
I.J. Wireless and Microwave Technologies, 2012, 3, 34-40
Published Online June 2012 in MECS (http://www.mecs-press.net)
DOI: 10.5815//ijwmt.2012.03.06

Available online at http://www.mecs-press.net/ijwmt

A Data Flow Behavior Constraints Model for Branch Decision-
making Variables

Lu Yan, Wang Dan, Zhao Wen Bing

College of Computer Science, Beijing University of Technology, Beijing, china

Abstract

In order to detect the attacks to decision-making variable, this paper presents a data flow behavior constraint
model for branch decision-making variables. Our model is expanded from the common control flow model, it
emphasizes on the analysis and verification about the data flow for decision-making variab les, so that to ensure
the branch statement can execute correctly and can also detect the attack to branch decision-making variab le
easily. The constraints of our model include the collect ion of variables, the statements that the decision-making
variables are dependent on and the data flow constraint with the use-def relat ion of these variables. Our
experimental results indicate that it is effective in detecting the attacks to branch decision-making variables as
well as the attacks to control-data.

Index Terms: Program behavior; branch decision-making variab le; control flow; dependence relation

© 2012 Published by MECS Publisher. Selection and/or peer review under responsibility of the Research
Association of Modern Education and Computer Science

1. Introduction

According to the TCG specification, the trust of an entity is based on its behavior’s trust. Software’s trust
can be measured by its behavior when it is executing [1]. Taking trust measurement to program dynamically is
hard. To date, there have been many related researches focusing on how to describe the software’s behavior.
These researches main ly established of software control flow behavior models based on control flow model
through the static analysis or dynamic learn ing [2][3]. There are two kinds of control flow behavior models at
present including system call-based model and function call-based model. Control-flow behavior model has
been proven that it can effect ively detect common attack types, such as malicious code injection attacks and
return-to-libc attacks, .etc.

The behavioral models based on the traditional control-flow can effectively detect the attacks of the control-
data. Nevertheless, since the control-flow behavior model only concerns about the integrity of control-data, it
doesn’t inspect the data flow information of program, therefore, when an attacker tampers with other non-
control-data, it may change the software control flow without corrupting the control-data, hence, the tradit ional

This work was supported by a grant from the Major State Basic Research Development Program of China (973 Program)
(No.2007CB311106)

http://www.mecs-press.net/ijeme�

 A Data Flow Behavior Constraints Model for Branch Decision-making Variables 35

control-flow behavior model can not detect such kind of attack which is relatively a common sort of threat [4].
Among them, the control-data refers to control flow related data of the software, for example, return addresses
of function call, function pointers, etc.. On the other hand, non-control-data includes configuration data, user
data, decision-making data (the variab les referenced by the branch statement) and so on.

This paper proposes a data flow behavior constraint model for branch decision-making variables and it can
be used to verify program’s behavior while running. Our model made some improvements for the common
control-flow behavior model by mainly increased the study on the relationship of data flow of decision-making
variable. The contribution of this paper includes: (1) our model can detect the branch statements related
behavior which depends on the values of decision-making variables; (2) our model can extract constraint of
data flow behavior which is relevant with decision-making variables of branch statements; (3) our model can
detect whether it meet the constraints of data flow as well as verify ing the relation of function calls during
running time, so it can guarantee the correctness of the decision-making variables and authenticate the behavior
of branch statements. When an error happens during the function call or an abnormal data flow occurs, the
system will g ive an alarm.

2. Branch-Reserving Call Graph

Generally speaking, a software behavior model should be composed of two parts including the function calls
relations and branch statement of decision-making variables for the constraints of data flow behavior. The
former is not the focus of this paper, we main ly illustrate the latter.

2.1. Consructing BRCG

The function call is regarded as the behavior granularity for control flow behavior in this paper, therefore we
only take into consideration the branch statements which have control dependence relations with function call
statements and function return statements. The control dependence means if the execution of the statement S1
is decided by the execution state of the statement S2, then we say S1 depends on S2.

