 1(x , y , z ) . 
 
Then we calculate the osculating plane equation for the fixed point 2 2 2x  = 0, y  = 0, z = 12  . We find the 
second osculating plane expression as the following 

 
2 3 2 2 2 4 2 3 4

2 3 2 2 2 2 2
2

4 2 2 2 2 2 3

32.4 48.15 2.4 16.2 3.075 0.025 0.85 1.

( ) 6.4 9.45 29.5125 0.0375 31.35 0.25 8.0625

0.0625 2.125 2.5 0.625

x xy x y y x y x y xy y

P X x z xyz x yz y z x y z x z

x z xyz y z x z

 − − + + − − + −
 
 = + + − − + −
 
 − + − 


 

Now the graphical representation of the osculating plane equation 2 ( ) 0P X =


can be shown as follows: 
 

 

 
Fig.6. Graphical representation of the osculating plane equation corresponding to the fixed point 2 2 2(x , y , z ) . 
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Similarly, we calculate the osculating plane equation for the fixed point 
3 3 3x  = 3.31662479103554, y  = 3.3166247903554, z  = 1  . We find the third osculating plane expression as the 

following 
 

2 2 3 2 2

2 2 3 2 4 2 3 3 4

2 3 2
3

23.8797 0.6 47.2619 5.475 3.15079 0.35 11.3 4.56036

0.325 0.0829156 0.025 4.14578 0.85 1. 20.3972

( ) 6.4 0.175 0.829156 6.01138 6.1375 0.124373

x x y xy x y x y y xy

x y x y x y y xy y xz
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Now the graphical representation of the osculating plane equation 3 ( ) 0P X =


can be shown as follows: 

 

 

Fig.7. Graphical representation of the osculating plane equation corresponding to the fixed point 3 3 3(x , y , z ) . 

 
Observation shows that,  Fig.3(a) merges with Fig.5, Fig.6 and Fig 7, That means Theorem 3.4 holds. 

6. Stability Analysis of the Fixed Points Using Slow Invariant Manifold of the L-H model 

Fixed points of any dynamical system are the singular solutions of the flow curvature manifold and it’s Lie 
derivative [14]. Thus fixed points may be deduced from the flow curvature manifold equation. The 
discriminant of the functional jacobian matrix associated with the dynamical systems may be deduced from the 
flow curvature manifold which contains good information about the dynamics of the system. 
 

The following expression represents the first row vector of the Hessian matrix of the flow curvature 
manifold at the  point ( , , )tX x y z=


. 
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The following expression represents the second row vector of the Hessian matrix of the flow curvature 

manifold at the  point X


. 
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The following expression represents the third row vector of the Hessian matrix of the flow curvature 

manifold at the  point X


. 
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By combining these three row vectors we find the complete Hessian matrix. The determinant of this Hessian 
matrix is denoted by ( )XHψ

 . The relative Hessian of the flow curvature manifold ( )Xψ


can be defined as 

follows: 
 

( )
( )

ˆ
( )

X
X X

H
H ψ
ψ ψ

=


   

 
We now calculate the relative Hessian at the point 1 1 1( , , )x y zε ε ε+ + + and get the following expression
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By considering 0ε → , we get the positive value of the above expression and which is 224.38026 10−× . Now 
according to theorem 3.5, the fixed point 1 1 1(x , y , z )  is a saddle-node. Then we calculate the relative Hessian at 

the point 2 2 2( , , )x y zε ε ε+ + + and get the following expression 
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By considering 0ε → , we get the negative value of the above expression and which is 81.13747 10− × . Now 
according to theorem 3.5, the fixed point 2 2 2(x , y , z )  is a saddle-focus or center. Similarly, we calculate the 

relative Hessian at the point 3 3 3( , , )x y zε ε ε+ + + and get the following expression 
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By considering 0ε → , we get the positive value of the above expression and which is 223.7888 10−× . Now 
according to theorem 3.5, the fixed point 3 3 3(x , y , z )  is a saddle-node.  

7. Conclusion 

In this work, we applied a newly developed strategy which reflects the applications of differential geometry 
in the dynamical system called flow curvature method to the L-H model. We determined the curvature of the 
trajectory curve or the curvature of the flow analytically called flow curvature manifold by estimating the 
solution or trajectory curve of the dynamical system as a curve in Euclidean space. Since this manifold 
comprises the time derivatives of the velocity vector field and hence it receives knowledge about the dynamics 
of the corresponding system. L-H model is a well-known problem as a nonlinear optical slow-fast dynamical 
system. In this manuscript, we analyzed the slow invariant manifold of the three-dimensional L-H model. We 
used flow curvature method to determine the analytical equation of the slow invariant manifold of the model. 
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We performed a numerical simulation of the L-H model by using Explicit Runge-Kutta method. We also 
used Darboux invariance theorem to show the invariance of the slow manifold. We also determined three 
osculating plane equations for three different fixed points and found a good correspondence between flow 
curvature manifold and osculating plane equations. Then we performed fixed point stability analysis through 
the Hessian of the flow curvature manifold. 
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