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Abstract: Numerical integral is one of the mathematical branches that connect between analytical mathematics and computer. 
Numerical integration is a primary tool used by engineers and scientists to obtain an approximate result for definite integrals 
that cannot be solved analytically. Numerical double integration is widely used in calculating surface area, the intrinsic 
limitations of flat surfaces and finding the volume under the surface. A wide range of method is applied to solve numerical 
double integration for equal data space but the difficulty is arisen when the data values are not equal.  In this paper we have 
tried to generate a mathematical formula of numerical double integration for unequal data spaces. Trapezoidal rule for unequal 
space is used to evaluate the formula. We also verified our proposed model by demonstrating some numerical examples and 
compared the numerical result with the analytical result. 
 
Index Terms: Numerical Integral, Numerical Double Integration, Newton`s Divided Difference, Trapezoidal Rule 
 
 

1.  Introduction 

Numerical integration is the method of predict the value of a definite integral from a set of numerical values of the 
integrand. Whenever a technical problem leads to a differential equations which cannot be integrated in closed form, 
approximate methods of solutions must be employed. These methods are based on series expansions or they may be purely 
numerical methods leading to the evaluation of the unknown integral at specified points of its interval of definitions but 
simple arithmetic means. Double integrals are widely used to calculate the area of a region, the volume under a surface, 
and the average value of a function of two variables over a rectangular region. In general, solving the two-fold integral is 
not easy to do analytically. Therefore, we need a numerical method to get the solution. Numerical methods can only 
provide solutions that approach true value. To solve numerical double integral the multiple-segment trapezoidal or 
Simpson’s rule would be applied in the first dimension with each value of the second dimension held constant. Then the 
method would be applied to integrate the second dimension. A lot of works have been found to solve numerical double 
integration for equal data sets. But researchers have faced troubles to solve problems when the data sets are not equal. In 
this paper we mainly focused on formulating a mathematical formula to calculate numerical double integration for unequal 
data spaces. We are hopeful that our work will be effective for scientists to solve numerical double integration when the 
data values are unequal. 

Md. Nayan Dhali, Mohammad Farhad Bulbul and Umme Sadiya have tried to establish a comparison among 
Trapezoidal rule, Simpson 1/3 and Simpson 3/8 rule for unequal data space and they found that Simpson’s 1/3 provide 
better result than the others[6]. Md. Mamun-Ur –Rashid khan, M.R. Hossain and Selina Parvin developed a new approach 
of numerical integration schemes for unequal data space. Romesh Kumar Muthumalai tried to determine the error of 
numerical integration and differentiation and he also derived some formula for numerical differentiation through divided 
difference and these new formulas are quite useful to approximate derivatives when additional information about 
derivatives at some point is given. Safaa M. Aljassas developed a new numerical approach to evaluate Double integrals 
with Continuous Integrands [11, 12, 13]. Andika Saputra, Rizal Bakri and Ramlan Mahmud have used Romberg method to
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analyze double integration for trigonometric function [14].  Rajinder Thukral accelerated the Simpson’s method for solving 
nonlinear equations. In this purpose he represented an improvement of the classical Simpson’s third order method for 
finding zeros of nonlinear equations and introduced a new formula for approximating second order derivative [17].  

The rest of the paper will be described as follows: In section two, we have derived a mathematical model to solve 
numerical double integration for unequal data sets. In section three, some numerical example be examined and verified the 
result with actual result and finally we draw a conclusion. 

 2. Numerical Double Integration for Unequal Space  

In this section we will discuss numerical double integration for unequal space. This formula can be applied to solve 
double integration when the numeric sets are not equal. We can be obtained this formula by applying trapezoidal rule for 
unequal space that was derived in this chapter. For do this we consider a double integral is defined by 

                      𝐼 = ∫ ∫ 𝑓(𝑥,𝑦)𝑑𝑥𝑑𝑦𝑥𝑖+1
𝑥𝑖

𝑦𝑗+1
𝑦𝑗

                                                        (1) 

Where the distance of each interval [xi, xi+1] and [yj, yj+1] are not equal. 
From Newton`s divided difference 
y = y0 + (x − x0)�x0,, x1� + (x − x0)(x − x1)[x0, x1, x2] + ⋯                                                                       
Trapezoidal rule for the unequal space 
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Similarly, for the interval [𝑥1, 𝑥2] we deduce, 

� 𝑦𝑑𝑥
𝑥2

𝑥1
=

(𝑥2 − 𝑥1)
2
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Similarly, for the interval [𝑥2, 𝑥3] we deduce, 

� 𝑦𝑑𝑥
𝑥3
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(𝑥3 − 𝑥2)
2
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Similarly for the interval [𝑥𝑖 , 𝑥𝑖+1] we have 

      � 𝑦𝑑𝑥
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2
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Now from (1) we get 
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                         =
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4
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Where, 𝑓𝑖,𝑗 = 𝑓�𝑥𝑖 ,𝑦𝑗�   
This is the general formula of double integral for uneven space. 

3. Numerical Examples  

In this chapter, we will discuss some numerical examples and using numerical integration formula for unequal data 
space and we try to find their solutions. Then we compared numerical result with the exact solution to determine 
corresponding errors and check out which methods provide better results. 
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3.1 Investigation by First Example 

Consider a rectangular double integral, 

𝑓(𝑥,𝑦) = ��𝑒𝑦−𝑥𝑑𝑦𝑑𝑥
3

0

2

0

 

We divide each of the intervals [0, 2] and [0, 3] into 60 subintervals 

Table 1. Different values of x and y in interval [0, 2] and [0, 3] respectively 

No. of 
Points 

Points of x Points of y No. of Points Points of  x Points of  y 

1 0 0 32 1.06 1.55 
2 0.10 0.15 33 1.10 1.65 
3 0.13 0.20 34 1.12 1.70 
4 0.15 0.22 35 1.15 1.75 
5 0.17 0.25 36 1.18 1.80 
6 0.20 0.30 37 1.24 1.84 
7 0.24 0.37 38 1.28 1.90 
8 0.28 0.42 39 1.30 1.95 
9 0.30 0.45 40 1.33 2.0 
10 0.33 0.50 41 1.37 2.10 
11 0.37 0.56 42 1.40 2.15 
12 0.39 0.60 43 1.45 2.19 
13 0.42 0.68 44 1.50 2.25 
14 0.45 0.70 45 1.53 2.30 
15 0.50 0.75 46 1.57 2.36 
16 0.53 0.78 47 1.60 2.40 
17 0.57 0.80 48 1.64 2.45 
18 0.60 0.87 49 1.67 2.50 
19 0.65 0.95 50 1.69 2.53 
20 0.67 1.0 51 1.72 2.56 
21 0.70 1.05 52 1.74 2.65 
22 0.74 1.10 53 1.76 2.70 
23 0.76 1.18 54 1.78 2.75 
24 0.78 1.20 55 1.80 2.80 
25 0.80 1.25 56 1.84 2.84 
26 0.82 1.30 57 1.88 2.90 
27 0.85 1.34 58 1.90 2.93 
28 0.90 1.40 59 1.92 2.95 
29 0.93 1.44 60 1.95 2.97 
30 0.97 1.47 61 2.0 3.0 
31 1.0 1.50    

 
Table-1 represents the different unequal values of x and y in interval [0, 2] and [0, 3] respectively. 
Now, we evaluate the integral value by using our proposed formula for unequal data points and make a comparison 

with exact result. 

Table 2. Comparison of actual and numerical result 

Analytical Result Numerical Result Error 
16.5026 16.5105 0.0079 

 
Table 2 describes the actual and numerical result and also the deviation between them and we have found that 

numerical result is very close to actual result. 

3.2   Investigation by Second Example 

Consider a rectangular double integral,  

𝑓(𝑥,𝑦) = �� ln(𝑥 + 2𝑦) 𝑑𝑦𝑑𝑥
3

1

4

1

 

We divide each of the intervals [1, 4] and [1, 3] into 60 subintervals 
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Table 3. Different values of x and y in interval [1, 4] and [1, 3] respectively 

No. of 
Points 

Points of x Points of y No. of 
Points 

Points of x Points of y 

1 1.0 1.0 32 2.55 2.06 
2 1.15 1.10 33 2.65 2.10 
3 1.20 1.13 34 2.70 2.12 
4 1.22 1.15 35 2.75 2.15 
5 1.25 1.17 36 2.80 2.18 
6 1.30 1.20 37 2.84 2.24 
7 1.37 1.24 38 2.90 2.28 
8 1.42 1.28 39 2.95 2.30 
9 1.45 1.30 40 3.0 2.33 

10 1.50 1.33 41 3.10 2.37 
11 1.56 1.37 42 3.15 2.40 
12 1.60 1.39 43 3.19 2.45 
13 1.68 1.42 44 3.25 2.50 
14 1.70 1.45 45 3.30 2.53 
15 1.75 1.50 46 3.36 2.57 
16 1.78 1.53 47 3.40 2.60 
17 1.80 1.57 48 3.45 2.64 
18 1.87 1.60 49 3.50 2.67 
19 1.95 1.65 50 3.53 2.69 
20 2.0 1.67 51 3.56 2.72 
21 2.05 1.70 52 3.60 2.74 
22 2.10 1.74 53 3.65 2.76 
23 2.18 1.76 54 3.70 2.78 
24 2.20 1.78 55 3.75 2.80 
25 2.25 1.80 56 3.80 2.84 
26 2.30 1.82 57 3.84 2.88 
27 2.34 1.85 58 3.90 2.90 
28 2.40 1.90 59 3.93 2.92 
29 2.44 1.93 60 3.95 2.95 
30 2.47 1.97 61 4.0 3.0 
31 2.50 2.0    

 
Table-3 represents the different unequal values of x and y in interval [1, 4] and [1, 3] respectively. 
Now, we evaluate the integral value by using our proposed formula for unequal data points and make a comparison 

with exact result. 

Table 4. Comparison of actual and numerical result 

Analytical Result Numerical Result Error 
11.0733 11.0731 0.0002 

 
Table 4 describes the actual and numerical result and also the deviation between them and we have found that 

numerical result is very close to analytical result. 
From the above two investigation, we found that our generated mathematical formula is convenient to solve 

numerical double integration problems when the data values are not equal. 

4. Conclusion  

 Numerical Double integrals are widely used to calculate the area of a region and the volume under a surface when 
the analytical result cannot be found easily. It is also difficult to find numerical solution when the data values are not 
equal. In this work we generate a numerical double integration formula for unequal data space. For that, Trapezoidal 
rule for unequal data space have been used to evaluate double integration formula. We also applied our mathematical 
model by investigating some numerical examples and we have found a feasible result. Our research will be helpful in 
many scientific areas where numerical solution is needed.  
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