In order to extract branch statements that the function calls depend on, we adopt procedure structure model
which is proposed in [5]. It added the informat ion of branch statements into the function call graph and fo rmed
a graph called Branch-Reserving Call Graph, denoted by BRCG. The b rief definit ion of the BRCG is described
as follows:

BRCG is defined as a triple <N, S, B>, among them,
1) N is a set, its element includes functions-call statements and branch-call statements.
2) S is a set of sequential relat ions, where for 2 2< > , and 1 1n , n S n N n N∀ ∈ ∈ ∈ .

3) B is a set of branching relations, where for 2 2< > , and 1 1n , n B n N n N∀ ∈ ∈ ∈ .

4) for < > and ,1 2 3n , n S n N∀ ∈ ∀ ∈ < >1 3n , n B∉ and
for < > and ,1 2 3n , n B n N∀ ∈ ∀ ∈ < >1 3n , n S∉ .
Generally, statements including if statements, case statements and loop statements in program are all

regarded as branching relations. The sub-graphs of BRCG for each function are linked through the function call
point. In this way, we can get a complete Branch-Reserving Call Graph. For example, the BRCG of the
function foo is shown in the Fig. 1.

36 A Data Flow Behavior Constraints Model for Branch Decision-making Variables

 void foo{
 f1();
 if(condition_1){
 f2();
 f3();
 }
 else{
 f4();
 f5();
 }
 if(condition_2){
 i++;
 printf(……);
 }
 if(condition_3){
 return;
 else
 f6();
 }

foo

f1

Sequential

BS1

f2

Branch

B1

f3

BS3

Sequential

f4

B2

f5

Sequential

Branch

B3

ret

Sequential

B4

f6

Sequential

Fig 1. An example of BRCG

Due to the function call and function return are two important control flow behaviors, it is necessary to add
the function returns related information into the definition of BRCG. In this way, BRCG can describe the branch
statements which function return would depend on, as shown in the Fig. 1(the gray part).

N in the BRCG is defined as follows: N is a set, its elements are composed of function call statement, branch
statements and function return statements. The others use the definition of [5].

2.2. Pruning BRCG

Because there may be lots of informat ion about branch statements in BRCG, it will take large overheads to
create verificat ion model on the basis of BRCG. Therefore, it is necessary to prune appropriately for BRCG.
For minimizing false negative, this paper takes the following conservative strategy: prune the sub-graphs of
basic function only.

For the well-designed software, each component plays a different ro le in the system. On the basic level,
functions only finish the low-level and relatively simple functions, such as to control equipments running, and
achieve basic operations of data structures such as stack, queue .etc as well as achieve basic system functions
such as writing log. Reference [6] named this kind of function utility routines. Functions, which are on the
higher-level, take advantage of this mechanis m provided by basic functions to achieve complicated system
functions with certain strategy.

The purpose of tampering with the decision-making variab les of b ranch is to bypass security checking or
logic checking so as to acquire functions of software. Utility routines are merely achieved details of low-level,
they do not involve decision and judgment of logic, business or security of higher-level. Therefore, the branch
actions of utility routines could be not involved in the scope of dynamic verification. Based on that, our
strategy of pruning is to prune the sub-graphs of utility routines in BRCG.

Reference [6] indicates us an important feature that any utility routines called many times in the different
position of software code may have higher fan-in value, so we can identify utility routines by calculating their
fan-in. We adopt the following calculation given in [6]:
1) S is the set of all functions defined in software.;S={f1,f2,……fi,…,fn}
2)

if
IN is the count that function if being called, that is the fan-in value of function if .

