
I. J. Mathematical Sciences and Computing, 2020, 4, 12-25
Published Online August 2020 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijmsc.2020.04.02

Copyright © 2020 MECS I.J. Mathematical Sciences and Computing, 2020, 4, 12-25

Modifying one of the Machine Learning
Algorithms kNN to Make it Independent of the
Parameter k by Re-defining Neighbor

Pushpam Kumar Sinha
Department of Mechanical Engineering, Netaji Subhas Institute of Technology, Amhara, Bihta, Patna, India
Email: pushpamsinha1@gmail.com

Received: 29 May 2020; Accepted: 15 July 2020; Published: 08 August 2020

Abstract: When we are given a data set where in based upon the values and or characteristics of attributes each data point
is assigned a class, it is known as classification. In machine learning a very simple and powerful tool to do this is the k-
Nearest Neighbor (kNN) algorithm. It is based on the concept that the data points of a particular class are neighbors of each
other. For a given test data or an unknown data, to find the class to which it is the neighbor one measures in kNN the
Euclidean distances of the test data or the unknown data from all the data points of all the classes in the training data. Then
out of the 𝑘 nearest distances, where 𝑘 is any number greater than or equal to 1, the class to which the test data or unknown
data is the nearest most number of times is the class assigned to the test data or unknown data. In this paper, I propose a
variation of kNN, which I call the ANN method (Alternative Nearest Neighbor) to distinguish it from kNN. The striking
feature of ANN that makes it different from kNN is its definition of neighbor. In ANN the class from whose data points the
maximum Euclidean distance of the unknown data is less than or equal to the maximum Euclidean distance between all the
training data points of the class, is the class to which the unknown data is neighbor. It follows, henceforth, naturally that
ANN gives a unique solution to each unknown data. Where as , in kNN the solution may vary depending on the value of
the number of nearest neighbors k. So, in kNN, as k is varied the performance may vary too. But this is not the case in
ANN, its performance for a particular training data is unique.
For the training data [1] considered in this paper, the ANN gives 100% accurate result.

Keywords: Euclidean distance, k-Nearest Neighbor, Training data, Linearly separable data, Non-linearly separable data

1. Introduction

One of the common problems in machine learning is that of classification of objects, and one of the easiest and yet
powerful tool to do this is the conventional kNN (k-Nearest Neighbor) method. The basic concept of kNN is that the
objects which are similar to each other and hence belonging to one particular class tend to remain closer to each other and
far from the objects of the other class. In other words the objects of the same class are neighbors of each other. Therefore,
in kNN, to find out whether the two chosen data points are neighbors of each other or not, we must somehow know to
measure the distance between the two data points. And the distance most commonly measured in kNN is Euclidean
distance [1].

 Suppose that a certain considered data set has 𝑛 data points, classified into 𝑚 classes, based upon 𝑝 attributes. Let the 𝑖-
th attribute be denoted by 𝑥𝑖. Then the Euclidean distance (Ed) between two data points 1 and 2 is

𝐸𝑑1−2 = ��(𝑥𝑖1 − 𝑥𝑖2)2
𝑝

𝑖=1

where 𝑥𝑖1 is the value of attribute 𝑖 for data point 1, and 𝑥𝑖2 is the value of attribute 𝑖 for data point 2
Let unknown data point be 𝑢 for which we need to determine the class. We find the Ed of 𝑢 from each of the 𝑛 data

points, and denote it 𝐸𝑑𝑢−𝑗, 𝑗 = 1,2, … ,𝑛. Fix value of 𝑘, the minimum value is 1 and the maximum may be the square
root of the number of known data points [1]. Once value of 𝑘 is fixed, find 𝑘 known data points closest to the unknown
data 𝑢; the class of each of these closest data points will be the class of the unknown data point respectively. We will find
the class of 𝑢 finaly by majority voting of the several classes assigned to 𝑢. The performance of conventional kNN is
naturally affected by the choice of 𝑘. I, in this paper, am in search of a method which is free from the parameter 𝑘 and
thereby its performance is not dependent on the choice of 𝑘.

mailto:pushpamsinha1@gmail.com

 Modifying one of the Machine Learning Algorithms kNN to Make it Independent of the Parameter k 13
by Re-defining Neighbor

Copyright © 2020 MECS I.J. Mathematical Sciences and Computing, 2020, 4, 12-25

Over the years there have been several advancements to the conventional kNN, and broadly the different kNN
techniques are classified into Structure based kNN and Non-structure based kNN [2]. The need for providing structure to
the input data points arose because of the memory limitation of the conventional kNN for very large and highly
dimensional data sets. Ball-tree based algorithms (BTAs) are one of the popular structure based kNNs. In BTA nodes/balls
are made enclosing all/some of the input data points of the data set. The node enclosing all the input data points of the data
set is the root node, where as they including a certain subset of the data set are either the children to root node or the grand-
children to child node. In each of the node/ball, node radius is found out as the maximum distance of the pivot point from
the rest of the data points enclosed inside the node. Pivot point may be any one of the data points that the node owns or it
may be the centroid of the data points that the node owns. The BTAs being mention here are KNS1, KNS2 and KNS3.
KNS1 is due to Uhlmann [3], while KNS2 and KNS3 are due to Liu et al [4]. KNS1 explicitly finds out the 𝑘 nearest
neighbors of unknown data point 𝑢 (whose class is unknown), while KNS2 and KNS3 does not. Both KNS2 and KNS3 are
algorithms for binary classification. KNS2 finds out how many of the 𝑘 nearest neighbors of 𝑢 are positive, while KNS3
finds out if at least 𝑡 of the 𝑘 nearest neighbors of 𝑢 are positive. Thus all the three BTAs have their performance
dependent upon the choice of pivot points for the nodes/balls and the value of 𝑘, and for KNS3 also on 𝑡. The method that
I have developed in this paper is free from all these parameters. Though in my method too I find out the maximum distance
for the input data points belonging to a particular class, but this maximum distance is not found out from the pivot point to
the rest of the points in the class. There is no pivot point in my method, instead for each class I find out the maximum
distance between all the data points that belongs to the class (see Section 2). I call my method the ANN (Alternative
Nearest Neighbor) to distinguish it from kNN.

The other popular structure based kNNs include k-d tree [5], nearest feature line (NFL) [6], tunable metric [7], principal
orthogonal search tree [8], axis search tree [9], etc.. I do not discuss these here as my method is completely different from
these, and hence these are not the pre-requisites to understand my method. Moreover, these are not the stepping stones
towards developing my method.

The best example of non-structure based kNN is the conventional kNN [10] which I have introduced above. Using the
concept of weights, the conventional kNN underwent some change [11]. In [11] the input data points are assigned weights
based on their distances from the unknown data point. However, the solution to the problem of moving unknown points in
the space of known data set is different; the notable solutions are by [12], [13] (Continuous RNN), [14], etc. All these are
also the non-structure based kNNs. None of these too, with the exception of conventional or classical kNN, are stepping
stones towards developing my method.

2. The ANN method

There is no challenge to the concept of conventional kNN that similar objects are neighbors of each other or neighbors
are those who are similar to each other and hence belonging to the same class. The measure of similarity mostly adopted is
Euclidean distance. A natural question that the above concept raises is how close (less than or equal to a particular
threshold value) should the two particular neighbors be so that if the distance between these two data points is greater than
the one defining proximity between neighbors, then the two data points are not neighbors. And while developing a
machine learning algorithm the answer to the above question must not be subjective. The clue to answer the above
question objectively lies in the input data set of the particular classification problem itself, also, called the training data in
machine learning paradigm.

The ANN method believes that there is no lower limit to how close the two neighbors can get, but there always is an
upper limit to how far the two neighbors are. For a data set for which the above boundary of neighborhood has not been
declared explicitly, we find the maximum distance between the data points belonging to a particular class as the farthest
that the two particular data points belonging to the class can get, and this defines the boundary of neighborhood for that
class. This means that for a class with 𝑙 data points a combination of any two data points out of 𝑙 has to be chosen and the
distance between the two calculated, thereby calculating in total 𝑙 (𝑙−1)

2
 distances. Out of these 𝑙 (𝑙−1)

2
 distances the

maximum defines the boundary (upper limit) of neighborhood of that class. The striking feature of ANN that makes it
different from kNN is this very definition of neighbor. To be precise, in ANN the class from whose data points the
maximum Euclidean distance of the unknown data is less than or equal to the maximum Euclidean distance between all the
training data points of the class, is the class to which the unknown data is neighbor.

Consider a certain training data with 𝑝 data points segregated into classes 1, 2 and 3 with 𝑙 , 𝑚 and 𝑛 data points
respectively based on the value of two attributes 𝑥 and 𝑦.

𝑙 + 𝑚 + 𝑛 = 𝑝 (1)

Let the boundary of neighborhood in class 1, 2 and 3 respectively (i.e. the maximum distance amongst the set of data
points belonging to a particular class) be 𝑑𝑖𝑠𝑡𝑚𝑎𝑥[1], 𝑑𝑖𝑠𝑡𝑚𝑎𝑥[2] and 𝑑𝑖𝑠𝑡𝑚𝑎𝑥[3] respectively, the distance 𝐸𝑑1−2
between any two data points 1 and 2 of the training data being given by

𝐸𝑑1−2 = �(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 (2)

14 Modifying one of the Machine Learning Algorithms kNN to Make it Independent of the Parameter k by
Re-defining Neighbor

Copyright © 2020 MECS I.J. Mathematical Sciences and Computing, 2020, 4, 12-25

where the symbols have usual meaning (see Section 1)
Let the unknown data or test data be 𝑢. Find the maximum distance of 𝑢 from the data points in each of the class 1, 2

and 3 separately, and denote it by 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[1], 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[2] and 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[3] respectively. An algorithm to find
𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[1] is

 for (k=1;k<=l;k++)
dist2[k]=0.0;
for (k=1;k<=l;k++)
dist2[k]=dist2[k]+sqrt((𝑥𝑢-𝑥𝑘)* (𝑥𝑢-𝑥𝑘)+ (𝑦𝑢-𝑦𝑘)* (𝑦𝑢-𝑦𝑘));
distmax2[1]=0.0;
for(k=1;k<=l;k++)
if(distmax2[1]<dist2[k])
distmax2[1]=dist2[k];
Some of the syntax used in above algorithm is that of the C/C++ programming language.

2.1 Assigning class in ANN method for the above mentioned training data

If for a certain class 𝑖 only 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[𝑖] ≤ 𝑑𝑖𝑠𝑡𝑚𝑎𝑥[𝑖], we say that the unknown data or the test data belong to class 𝑖.
If, however, for two classes or more than two classes, say for example class 1 and 2 here
𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[1] ≤ 𝑑𝑖𝑠𝑡𝑚𝑎𝑥[1], 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[2] ≤ 𝑑𝑖𝑠𝑡𝑚𝑎𝑥[2] and 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[1] 𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[2],
the unknown data or the test data belongs to the class 𝑘 (=1,2) for which 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[𝑘] is minimum.
If, however, for two classes or more than two classes, say for example class 1 and 2 here
𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[1] ≤ 𝑑𝑖𝑠𝑡𝑚𝑎𝑥[1], 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[2] ≤ 𝑑𝑖𝑠𝑡𝑚𝑎𝑥[2] and 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[1] 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[2],
the unknown data or the test data belongs to the class 𝑘 (=1,2) for which the percentage deviation of 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[𝑘] from

𝑑𝑖𝑠𝑡𝑚𝑎𝑥[𝑘] is the largest.
If, however, for no class 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[𝑖] ≤ 𝑑𝑖𝑠𝑡𝑚𝑎𝑥[𝑖], the unknown data or the test data belongs to the class 𝑘 for

which 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[𝑘] is minimum provided this minimum is not for two or more than two classes.
If, however, for no class 𝑖 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[𝑖] ≤ 𝑑𝑖𝑠𝑡𝑚𝑎𝑥[𝑖] and there are, say 2 minimums of 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2, for example for

class 2 and 3; i.e. 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[2] 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[3] and 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[3] < 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[1], then the unknown data or the
test data belongs to the class 𝑘 (=2,3) for which the percentage deviation of 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[𝑘] from 𝑑𝑖𝑠𝑡𝑚𝑎𝑥[𝑘] is the
smallest.

3.Example Training Data

Consider the following training data [1] to which we will apply the ANN method for classification

Table 1.Example training data

Name Aptitude Communication Class
A 4 7 Speaker
B 8 3 Worker
C 2 5 Speaker
D 7 2.5 Worker
E 8 6 Leader
F 6 7 Leader
G 5 4.5 Worker
H 2 6 Speaker
I 7 6 Leader
J 5 3 Worker
K 3 5.5 Speaker
L 9 7 Leader
M 6 5.5 Leader
N 6 4 Worker
O 6 2 Worker

The student elections are going on in certain college. A party of students is formed in which different students are
assigned different roles based on their performance in two attributes, aptitude and communication skill. There are 15
students in this training data which are segregated into three classes- Leader, Speaker and Worker. A two dimensional
graph is plotted for this training data with aptitude along 𝑥 axis and communication skill along 𝑦 axis.

 Modifying one of the Machine Learning Algorithms kNN to Make it Independent of the Parameter k 15
by Re-defining Neighbor

Copyright © 2020 MECS I.J. Mathematical Sciences and Computing, 2020, 4, 12-25

Figure 1 The plot of example training data given in Table 1

From the graph in Fig 1, it is clear that the data is well behaved, i.e. there are no outliers, there is no overlap between
data of different classes, and the data points of a particular class tend to aggregate together in a specific region different
from that of the other classes. In other words the data is linearly separable.

Because the data set is small, to evaluate the performance of ANN method over this example training data I use
Leave-one-out cross-validation (LOOCV) where in I take only one data point at a time as a test data [1]. Beginning with
student ‘A’, I take the data instance of all students one-by-one as test data.

4.Result

Let the classes Leader, Speaker and Worker be classes 1, 2 and 3 respectively. Then 𝑑𝑖𝑠𝑡𝑚𝑎𝑥[1], 𝑑𝑖𝑠𝑡𝑚𝑎𝑥[2],
𝑑𝑖𝑠𝑡𝑚𝑎𝑥[3], 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[1], 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[2] and 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[3] are as defined in Section 2.

4.1 Result when data point of student A is test data

Class
𝒊

𝒅𝒊𝒔𝒕𝒎𝒂𝒙[𝒊] 𝒅𝒊𝒔𝒕𝒎𝒂𝒙𝟐[𝒊] Relationship amongst 𝒅𝒊𝒔𝒕𝒎𝒂𝒙[𝒊], 𝒅𝒊𝒔𝒕𝒎𝒂𝒙𝟐[𝒊] (𝒊 =
𝟏,𝟐,𝟑)

1 3.3541 5.0 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[𝑖] > 𝑑𝑖𝑠𝑡𝑚𝑎𝑥[𝑖] (𝑖 = 1,2,3)
2 1.11803 2.82843
3 3.3541 5.65685

Prediction: When 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[1],𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[2] and 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[3] are all different from each other one uses the absolute
value to find the minimum amongst 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[𝑖] (𝑖 = 1,2,3). Here, for 𝑖 = 2 , 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[𝑖] is the least. Hence
student‘A’ is Speaker.
Comment: Prediction is correct

4.2 Result when data point of student B is test data

Class
𝒊

𝒅𝒊𝒔𝒕𝒎𝒂𝒙[𝒊] 𝒅𝒊𝒔𝒕𝒎𝒂𝒙𝟐[𝒊] Relationship amongst 𝒅𝒊𝒔𝒕𝒎𝒂𝒙[𝒊], 𝒅𝒊𝒔𝒕𝒎𝒂𝒙𝟐[𝒊] (𝒊 =
𝟏,𝟐,𝟑)

1 3.3541 4.47214 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[𝑖] > 𝑑𝑖𝑠𝑡𝑚𝑎𝑥[𝑖] (𝑖 = 1,2,3)
2 2.82843 6.7082
3 2.82843 3.3541

Prediction: 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[𝑖] is the least for 𝑖 = 3. Hence student ‘B’ is Worker.
Comment: Prediction is correct

16 Modifying one of the Machine Learning Algorithms kNN to Make it Independent of the Parameter k
by Re-defining Neighbor

Copyright © 2020 MECS I.J. Mathematical Sciences and Computing, 2020, 4, 12-25

4.3 Result when data point of student C is test data

Class
𝒊

𝒅𝒊𝒔𝒕𝒎𝒂𝒙[𝒊] 𝒅𝒊𝒔𝒕𝒎𝒂𝒙𝟐[𝒊] Relationship amongst 𝒅𝒊𝒔𝒕𝒎𝒂𝒙[𝒊], 𝒅𝒊𝒔𝒕𝒎𝒂𝒙𝟐[𝒊] (𝒊 =
𝟏,𝟐,𝟑)

1 3.3541 7.28011 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[𝑖] > 𝑑𝑖𝑠𝑡𝑚𝑎𝑥[𝑖] (𝑖 = 1,2,3)
2 2.23607 2.82843
3 3.3541 6.32456

Prediction: 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[𝑖] is the least for 𝑖 = 2. Hence student ‘C’ is Speaker.
Comment: Prediction is correct

4.4 Result when data point of student D is test data

Class
𝒊

𝒅𝒊𝒔𝒕𝒎𝒂𝒙[𝒊] 𝒅𝒊𝒔𝒕𝒎𝒂𝒙𝟐[𝒊] Relationship amongst 𝒅𝒊𝒔𝒕𝒎𝒂𝒙[𝒊], 𝒅𝒊𝒔𝒕𝒎𝒂𝒙𝟐[𝒊] (𝒊 =
𝟏,𝟐,𝟑)

1 3.3541 4.92443 Only for 𝑖 = 3, 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[𝑖] < 𝑑𝑖𝑠𝑡𝑚𝑎𝑥[𝑖]
2 2.82843 6.10328
3 3.3541 2.82843

Prediction: Student ‘D’ is Worker.
Comment: Prediction is correct

4.5 Result when data point of student E is test data

Class
𝒊

𝒅𝒊𝒔𝒕𝒎𝒂𝒙[𝒊] 𝒅𝒊𝒔𝒕𝒎𝒂𝒙𝟐[𝒊] Relationship amongst 𝒅𝒊𝒔𝒕𝒎𝒂𝒙[𝒊], 𝒅𝒊𝒔𝒕𝒎𝒂𝒙𝟐[𝒊] (𝒊 =
𝟏,𝟐,𝟑)

1 3.3541 2.23607 Only for 𝑖 = 1, 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[𝑖] < 𝑑𝑖𝑠𝑡𝑚𝑎𝑥[𝑖]
2 2.82843 6.08276
3 3.3541 4.47214

Prediction: Student ‘E’ is Leader.
Comment: Prediction is correct

4.6 Result when data point of student F is test data

Class
𝒊

𝒅𝒊𝒔𝒕𝒎𝒂𝒙[𝒊] 𝒅𝒊𝒔𝒕𝒎𝒂𝒙𝟐[𝒊] Relationship amongst 𝒅𝒊𝒔𝒕𝒎𝒂𝒙[𝒊], 𝒅𝒊𝒔𝒕𝒎𝒂𝒙𝟐[𝒊] (𝒊 =
𝟏,𝟐,𝟑)

1 3.3541 3 Only for 𝑖 = 1, 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[𝑖] < 𝑑𝑖𝑠𝑡𝑚𝑎𝑥[𝑖]
2 2.82843 4.47214
3 3.3541 5

Prediction: Student ‘F’ is Leader.
Comment: Prediction is correct

4.7 Result when data point of student G is test data

Class
𝒊

𝒅𝒊𝒔𝒕𝒎𝒂𝒙[𝒊] 𝒅𝒊𝒔𝒕𝒎𝒂𝒙𝟐[𝒊] Relationship amongst 𝒅𝒊𝒔𝒕𝒎𝒂𝒙[𝒊], 𝒅𝒊𝒔𝒕𝒎𝒂𝒙𝟐[𝒊] (𝒊 =
𝟏,𝟐,𝟑)

1 3.3541 4.71699 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[2] = 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[3] and 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[2] <
𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[1] 2 2.82843 3.3541

3 3 3.3541
Prediction: There are two minimums amongst 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[𝑖], (𝑖 = 1,2,3) and both are equal. When this is the case the
class that one assigns to the student is the one for which the percentage deviation of all the equal minimums amongst
𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[𝑖], (𝑖 = 1,2,3 ℎ𝑒𝑟𝑒) from the respective 𝑑𝑖𝑠𝑡𝑚𝑎𝑥[𝑖] is the least. Here, the percentage deviation of
𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[2] from 𝑑𝑖𝑠𝑡𝑚𝑎𝑥[2] is 18.5854, and that of the 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[3] from 𝑑𝑖𝑠𝑡𝑚𝑎𝑥[3] is 11.8034. The percentage
deviation of 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[3] from 𝑑𝑖𝑠𝑡𝑚𝑎𝑥[3] is smaller than that of 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[2] from 𝑑𝑖𝑠𝑡𝑚𝑎𝑥[2]. Hence, student ‘G’
is Worker
Comment: Prediction is correct

4.8 Result when data point of student H is test data

Class
𝒊

𝒅𝒊𝒔𝒕𝒎𝒂𝒙[𝒊] 𝒅𝒊𝒔𝒕𝒎𝒂𝒙𝟐[𝒊] Relationship amongst 𝒅𝒊𝒔𝒕𝒎𝒂𝒙[𝒊], 𝒅𝒊𝒔𝒕𝒎𝒂𝒙𝟐[𝒊] (𝒊 =
𝟏,𝟐,𝟑)

1 3.3541 7.07107 Only for 𝑖 = 2, 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[𝑖] < 𝑑𝑖𝑠𝑡𝑚𝑎𝑥[𝑖]
2 2.82843 2.23607
3 3.3541 6.7082

Prediction: Student ‘H’ is Speaker.

 Modifying one of the Machine Learning Algorithms kNN to Make it Independent of the Parameter k 17
by Re-defining Neighbor

Copyright © 2020 MECS I.J. Mathematical Sciences and Computing, 2020, 4, 12-25

Comment: Prediction is correct

4.9 Result when data point of student I is test data

Class
𝒊

𝒅𝒊𝒔𝒕𝒎𝒂𝒙[𝒊] 𝒅𝒊𝒔𝒕𝒎𝒂𝒙𝟐[𝒊] Relationship amongst 𝒅𝒊𝒔𝒕𝒎𝒂𝒙[𝒊], 𝒅𝒊𝒔𝒕𝒎𝒂𝒙𝟐[𝒊] (𝒊 =
𝟏,𝟐,𝟑)

1 3.3541 2.23607 Only for 𝑖 = 1, 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[𝑖] < 𝑑𝑖𝑠𝑡𝑚𝑎𝑥[𝑖]
2 2.82843 5.09902
3 3.3541 4.12311

Prediction: Student ‘I’ is Leader.
Comment: Prediction is correct

4.10 Result when data point of student J is test data

Class
𝒊

𝒅𝒊𝒔𝒕𝒎𝒂𝒙[𝒊] 𝒅𝒊𝒔𝒕𝒎𝒂𝒙𝟐[𝒊] Relationship amongst 𝒅𝒊𝒔𝒕𝒎𝒂𝒙[𝒊], 𝒅𝒊𝒔𝒕𝒎𝒂𝒙𝟐[𝒊] (𝒊 =
𝟏,𝟐,𝟑)

1 3.3541 5.65685 Only for 𝑖 = 3, 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[𝑖] < 𝑑𝑖𝑠𝑡𝑚𝑎𝑥[𝑖]
2 2.82843 4.24264
3 3.3541 3

Prediction: Student ‘J’ is Worker.
Comment: Prediction is correct

4.11 Result when data point of student K is test data

Class
𝒊

𝒅𝒊𝒔𝒕𝒎𝒂𝒙[𝒊] 𝒅𝒊𝒔𝒕𝒎𝒂𝒙𝟐[𝒊] Relationship amongst 𝒅𝒊𝒔𝒕𝒎𝒂𝒙[𝒊], 𝒅𝒊𝒔𝒕𝒎𝒂𝒙𝟐[𝒊] (𝒊 =
𝟏,𝟐,𝟑)

1 3.3541 6.18466 Only for 𝑖 = 2, 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[𝑖] < 𝑑𝑖𝑠𝑡𝑚𝑎𝑥[𝑖]
2 2.82843 1.80278
3 3.3541 5.59017

Prediction: Student ‘K’ is Speaker.
Comment: Prediction is correct

4.12 Result when data point of student L is test data

Class
𝒊

𝒅𝒊𝒔𝒕𝒎𝒂𝒙[𝒊] 𝒅𝒊𝒔𝒕𝒎𝒂𝒙𝟐[𝒊] Relationship amongst 𝒅𝒊𝒔𝒕𝒎𝒂𝒙[𝒊], 𝒅𝒊𝒔𝒕𝒎𝒂𝒙𝟐[𝒊] (𝒊 =
𝟏,𝟐,𝟑)

1 2.23607 3.3541 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[𝑖] > 𝑑𝑖𝑠𝑡𝑚𝑎𝑥[𝑖] (𝑖 = 1,2,3)
2 2.82843 7.28011
3 3.3541 5.83095

Prediction: 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[𝑖] is the least for 𝑖 = 1. Hence student ‘L’ is Leader.
Comment: Prediction is correct

4.13 Result when data point of student M is test data

Class
𝒊

𝒅𝒊𝒔𝒕𝒎𝒂𝒙[𝒊] 𝒅𝒊𝒔𝒕𝒎𝒂𝒙𝟐[𝒊] Relationship amongst 𝒅𝒊𝒔𝒕𝒎𝒂𝒙[𝒊], 𝒅𝒊𝒔𝒕𝒎𝒂𝒙𝟐[𝒊] (𝒊 =
𝟏,𝟐,𝟑)

1 3 3.3541 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[𝑖] > 𝑑𝑖𝑠𝑡𝑚𝑎𝑥[𝑖] (𝑖 = 1,2,3)
2 2.82843 4.03113
3 3.3541 3.5

Prediction: 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[𝑖] is the least for 𝑖 = 1. Hence student ‘M’ is Leader.
Comment: Prediction is correct

4.14 Result when data point of student N is test data

Class
𝒊

𝒅𝒊𝒔𝒕𝒎𝒂𝒙[𝒊] 𝒅𝒊𝒔𝒕𝒎𝒂𝒙𝟐[𝒊] Relationship amongst 𝒅𝒊𝒔𝒕𝒎𝒂𝒙[𝒊], 𝒅𝒊𝒔𝒕𝒎𝒂𝒙𝟐[𝒊] (𝒊 =
𝟏,𝟐,𝟑)

1 3.3541 4.24264 Only for 𝑖 = 3, 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[𝑖] < 𝑑𝑖𝑠𝑡𝑚𝑎𝑥[𝑖]
2 2.82843 4.47214
3 3.3541 2.23607

Prediction: Student ‘N’ is Worker.
Comment: Prediction is correct.

18 Modifying one of the Machine Learning Algorithms kNN to Make it Independent of the Parameter k
by Re-defining Neighbor

Copyright © 2020 MECS I.J. Mathematical Sciences and Computing, 2020, 4, 12-25

4.15 Result when data point of student O is test data

Class
𝒊

𝒅𝒊𝒔𝒕𝒎𝒂𝒙[𝒊] 𝒅𝒊𝒔𝒕𝒎𝒂𝒙𝟐[𝒊] Relationship amongst 𝒅𝒊𝒔𝒕𝒎𝒂𝒙[𝒊], 𝒅𝒊𝒔𝒕𝒎𝒂𝒙𝟐[𝒊] (𝒊 =
𝟏,𝟐,𝟑)

1 3.3541 5.83095 Only for 𝑖 = 3, 𝑑𝑖𝑠𝑡𝑚𝑎𝑥2[𝑖] < 𝑑𝑖𝑠𝑡𝑚𝑎𝑥[𝑖]
2 2.82843 5.65685
3 3.3541 2.69258

Prediction: Student ‘O’ is Worker.
Comment: Prediction is correct

4.16 The Computer Program

The computer program in C++ to make the computation in section 4.1 when data point of student A is test data is
include <iostream>
include <math.h>

 using namespace std;

 class assignclass
 {
 char *name;
 double aptitude;
 double communication;
 int classvalue;
 public:
 void getdata(char *AA, double a, double c, int cv);
 void putdata(void);
 double studapt(void);
 double studcomm(void);
 int studclass(void);
 };
 void assignclass :: getdata(char *AA, double a, double c, int cv)
 {
 name = AA;
 aptitude = a;
 communication = c;
 classvalue = cv;
 }
 void assignclass :: putdata(void)
 {
 cout<<"Name: "<<name<<"\n";
 cout<<"Aptitude: "<<aptitude<<"\n";
 cout<<"Communication: "<<communication<<"\n";
 if (classvalue == 1)
 cout<<"Class: "<<"Leader"<<"\n";
 else if (classvalue == 2)
 cout<<"Class: "<<"Speaker"<<"\n";
 else
 cout<<"Class: "<<"Worker"<<"\n";
 }
 double assignclass :: studapt(void)
 {
 return(aptitude);
 }
 double assignclass :: studcomm(void)
 {
 return(communication);
 }
 int assignclass :: studclass(void)
 {
 return(classvalue);

 Modifying one of the Machine Learning Algorithms kNN to Make it Independent of the Parameter k 19
by Re-defining Neighbor

Copyright © 2020 MECS I.J. Mathematical Sciences and Computing, 2020, 4, 12-25

 }

 const int size=15;
 int main()
 {
 int i,j,jj,k;
 int l=0,m=0,n=0,min;
 int classv,distcount;
 double apt1,apt2,comm1,comm2;
 double dist[20],distmax[4],dist2[7],distmax2[4];
 double minall;
 assignclass student[size], student2[size-1];
 assignclass studentL[7], studentS[7], studentI[7];
 //Input
 student[0].getdata("A",4.0,7.0,2);
 student[1].getdata("B",8.0,3.0,3);
 student[2].getdata("C",2.0,5.0,2);
 student[3].getdata("D",7.0,2.5,3);
 student[4].getdata("E",8.0,6.0,1);
 student[5].getdata("F",6.0,7.0,1);
 student[6].getdata("G",5.0,4.5,3);
 student[7].getdata("H",2.0,6.0,2);
 student[8].getdata("I",7.0,6.0,1);
 student[9].getdata("J",5.0,3.0,3);
 student[10].getdata("K",3.0,5.5,2);
 student[11].getdata("L",9.0,7.0,1);
 student[12].getdata("M",6.0,5.5,1);
 student[13].getdata("N",6.0,4.0,3);
 student[14].getdata("O",6.0,2.0,3);

 cout<<endl;

 //Printing Data
 for(i=0;i<size;i++)
 student[i].putdata();

 //The Model
 i=0;

 //Selecting Test Data
 cout<<endl<<endl<<i;
 if(i==0)
 for(j=1;j<15;j++)
 student2[j-1]=student[j];
 else if(i!=(size-1))
 {
 for(j=0;j<i;j++)
 student2[j]=student[j];
 for(j=(i+1);j<size;j++)
 student2[j-1]=student[j];
 }
 else
 for(j=0;j<(size-1);j++)
 student2[j]=student[j];

 // Segregating Class
 for(j=0;j<(size-1);j++)
 {
 classv = student2[j].studclass();
 if(classv==1)

20 Modifying one of the Machine Learning Algorithms kNN to Make it Independent of the Parameter k
by Re-defining Neighbor

Copyright © 2020 MECS I.J. Mathematical Sciences and Computing, 2020, 4, 12-25

 {
 l=l+1;
 studentL[l-1]=student2[j];
 }
 else if(classv==2)
 {
 m=m+1;
 studentS[m-1]=student2[j];
 }
 else
 {
 n=n+1;
 studentI[n-1]=student2[j];
 }
 }

 //Calculating max distance in each class
 //Calculation for Leader
 for(k=1;k<20;k++)
 dist[k]=0.0;
 k=0;
 for(j=0;j<(l-1);j++)
 {apt1 = studentL[j].studapt();
 comm1 = studentL[j].studcomm();
 for(jj=j+1;jj<l;jj++)
 {
 apt2 = studentL[jj].studapt();
 comm2 = studentL[jj].studcomm();
 k=k+1;
 dist[k]=dist[k]+sqrt((apt1-apt2)*(apt1-apt2)+(comm1-comm2)*(comm1-comm2));
 }
 }
 distmax[1]=0.0;
 distcount = l*(l-1)/2;
 for(k=1;k<=distcount;k++)
 if(distmax[1]<dist[k])
 distmax[1]=dist[k];
 for(k=1;k<20;k++)
 dist[k]=0.0;

 //Calculation for Speaker
 k=0;
 for(j=0;j<(m-1);j++)
 {apt1 = studentS[j].studapt();
 comm1 = studentS[j].studcomm();
 for(jj=j+1;jj<m;jj++)
 {
 apt2 = studentS[jj].studapt();
 comm2 = studentS[jj].studcomm();
 k=k+1;
 dist[k]=dist[k]+sqrt((apt1-apt2)*(apt1-apt2)+(comm1-comm2)*(comm1-comm2));
 }
 }
 distmax[2]=0.0;
 distcount = m*(m-1)/2;
 for(k=1;k<=distcount;k++)
 if(distmax[2]<dist[k])
 distmax[2]=dist[k];
 for(k=1;k<20;k++)

 Modifying one of the Machine Learning Algorithms kNN to Make it Independent of the Parameter k 21
by Re-defining Neighbor

Copyright © 2020 MECS I.J. Mathematical Sciences and Computing, 2020, 4, 12-25

 dist[k]=0.0;

 //Calculation for Worker
 k=0;
 for(j=0;j<(n-1);j++)
 {apt1 = studentI[j].studapt();
 comm1 = studentI[j].studcomm();
 for(jj=j+1;jj<n;jj++)
 {
 apt2 = studentI[jj].studapt();
 comm2 = studentI[jj].studcomm();
 k=k+1;
 dist[k]=dist[k]+sqrt((apt1-apt2)*(apt1-apt2)+(comm1-comm2)*(comm1-comm2));
 }
 }
 distmax[3]=0.0;
 distcount = n*(n-1)/2;
 for(k=1;k<=distcount;k++)
 if(distmax[3]<dist[k])
 distmax[3]=dist[k];
 for(k=1;k<20;k++)
 dist[k]=0.0;

 //Calculating max distance of test data in each class
 //Calculation for Leader
 for(k=0;k<7;k++)
 dist2[k]=0.0;
 apt1 = student[i].studapt();
 comm1 = student[i].studcomm();
 for(jj=0;jj<l;jj++)
 {
 apt2 = studentL[jj].studapt();
 comm2 = studentL[jj].studcomm();
 dist2[jj]=dist2[jj]+sqrt((apt1-apt2)*(apt1-apt2)+(comm1-comm2)*(comm1-comm2));
 }
 distmax2[1]=0.0;
 for(k=0;k<l;k++)
 if(distmax2[1]<dist2[k])
 distmax2[1]=dist2[k];
 for(k=0;k<7;k++)
 dist2[k]=0.0;

 //Calculation for Speaker
 for(jj=0;jj<m;jj++)
 {
 apt2 = studentS[jj].studapt();
 comm2 = studentS[jj].studcomm();
 dist2[jj]=dist2[jj]+sqrt((apt1-apt2)*(apt1-apt2)+(comm1-comm2)*(comm1-comm2));
 }
 distmax2[2]=0.0;
 for(k=0;k<m;k++)
 if(distmax2[2]<dist2[k])
 distmax2[2]=dist2[k];
 for(k=0;k<7;k++)
 dist2[k]=0.0;

 //Calculation for Worker
 for(jj=0;jj<n;jj++)
 {
 apt2 = studentI[jj].studapt();

22 Modifying one of the Machine Learning Algorithms kNN to Make it Independent of the Parameter k
by Re-defining Neighbor

Copyright © 2020 MECS I.J. Mathematical Sciences and Computing, 2020, 4, 12-25

 comm2 = studentI[jj].studcomm();
 dist2[jj]=dist2[jj]+sqrt((apt1-apt2)*(apt1-apt2)+(comm1-comm2)*(comm1-comm2));
 }
 distmax2[3]=0.0;
 for(k=0;k<n;k++)
 if(distmax2[3]<dist2[k])
 distmax2[3]=dist2[k];
 for(k=0;k<7;k++)
 dist2[k]=0.0;

 //Assigning Class Value to Test Data
 for(k=1;k<4;k++)
 {
 cout<<endl<<"distmax["<<k<<"]="<<distmax[k];
 cout<<endl<<"distmax2["<<k<<"]="<<distmax2[k];
 }
 if(distmax2[1]>distmax[1]&&distmax2[2]>distmax[2]&&distmax2[3]>distmax[3])
 {
 if(distmax2[1]==distmax2[2]&&distmax2[2]==distmax2[3])
 for(k=1;k<4;k++)
 distmax2[k]=(distmax2[k]-distmax[k])/distmax[k];
 else if(distmax2[1]==distmax2[2]&&distmax2[2]<distmax2[3])
 {
 distmax2[1]=(distmax2[1]-distmax[1])/distmax[1];
 distmax2[2]=(distmax2[2]-distmax[2])/distmax[2];
 }
 else if(distmax2[1]==distmax2[3]&&distmax2[3]<distmax2[2])
 {
 distmax2[1]=(distmax2[1]-distmax[1])/distmax[1];
 distmax2[3]=(distmax2[3]-distmax[3])/distmax[3];
 }
 else if(distmax2[2]==distmax2[3]&&distmax2[2]<distmax2[1])
 {
 distmax2[2]=(distmax2[2]-distmax[2])/distmax[2];
 distmax2[3]=(distmax2[3]-distmax[3])/distmax[3];
 }
 minall = 15.0;
 for(k=1;k<4;k++)
 {
 cout<<endl<<"distmax["<<k<<"]="<<distmax[k];
 cout<<endl<<"distmax2["<<k<<"]="<<distmax2[k];
 if(minall>distmax2[k])
 {
 minall=distmax2[k];
 min=k;
 }
 }
 }
 else
 {
 for(k=1;k<4;k++)
 {
 if(distmax2[k]>distmax[k])
 distmax2[k]=14.14;
 }
 minall = 14.14;
 for(k=1;k<4;k++)
 {
 if(minall>distmax2[k])
 {

 Modifying one of the Machine Learning Algorithms kNN to Make it Independent of the Parameter k 23
by Re-defining Neighbor

Copyright © 2020 MECS I.J. Mathematical Sciences and Computing, 2020, 4, 12-25

 minall=distmax2[k];
 min=k;
 }
 }
 }
 cout<<endl;
 cout<<"Class Value of Test Data ="<<(i+1)<<" is : "<<min<<endl;
 return 0;
 }
This computation was carried out for variable i=0 in above program. Similar computations such as those under sections
4.2 to 4.15 can be carried out by varying i from 1 to 14 in increments of 1 in the above program.

5.Discussion

Despite the small size of the training data shown in Table 1, the ANN method gave 100% accurate performance.
This need not always be true for small data set. However, for large data sets such as those encountered in real world
problems, the performance of ANN method is guaranteed to be highly accurate. This is obvious because with large data
sets, as large as up to the order of 104- 105 data points, the boundary of neighborhood for each class calculated with the
available training data is expected to be the actual boundary of neighborhood of that class and the likelihood that this
boundary of neighborhood will be altered by the query data point or any new data point added to the training data is
minimal.

Though the ANN method was shown above to work for the data set with more than two classes into which the data
points segregated, it will work for binary classification too. The necessary conditions for the quality of the data sets for
which the ANN method will work are that there should not be outliers and the data should be linearly separable. In case
there are outliers in the data set, one can get rid of this problem by removing the data point corresponding to the outlier
from the training data. And if the data is non-linearly separable, two examples of which are shown in Fig 2 and Fig 3,
one can use the kernel trick to make the data linearly separable [1]. Kernel is the name given to function which can
transform the lower dimensional training data space to a higher dimensional space, in the higher dimensional space the
data is linearly separable. A list of some of the common kernel functions is given in [1].

An obvious advantage of the ANN method over all the other techniques of the kNN known to date
[3,4,5,6,7,8,9,10,11,12,13,14] is that it is not dependent on 𝑘 (the number of nearest neighbors), and some other
parameters as involved in specific techniques of the kNN (like, for example, the pivot point in BTA [3,4]). The fact that
the techniques of kNN other than ANN depend on one or two parameters make their performances dependent on the
values of parameters, unlike ANN. But, however, like with any other machine learning algorithm it cannot be claimed
that this particular one will be the most efficient; the performance of any one method is highly dependent on the nature
and structure of the training data. For some training data one method will be the most efficient, and for other the other
method will be the most efficient. So, I do not claim that ANN is the most efficient though it gave 100% accurate result
for the training data [1] considered in this paper.

Figure 2. A typical non-linearly separable data (binary classification)

24 Modifying one of the Machine Learning Algorithms kNN to Make it Independent of the Parameter k
by Re-defining Neighbor

Copyright © 2020 MECS I.J. Mathematical Sciences and Computing, 2020, 4, 12-25

Figure 3. Another typical non-linearly separable data (binary classification)

References

[1] Dutt S, Chandramouli S and Das AK. Machine Learning. Pearson India Education Services Pvt Ltd. Noida. 2020.
[2] Dhanabal S and Chandramathi Dr S. A Review of various k-Nearest Neighbor Query Processing Techniques. International

Journal of Computer Applications 2011; Vol 31-No 7: 14-22.
[3] Uhlmann JK. Satisfying general proximity/similarity queries with metric trees. Information Processing Letters 1991; 40: 175-

179.
[4] Liu T, Moore AW and Gray A. New Algorithms for Efficient High-Dimensional Nonparametric Classification. Journal of

Machine Learning Research 2006; 7: 1135-1158
[5] Sproull RF. Refinements to Nearest Neighbor Searching in k-Dimensional Trees. Algorithmica 1991; 6:579-589.
[6] Li SZ, Chan KL and Wang C. Performance Evaluation of the NFL Method in Image Classification and Retrieval. IEEE Trans

on Pattern Analysis and Machine Intelligence 2000; Vol 22-Issue 11.
[7] Zhou Y and Zhang C. Tunable Nearest Neighbor Class. Pattern Recognition 2007: 346-349 pp
[8] Liaw YC, Wu CM and Leou ML. Fast Exact k Nearest Neighbors Search using an Orthogonal Search Tree. Pattern Recognition

2010; Vol 43-Issue 6: 2351-2358.
[9] McNames J. Fast Nearest Neighbor Algorithm based on Principal Axis Search Tree. IEEE Trans on Pattern Analysis and

Machine Intelligence 2001;Vol 23-Issue 9:964-976.
[10] Cover TM and Hart PE. Nearest Neighbor Pattern Classification. IEEE Trans Inform. Theory 1967; IT-13:21-27.
[11] Bailey T and Jain AK. A note on Distance weighted k-nearest neighbor rules. IEEE Trans Systems, Man Cybernatics 1978;

8:311-313.
[12] Kollios G, Gunopulos D and Tsotras VJ. Nearest Neighbor Queries in a Mobile Environment. Proceedings of the International

Workshop on Spatio-Temporal Database Management 1999: 119-134 pp.
[13] Xia T and Zhang D. Continuous Reverse Nearest Neighbor Monitoring. Proceedings of the IEEE International Conference on

Data Engineering 2006.
[14] Song Z and Roussopoulos N. K-nearest neighbor search for moving query point. Proceedings of the International Symposium

on Spatial and Temporal Databases 2001: 79-96 pp.

 Modifying one of the Machine Learning Algorithms kNN to Make it Independent of the Parameter k 25
by Re-defining Neighbor

Copyright © 2020 MECS I.J. Mathematical Sciences and Computing, 2020, 4, 12-25

Authors’ Profiles

Pushpam Kumar Sinha is Assistant Professor & HOD in the Department of Mechanical Engineering at
Netaji Subhas Institute of Technology, Amhara, Bihta, Patna, India. He did his Bachelor of Engineering
(B.E.) in 1997 from Motilal Nehru Regional Engineering College, Allahabad, India with a Gold medal. He
did his Master of Science in Engineering in 2002 from the Indian Institute of Science, Bangalore, India.

How to cite this paper: Pushpam Kumar Sinha. " Modifying one of the Machine Learning Algorithms kNN to Make it
Independent of the Parameter k by Re-defining Neighbor ", International Journal of Mathematical Sciences and Computing
(IJMSC), Vol.6, No.4, pp.12-25, 2020. DOI: 10.5815/ijMSC.2020.04.02

	1. Introduction
	2. The ANN method
	3.Example Training Data
	4.Result
	5.Discussion
	References