 A Data Flow Behavior Constraints Model for Branch Decision-making Variables 37

3) 1
i

n

f
i

IN
M

S
==
∑

M is the threshold, which is the average of fan-in of all functions. For any 1 2{ , }i i nf f f f f∈ , if

fiIN M> , then we can determine that if is a utility routine. Assuming that the relations of function call are
shown in Fig. 2, every function’s fan-in and M value showed in Table 1. From Table 1, we can learn that the fan-
in of function f6 and f7 are greater than M, so they can be considered the utility routines.

f1

f2 f3

f4 f5

f6 f7

Fig 2. An example of function call graph

Table 1 Function and Its Fan-in

function Value of fan-in
f1 0
f2 1
f3 1
f4 2
f5 1
f6 6
f7 3

M = 2

3. Behavior Constraint of Data Flow Associated With the Branch Decision-Making Variables

Since the behavior of branch statements depends on the value of decision-making variables and attackers
may change the behavior of branch statements by tampering the value of decision-making variab les, if the
decision-making variables can be found firstly and make appropriate protection for them, the behavior of
branch statements may be verified and the violat ion may be forbidden.

Generally, the corruption of variables occurs when a statement illegit imately modifies the data in memory
address which is out of its writable ranges. According to the definit ion given in [7], supposing valuable v is

38 A Data Flow Behavior Constraints Model for Branch Decision-making Variables

defined in statement dst and referenced in statement ust, moreover, v is not redefined between dst and ust, then
ust is data flow dependent on dst, this is called use-def relation and denoted by ()v ust,dst . Therefore,
detecting whether data flow during running time is conformed with use-def relation or not can dynamic detect
the occurence about corruption of the decision-making variables.

On the other hand, because there is dependence relation between variables, only detecting the decision-
making variab les is insufficient. As for c=a+b, supposing c is a decision-making variables, then c would be
indirectly influenced by tampering a or b, thus, it is necessary to detect variables which are direct ly or
indirectly depended by decision-making variab les. Using program slicing techniques could ext ract variables
and statement set which are depended by decision-making variables. Program slicing set is a subset of program
statements, contains statements depended by variables at a program point directly or indirect ly [8], the
dependence includes control dependence and data dependence. In this paper, the control dependence will be
omitted, we only ext ract data dependence statement, then further extract variables depended by decision-
making variables.

For the branch reserved calling graph of a software G<N,S,B>, G′<N′,S′,B′> is its corresponding graph after
pruning. Supposing the set of all branch statement in 'N is 1 2{ ,}iBr br br br= , for ibr Br∈ , decision-

making variable set of ibr is denoted as iV .

Supposing for decision-making variable ivar V∈ , we can calculate the statement set which var is

dependent on at ibr by using program slicing technique, it is denoted as 1 2{ , ,.... ,...}
i

(br ,var) islice s s s= . For

statement (,)
i

i br vars slice∈ , the variable set referenced by is is denoted by iref(s) , the variables set modified

by is is denoted by idef(s) . According to the program slicing algorithm, for all statements s in
i

(br ,var)slice ,

ref(s) is the set of variable depended directly or indirect ly by decision-making variable var at statement s .

Supposing { }i j k nref(s) v ,v ...v= for any
i

i (br ,var)s slice∈ , according to the program slicing algorithm, for

any l iv ref(s)∈ , there is a statement set (,)
l i i

(v ,s) br vardstm slice⊂ and for all statements s which belong to

l i
(v ,s)dstm , l de)v f(s∈ and lv is not redefined between s and is , this use-def relation is denoted by

(,)l iv s s .
The use-def relation above is defined as the behavior constraint of data flow. When a process is running,

data flow should conform to its behavior constraint. If variab le v conforms to use-def relation for a statement
s , it means when v is referenced at statement s and the statement which modifies v most recently is in the set

(v,s)dstm , then v can be considered trusted at statement s , otherwise it is untrusted.

When the branch statement ibr is running, if all decision-making variab les in the set iV are trusted and the

variables that ibr 's decision-making variables are dependent on are trusted at corresponding statement in the

current execution path respectively, then ibr ’s behavior is trusted.
During running time, dynamic instrumentation technology can be used to achieve the dynamic verification.

The detail is omitted since space is limited.

4. Security Analysis of this Model

The authentication function of SSH server is used to illustrate the effectiveness of our model. Ignoring some
detailed parts, some piece of SSH code is shown in Fig. 3.

 A Data Flow Behavior Constraints Model for Branch Decision-making Variables 39

void do_authentication(char *user, ...){
1: int authenticated = 0;
 ...
2: for(;;) {
 /* Get a packet from the client */
3: type = packet_read();
 //calls detect_attack() internally
4: switch (type) {
 ...
5: case SSH_CMSG_AUTH_PASSWORD:
6: if (auth_password(user, password))
7: authenticated =1;
 case ...
 }
8: if (authenticated)
9: return;
 }
}

Fig 3. some code of do_authentication()

SSH server certifies connection by function do_authentication(). This function can certify remote login user
by infin ite loop of multip le user authentication mechanis ms. If remote users could pass one of mechanisms, the
certification succeeds. Local variable authenticated is used for marking whether the certification passes
authentication or not. This function receives user input further in statement 3th and calls function
detect_attack(). Since function detect_attack() exists integer overflow vulnerability and the vulnerability could
be triggered as soon as a set of data that is specifically designed is inputted on remote node, so that the remote
users can modify any data of memory address easily to revalue variab le authenticated to 1 to break the loop,
and bypass the authentication mechanis m.

The fan-in value of function do_authentication() is 1,and statement 9th is its return statement, so both
statement 8th and 9th should be included in BRCG that have been pruned. The data flow constraints of
decision-making variab le of b ranch statement 8th would be into the range of verification. If variab le
authenticated is modified during detect_attack() running, as authenticated variable does not belong to the set of
writable variables, the trusted status of variable authenticated would be set to untrusted. While branch
statement 8th is being executed, we are able to check the variables referenced by the statement 8th to discover
abnormal actions of a process.

5. Concluding Remarks

We described a new model for detecting software problems at run time by analyzing and verifying the data
flow for decision-making variables. Our model can be effective in detecting the attacks to branch decision-
making variables as well as the attacks to control-data. While our work is still at an early stage and it incurs
much overhead, we intend to expand and optimize our method to include the analysis of additional parameters
and rules that define their relations. In our future works, we will further enhance the practicality of the expected
behavior model.

40 A Data Flow Behavior Constraints Model for Branch Decision-making Variables

References

[1] Trusted Computing Group, http://www.trustcomputing,org
[2] M.Abadi, M.Budiu, Ú.Erlingsson, J.Ligatti, “Control-flow integrity p rinciples, implementations, and
applications” ACM Transactions on Information and System Security, 2009, 13(1), pp.1-40.
[3] H.Feng, O.Kolesnikov, P.Fogla, W.Lee, W.Gong, “Anomaly DetectionUsing Call Stack Information” In
IEEE Symposium on Security and Privacy, Oakland, Californ ia, 2003, pp.62-76.
[4] S.Chen, J.Xu, E.C.Sezer, P.Gauriar, R.K.Iyer, “Non-control-data attacks are realistic threats” in
Proceedings of 14th USENIX Security Symposium, Berkeley, CA, USA, 2005, pp.12-16
[5] T.Qin, L.Zhang, Z.Zhou, D.Hao, J.Sun, “Discovering use cases from source code using the branch-
reserving call graph” In Proceedings of the 10th Asia-Pacific Software Engineering Conference. IEEE
Computer Society,Washington, D.C, 2003, pp.60–67.
[6] H.Lhadj, A.Braun, D.Amyot, T.Lethbridge, “Recovering Behavioral Design Models from Execution
Traces” Software Maintenance and Reengineering, 2005, pp.112-121.
[7] A.Aho, R.Sethi, J.Ullman. Compilers,Principles, Techniques, and Tools, Addison-Wesley Publishing
Company, Massachusetts, 1986.
[8] S.Horwitz, T.Reps, D.Binkley, “Interprocedural slicing using dependence graphs” ACM SIGPLAN
Notices, 2004, 39(4), pp.229-243

http://www.trustcomputing,org/�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9632�

