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Abstract 

In wireless sensor networks, the issue of nodes localization has taken a wide area of research. Most applications 

need to know the position of sensor nodes for reasons of optimal and fast data routing. In this paper, a new 

distributed localization algorithm based on Self Organizing Maps (SOMs) is proposed to determine the location 

of a node in a wireless sensor network. 

The proposed algorithm is classified as a range-free algorithm which uses only the connectivity information 

between nodes without the need to measure the time of arrival or signal strength as range-based algorithms 

require. It utilizes the neighborhood information and the well-known anchors' positions to calculate the 

estimated locations of nodes. Our algorithm is made up of two main stages. The initial estimated locations of 

nodes are calculated in the initialization stage, and fed to the learning stage in which a SOM is used to calculate 

the final estimated locations of nodes. 

By using the neighborhood information at the first stage, the algorithm has significantly reduced the SOM 

learning time and the number of iterations to converge. On the other hand, starting with real data rather than 

random data maximized the accuracy of the resulted locations. Furthermore, the distributed implementation of 

the algorithm highly alleviated the pressure on the wireless nodes which are characterized with low power and 

limited capabilities. 

The proposed algorithm has been implemented using MATLAB software and experimented by deploying 

different number of nodes in a specific area with different communication radio ranges. Extensive simulations 

evidently verified the performance of the algorithm and achieved a very good accuracy. Moreover, the 

algorithm proved its effectiveness with a lower average error and lower number of iterations compared to other 

related algorithms. 
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1. Introduction 

A wireless sensor network (WSN) is usually a relatively large-scale network of inexpensive energy efficient 

devices [1, 2]. For a node in a WSN, awareness of its location and maybe the location of some other nodes is 

crucial for a successful operation. As a case in point, routing data in sensor networks requires a fine 

cooperation among nodes in order to use small amount of energy and to deliver data as fast as possible. A node 

can choose a proper way to the destination, usually a sink node, if it knows geographic location of itself and its 

neighbor nodes [3]. Furthermore, most applications of sensor networks need to know the position of sensor 

nodes. For instance, a jungle watching WSN must find out and report the location of a probable fire [4]. 

Using Global Positioning System (GPS) devices is the simplest way to determine the location of a sensor 

node [5]. Nevertheless, because of some traits of GPS devices which are in contrary with sensor networks 

demands, using them in all sensor nodes is not justifiable. These traits include relatively high cost, high weight, 

and debatable accuracy of GPS equipment in some situations. To overcome GPS limitations, many localization 

techniques have been developed for sensor networks which do not depend on GPS devices merely. In these 

localization methods, a few nodes, called anchors or seeds, are equipped with GPS devices and help other 

nodes to determine their positions. 

Many algorithms have been proposed for localization of static WSNs [6-8]. Nodes in static WSNs do not 

have movement; in consequences, if a node of these networks could estimate its location once, it would not 

have to repeat the localization process again. Nodes in mobile WSNs may move by an external agent like wind, 

animal’s movements, stream of a river, or by internal movement agents like wheels and continuous track [9, 

10]. Mobility has two contrary effects on localization process. In one hand, as previous works indicate, 

mobility can help localization of static sensor networks [11]. In that, more nodes can get information from 

mobile anchor nodes. On the other hand, mobile sensor networks may suffer from rapidly changing situations 

which lead to less validation time for observed information. In general, the previous localization algorithms 

concentrated on static WSNs due to the high importance of this issue. Under mobility conditions, a static 

localization algorithm is supposed to be applicable with some superficial modifications and periodic mobility 

parameters tracking. 

In this paper, we consider the problem of locating and orienting a wireless ad-hoc network of unattended 

sensor nodes that have been deployed in an area at unknown locations. The basic concept is to deploy a large 

number of low-cost and self-powered sensor nodes that acquire and process data. The sensor nodes may 

include one or more acoustic microphones as well as seismic, magnetic, or imaging sensors. We consider 

location estimation in networks where a small proportion of devices, called reference devices or anchors, have 

a priori information about their coordinates. All devices, regardless of their absolute coordinate knowledge, 

estimate the range between themselves and their neighboring devices. Such location estimation is called 

relative location because the range estimates collected are predominantly between pairs of devices of which 

neither has absolute coordinate knowledge. We intend to implement a range-free localization algorithm with 

the consideration of power limitations of sensor nodes, the need for accurate results, and the time required to 

execute the algorithm. 

The rest of the paper is organized as follows. Section 2 briefly describes some of the most related works that 

have been done in the wireless nodes localization problem. The advantages and drawbacks of every work are 

mentioned and discussed. Section 3 describes accurately the proposed technique to localize the nodes in a given 

WSN. In Section 4, the experimentation environment, simulations, and results are demonstrated and analyzed. 

Comparisons to other related works have been done and analyzed to verify effectiveness of the proposed 

algorithm. Finally, the concluding remarks and future work are presented in Section 5. 

2. Related work 

Recently, mobile ad-hoc network localization has received attention from many researchers [12]. Many 

algorithms and solutions have been presented so far. These algorithms are ranging from simple to complicated 
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schemes, but they can be categorized as range-based and range-free algorithms. Range-based algorithms utilize 

the distance measured between nodes by either using the Time-Of-Arrival (TOA) [13], Time-Differential-Of-

Arrival (TDOA) [14], Angle-Of-Arrival (AOA) [15], or Received-Signal-Strength-Indicator (RSSI) [16] 

technologies. However, they usually need extra hardware to achieve such measurement. When calculating the 

absolute location, most schemes need at least three anchors (nodes that are equipped with GPS or know their 

location in advance).  

Range-free algorithms utilize only connectivity information and the number of hops between nodes. They 

are widely used due to the observable advantages over the range-based algorithms especially the conservation 

in power consumption in wireless devices. Many range-free algorithms utilized different types of artificial 

neural networks in the localization process. One of the most recent used neural networks is the Self Organizing 

Maps (SOMs), which showed its effectiveness in the localization process over other algorithms. 

2.1. Range-based localization algorithms 

The traditional ranging methods based on received signal strength (RSSI), time of arrival (TOA), angle of 

arrival (AOA), time difference of arrival (TDOA), etc., have several shortcomings from the point of view of the 

sensor networks. RSSI is usually very unpredictable since the received signal power is a complex function of 

the propagation environment. Hence, radios in sensors need to be well calibrated otherwise sensors may exhibit 

significant variation in power to distance mapping. TOA using acoustic ranging will require an additional 

ultrasound source. TOA and RSSI are affected by measurement as well as non-line of sight errors. TDOA is not 

very practical for a distributed implementation. AOA sensing will require either an antenna array or several 

ultra-sound receivers [17].  

The Active Badge Location System is often credited as one of the earliest implementations of an indoor 

sensor network used to localize a mobile node [18, 19]. Although this system, utilizing infrared, is only capable 

of localizing the room that the mobile node is located in, many other systems based on this concept have been 

proposed. The Bat system, much like the Active-Badge System, also utilizes a network of sensors [20, 21]. This 

system features a central controller that emits a query which the mobile node responds to with an ultrasonic 

pulse. This pulse is picked up by a network of receivers at varying times due to their different locations. These 

times can be used to compute the distances and hence the location of the mobile node. Researchers at 

Massachusetts Institute of Technology (MIT) have utilized similar concepts from the Bat System in their 

Cricket sensors, using a more decentralized structure. This system requires less of a support infrastructure than 

the Bat system. The Cricket location system uses a hybrid approach consisting of an extended Kalman filter, 

least square minimization to reset the Kalman filter, and outlier rejection to eliminate bad distance readings 

[22]. Other researchers at MIT have proposed localization by exploiting properties of robust quadrilaterals to 

localize an ad-hoc collection of sensors without the use of beacons [23]. 

It is also possible to localize optically as shown in the HiBall head tracking system [24]. Arrays of LEDs 

flash synchronously, and cameras capture the position of these LEDs. The system utilizes information about the 

geometry of the system and computes the position. Localization using signal strength of RF signals has been 

studied extensively [25-28].  

Monte Carlo Localization (MCL) is also one of the first practical methods for localization of mobile WSNs. 

Sequential Monte Carlo method had been used for localization of mobile robots [29]. This technique has been 

adapted to produce a practical method for localization of mobile sensor networks [30]. In sequential Monte 

Carlo methods, the current state of a system can be obtained by using its current observations and its posterior 

state. In MCL, the time is divided into discrete intervals. A sensor node moves during a time interval and 

localizes at the beginning of the next time interval. The main idea of Monte Carlo Localization Boxed (MCB) 

method is to limit the area in which the samples are drawn in MCL [31]. Unlike the MCL, MCB uses the 

information obtained from anchor nodes both before and after generation of samples. This can lead to faster 

and more efficient sample generation. 
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All of these approaches complain from the use of range-based (signal strength) and connectivity information, 

that are hard and slow to be collected, need hardware support of network nodes, and are rapidly changing 

especially in mobile networks. 

2.2. Range-free localization algorithms 

Some other schemes are range-free and use connectivity information only. One of the first examples of such 

techniques is the “GPS-Less” positioning system, where nodes use a centroid approach to estimate their 

position by averaging the coordinates of nearby anchor nodes [32]. Distance Vector-HOP (DV-HOP) is a 

typical range-free algorithm, where anchor nodes flood the network with message beacons that are used by 

each node to determine the minimal hop count distances [33]. An estimate of the average hop length is used to 

obtain distance values and perform multilateration. A similar approach is proposed in [34] and in [35] as an 

Ad-hoc Positioning System (APS). It uses distance-vector forwarding technique to get the minimum hop count 

from a node to heard anchors. By using corrections calculated by anchors (average hop-distance between 

anchors), nodes estimate their location by using lateration (triangulation) method. 

Compared to DV-HOP, some other algorithms seem to be more complicated, but have better accuracy. The 

Multidimensional Scaling Map (MDS-MAP) proposed in [36] is an example. MDS-MAP originated from a 

data analytical technique by displaying distance-like data in geometrical visualization. It computes the shortest 

paths between all pairs of nodes to build a distance matrix and then applies the classical Multidimensional 

Scaling (MDS) to this matrix to retain the first two largest eigenvalues and eigenvectors to a 2D relative map. 

After that, with three given anchors, it transforms the relative map into an absolute map based on anchors’ 

absolute locations. There are some variances of MDS-MAP such as centralized method: MDS-MAP(C), and 

distributed one: MDS-MAP (P). But, in the distributed method, to get the absolute location, nodes need global 

information about the sub-network’s map that contains at least three anchors. 

2.3. Localization using neural networks and self-organizing maps 

Neural networks have not been used extensively in this area. There has been some research conducted in [37]. 

However, in that research, the authors restricted themselves to comparing Recurrent Neural Networks (RNN) to 

the Kalman Filter. In [38], the authors showed that a Multi-Layer Perceptron (MLP) neural network can be 

used for localization, and that its performance exceeds that of the Position-Velocity (PV) and Position-

Velocity-Acceleration (PVA) variants of the Kalman Filter. In [39], a new localization scheme is proposed 

based on a Support Vector Machine (SVM). The authors have contributed another machine learning method to 

the localization problem, and proved the upper bound error of this method. These first approaches that used 

neural networks in the localization process in WSNs are promising and may lead to faster and more accurate 

localization. 

A Self-Organizing Map (SOM) [40] or Self-Organizing Feature Map (SOFM) is a type of artificial neural 

network [41] that is trained using unsupervised learning to produce a low-dimensional, typically two-

dimensional, discretized representation of the input space of the training samples, called a map. SOMs are 

different from other artificial neural networks in the sense that they use a neighborhood function to preserve the 

topological properties of the input space. This makes SOMs useful for visualizing low-dimensional views of 

high-dimensional data, akin to multidimensional scaling [42]. 

Regarding the localization based on SOMs, some researchers have employed them directly or with some 

modification. SOMs have been used to implement localization schemes for mobile robots in unknown 

environments [43, 44]. The SOM, initially trained with information collected by on-board sensors during the 

exploration phase, is then used as a virtual map to translate new sensor readings into grid positions or to 

recognize different environments. The method presented in [45] employed the classical SOM to the localization 

problem. This method uses centralized implementation and requires thousands of learning steps for 

convergence to network topology. The authors also realized that this method is good for small and medium size 
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networks of up to 100 nodes. In [46], a distributed localization scheme is proposed based on SOM. In [47], the 

authors proposed another version of distributed localization based on SOM. In [48], they employed another 

deduced SOM version. But, this method still needs too many iterations, at least 4000, to converge to the actual 

topology with a relatively low accuracy. 

In another work [49], the authors use SOM to track a mobile robot with the utilization of surrounding 

environments using readings of sensor data. In [50], another version of SOM is used to implement the 

localization in wireless sensor networks. Their model is based on the assumption that network nodes can sense 

a common phenomenon, e.g., acoustic or seismic, at synchronized time steps. A further assumption is that the 

correlation between sensor readings is a function only of the distance between nodes. Under these conditions, 

sensor readings from all nodes are first accumulated to form the training set, and then, after the SOM model has 

been trained, are used to sort the nodes according to their proximity to a set of virtual sensors placed on a 

regular grid. 

These SOM-based algorithms led to acceptable error range and accuracy, but still need a huge number of 

iterations to converge. Also, they used the classical SOM update method, which may be not suitable in some 

cases, and is applicable only to small networks. 

In this paper, we also use SOMs in the localization process, but enhance the existing techniques and get 

benefit from the connectivity and neighboring nodes’ information to start the learning stage with meaningful 

initialization, and thus fasten the process. Moreover, the SOM update function will be modified to be suitable 

for different network topologies as well as different network sizes. 

3. The proposed algorithm: Distributed Localization using Self Organizing Maps (DLSOM) 

3.1. Anchors number and placement 

The number and placement of anchors affect the accuracy of node localization algorithms to a certain extent. 

Substantial amount of anchors are required to maintain the accuracy for distributed algorithms based on 

multilateration, in which nodes estimate their positions as the average of the received positions from anchors 

and neighbors. Theoretically, more anchors bring higher location accuracy. However, too many anchors cause 

high calculation complexity and energy consumption. 

Many previous studies found that the optimal number of anchors to be selected in most distributions of 

WSNs ranges from 3 to 6. In multilateration-based algorithms, like our algorithm, using four anchors gives 

satisfying accuracy with very slight difference of using more anchors, taking into account the calculation 

complexity and energy consumption.  

In [51], the number of anchors is optimized through simulation with Matlab. The localization algorithm is 

simulated with different number of anchors (3, 4, 6, 8, 10, 20, and 50). The correction quality of multilateration 

stagnates when more than six anchors are used. To keep low complexity and low energy consumption, four is 

chosen as the optimal number of anchors. Also, in the experiments of [52], they tried from 3 to 10 anchors on 

anisotropic networks and found that four anchors usually give the best results. Another benefit of using just 

four anchors for multilateration is that the communication cost is much lower than using many anchors. The 

delay in getting the distance information is also smaller. The information locality enables the method to scale to 

large-size networks. 

For the selection of anchors' positions, also many studies showed that the performance is better when 

anchors are uniformly distributed along the perimeter of the network. The nodes with high correlations with 

other nodes should be selected [53-55]. In [52], experiments showed that placing the four anchors randomly 

gives slightly worse solutions than using the four outer anchors at the network perimeter. Using the four inner 

anchors at the four centers gives the worst solution. In this paper, we tried to select the anchors at the perimeter 

and at the four centers of the network. Extensive simulations using the two distributions showed that selecting 

the anchors at the network perimeter gives better accuracy. Thus, four anchors distributed at the network 

perimeter are selected in the simulations of our algorithm. 
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3.2. DLSOM methodology 

Given a wireless network with randomly distributed nodes with N nodes in a specified area, L × L, and a 

determined radio range, R, also called communication range, in which the nodes can maximally communicate 

with each other, the anchor nodes are selected to be at the four ends, i.e., the perimeter, of the network topology. 

The algorithm is divided into two main stages, the initialization stage and the SOM learning stage. 

In the initialization stage, the anchors begin to broadcast their well-known locations to their neighbors, nodes 

within their communication range, as well as the position of these anchors with regard to the network topology 

(top-right, top-left, bottom-right, bottom-left). This information can be usefully used by the neighbors to 

estimate their initial locations. 

The x-coordinate, xanchTR, and the y-coordinate, yanchTR, of the top-right anchor are initialized to the maximum 

x-coordinate and the maximum y-coordinate for the whole network nodes, respectively. For every neighbor 

node of this anchor, its x-coordinate and y-coordinate are initialized to random values in the intervals [xanchTR - 

R, xanchTR] and [yanchTR - R, yanchTR], respectively. 

The x-coordinate, xanchTL, and the y-coordinate, yanchTL, of the top-left anchor are initialized to the minimum x-

coordinate and the maximum y-coordinate for the whole network nodes, respectively. For every neighbor node 

of this anchor, its x-coordinate and y-coordinate are initialized to random values in the intervals [xanchTL, xanchTL 

+ R] and [yanchTL - R, yanchTL], respectively. 

The x-coordinate, xanchBR, and the y-coordinate, yanchBR, of the bottom-right anchor are initialized to the 

maximum x-coordinate and the minimum y-coordinate for the whole network nodes, respectively. For every 

neighbor node of this anchor, its x-coordinate and y-coordinate are initialized to random values in the intervals 

[xanchBR - R, xanchBR] and [yanchBR, yanchBR + R], respectively. 

The x-coordinate, xanchBL and the y-coordinate, yanchBL, of the bottom-left anchor are initialized to the 

minimum x-coordinate and the minimum y-coordinate for the whole network nodes, respectively. For every 

neighbor node of this anchor, its x-coordinate and y-coordinate are initialized to random values in the intervals 

[xanchBL, xanchBL + R] and [yanchBL, yanchBL + R], respectively. 

Now, the estimated initial locations of the anchors' neighbors are transmitted to the unknown inner neighbor 

nodes. These neighbor nodes will actually receive many estimated locations according to the number of 

neighbors. Each inner node, v, estimates its initial location by averaging the received locations according to the 

following equation: 
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where (xv, yv) are the coordinates of node v, and Nv is the number of its neighbors. 

As a final step of the initialization stage, the rest of the network nodes that did not receive any estimated 

location, due to their wide distance from the network nodes, i.e., out of range of any network node, will 

estimate their initial locations randomly since there is no knowledge of any neighbor information. 

After completing the initialization stage, each node forwards its estimated location to all of its neighbors in 

preparation to the learning stage. Let the actual and estimated locations of a wireless node be denoted 

by
a

iw and
e

iw , respectively, i = 1, 2, 3, …, N. As each node forwarded its estimated initial location to all of its 

neighbors, it also knows the estimated locations of its neighbors, denoted by
,

e

i jw , j = 1, 2, 3, …, Ni, where Ni is 

the number of neighbor nodes to the node with location e

iw . Now, the node with the location e

iw plays as the 

winning neuron to the region formed by the neighbors of that node. Because each node knows its neighbors 
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within the communication range and due to the distributed nature of the algorithm, each node can be considered 

as the best matching unit to the set of its neighbors and performs the location updates of its neighbors. The 

following steps represent the learning stage of the algorithm: 

Step 1. Based on SOM, the node with weight (location) )(twe

i
updates every weight (location), )(, twe

ji
, of a 

neighbor node according to the following formula: 
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and α is a learning rate exponential decay function defined as: 
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where t is tth time step of the total number of learning steps, T. 

Step 2. The node with location )(twe

i
now transmits its neighbor location updates to all of its neighbors, and 

on the other hand, receives similar updates from its neighbors as )1(, twe

ij
, j = 1, 2, 3, …, Ni.  

Step 3. The node with location )(twe

i
calculates its new estimated location by averaging the current location 

and the received updates from neighbors according to the following equation: 
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Step 4. The node re-forwards its new estimated location, )1( twe

i , to its neighbors. 

The previous four steps are repeated T times, or until convergence. 

4. Experimentation 

4.1. Experimental environment 

Our DLSOM algorithm is implemented and tested using Matlab 7.9 software. The code is run on a desktop 

PC with Intel Pentium 4.0, 2.6 GHz CPU, and 512 KB RAM. The algorithm is run with the following settings: 

 

 Wireless network topology generation and deployment: The network is generated randomly based on the 

following varying parameters: 

Number of nodes, N: varies from 10 to 100 nodes. 

Communication range, R: varies from 1 km to 4 km. 

Deployment area, L × L: 10 km × 10 km is used. 

 

 Initialization stage: The initial estimated locations of nodes are calculated by assuming that four anchors 

are selected at the perimeter of the network topology (top-right, bottom-right, top-left, bottom-left).
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 SOM learning stage: The final estimated locations are calculated according to the following SOM 

parameters: 

Maximum number of iterations, T: varies from 25 to 50. 

Learning rate, α: a decay exponential function, of the current iteration and the maximum number of 

iterations, is used. 

Weight updating formulae, see Eqns. 2 to 5. 

 

The evaluation parameter is the average error between the estimated locations resulted from the DLSOM 

algorithm and the actual locations, defines as: 
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where R is the communication range, N is the number of nodes,
e

iw  and
a

iw  are the ith node estimated and 

actual locations, respectively. 

4.2. A 10-nodes wireless network 

For the communication range 1 km, due to the low connectivity, the anchors almost have no neighbors. Most 

of the nodes have no neighbors; this forces the nodes to estimate their locations randomly since no 

neighborhood information is available. The difference between the actual and initial locations of network nodes 

is very high. Almost all nodes have estimated their locations randomly. As a result of the DLSOM learning, the 

accuracy of the final estimated locations is not very high. Also, the number of iterations needed to reach 

convergence is considerably high; took about 50 iterations. 

For the communication range 2 km, due to the low connectivity and low number of nodes, the anchors 

almost have no neighbors. Here, the difference between the actual and initial locations of nodes is much 

smaller. This is because some of the inner nodes have neighbors and get advantage of the estimated locations. 

As a result of the DLSOM learning, the accuracy of the final estimated locations is also much higher, about 

twice, and also, the number of iterations needed to reach convergence is lower; took about 35 iterations. 

For the communication range 4 km, all anchors have neighbors. Most of the nodes have neighbors. The 

difference between the actual and initial locations of network nodes is considerably small. As a result of the 

DLSOM learning, the accuracy of the final estimated locations is considerably high. Most of the nodes have 

estimated locations with low difference from the actual locations. Also, the number of iterations needed to 

reach convergence is very low; took about 25 iterations. 

4.3. A 50-nodes wireless network 

For the communication range 1 km, the anchors almost have no neighbors due to low radio range. Most of 

the nodes estimated their initial locations randomly due to low connectivity. Also, some of the inner nodes that 

have neighbors shared the same estimated location. As a result of the DLSOM learning, the accuracy of the 

final estimated locations is relatively low. The final estimated locations for most of the nodes have noticeable 

difference from the actual locations. Also, the number of iterations needed to reach convergence is relatively 

high in contrast with the 10-nodes wireless network with R = 4 km. Here, it took about 35 iterations to 

converge.  

For the communication range 2 km, all four anchors have considerable number of neighbors that can 

estimate their initial locations easily. For this communication range, most of the nodes have neighbors. This 

helps the nodes to estimate their locations based on neighborhood information and totally get benefit from the 
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proposed algorithm. As a result of the DLSOM learning, the accuracy of the final estimated locations is higher, 

and also, the number of iterations needed to reach convergence is much lower; took about 25 iterations. This is 

due to the higher connectivity and the correlation between nodes. 

For the communication range 4 km, all anchors have large number of neighbors that can estimate their initial 

locations based on received anchors' locations. All of the nodes have neighbors, which helps the nodes to 

estimate their locations based on neighborhood information. But, because of the existence of the averaging step 

during the initialization stage, and because of the similarity of neighbors for some nodes, the final estimated 

locations for these nodes are nearly the same. This leads to agglomeration which is a problem that occurs in 

most of multiteraion-based methods, in which a node can estimate its location by averaging the received 

locations. This is due to the accumulation of the error in previous estimations. As a result of the DLSOM 

learning, the accuracy of the final estimated locations is lower than the previous case, contrary to the 

expectations. This is due to the agglomeration happening during the initialization stage. The number of 

iterations is about 28. 

4.4. A 100-nodes wireless network 

For the communication range 1 km, anchors have low number of neighbors due to low radio range. Some of 

the inner nodes, that have neighbors, estimate their locations based on received data from adjacent nodes. As a 

result of the DLSOM learning, the final estimated locations showed that the accuracy of the result is relatively 

low; many nodes shared the same location, and, also, the number of iterations needed to reach convergence is 

high; took about 45 iterations. Although the communication range is very low, the problem of agglomeration 

slightly occurred and the low communication range influenced the accuracy of the algorithm. This is due to the 

large number of nodes deployed in a limited area. 

For the communication range 2 km, most anchors have neighbors that can estimate their locations based on 

anchors' sent data. Here, the problem of agglomeration occurred; this is due to the large number of nodes. As a 

result of the DLSOM learning, the final estimated locations showed that the accuracy of the result is higher 

than the previous case and, also, the number of iterations needed to reach convergence is lower; took about 36 

iterations.  

For the communication range 4 km, anchors have high number of neighbors that can estimate their initial 

locations making advantage of received data. Again, the agglomeration problem occurred with a high degree 

due to the high communication range and the large number of nodes. As a result of the DLSOM learning, the 

accuracy of the result is relatively low; many nodes share the same location and have noticeable difference 

from the actual locations, and the number of iterations is about 40. 

Table 1. Simulation results for different sets of parameters 

Number of nodes Radio range Number of iterations Avg. error 

10 1 50 0.450 

10 2 35 0.341 

10 4 25 0.264 

50 1 35 0.402 

50 2 25 0.228 

50 4 28 0.296 

100 1 45 0.390 

100 2 36 0.277 

100 4 40 0.317 
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Table 1 summarizes the results of the three network types that have been used in simulations. For radio range 

1 km, by increasing the number of nodes, the average error decreases. This can be explained as: by increasing 

the number of nodes with a low radio range, the neighborhood information increases slightly, and thus, the 

DLSOM algorithm performs better. For radio range 2 km, by increasing the number of nodes, the average error 

decreases and then increases. This can be explained as: by increasing the number of nodes with a medium radio 

range, the neighborhood information increases, and thus, the DLSOM algorithm performs better. But, by 

deploying a large number of nodes in a limited area with this radio range, the agglomeration problem occurs 

and the DLSOM performance decreases slightly. For radio range 4 km, by increasing the number of nodes, the 

average error increases. This can be explained as: by increasing the number of nodes with a large radio range in 

a limited area, the agglomeration problem occurs and the DLSOM performance decreases slightly. The best 

case is when the number of nodes is 50 with radio range of 2 km, in which case the average estimated error is 

about 0.228 whereas the worst case is when the number of nodes is 10 with radio range of 1 km, in which the 

average estimated error is about 0.45. 

The effect of radio range variance can be illustrated by results of Table 1, also. For low number of nodes, by 

increasing the radio range, the average error decreases. This is due to the neighborhood information support 

that increases with high radio ranges. For medium number of nodes, by increasing the radio range, the average 

error decreases and then increases. This is due to the occurrence of the agglomeration problem. Also, for large 

number of nodes, by increasing the radio range, the average error decreases and then increases because of the 

occurrence of the agglomeration problem. 

4.5. Placing the anchors at the four centers 

To see the effect of changing the four anchors placement on DLSOM, we tried to put the anchors at the four 

centers of the network. Table 2 shows the average error results by applying this change, placement, on the same 

experimental cases described earlier. In this case, the average error is much larger compared to the results of 

Table 1. This can be explained as: the method used to estimate the locations of anchors' neighbors, explained 

earlier, is more accurate. For all the anchors at the centers of the network, the estimation equation is: 

(x, y) = (random([xanch - R, xanch + R]), random([yanch - R, yanch + R]))                                                               (7) 

where (x, y) are the coordinates of an anchor neighbor, (xanch, yanch) are the coordinates of any of the four 

anchors, and R is the communication range. Obviously, the interval of randomization for location estimation is 

unified and larger in contrast with the four different intervals used before. Thus, based on the results of this 

experiment and previous studies, the anchors placed at the perimeter of the network yields better accuracy than 

that at the four centers of the network. 

Table 2. Simulation results for placing anchors at the four centers 

Number of nodes Radio range Avg. error 

10 1 0.471 

10 2 0.318 

10 4 0.683 

50 1 0.721 

50 2 0.528 

50 4 0.693 

100 1 0.689 

100 2 0.657 

100 4 0.812 
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4.6. Time analysis 

The time required to execute the DLSOM algorithm has been measured for each of the simulation 

experimental cases. Execution time increases linearly by increasing the number of nodes. The time spent in the 

initialization stage is constant and short. This is because this stage executes for one time (not iterative) and the 

calculations are fast and simple. Most of the time is spent in the learning stage (iterative process), in which the 

nodes transmit and receive location updates to neighbors at each iteration. This time, of course, increases by 

increasing the number of nodes. For example, for radio range 1 km, the time is about 56 seconds. About 12 

seconds only are spent in the initialization stage and 44 seconds in the learning stage. Also, the time increases 

linearly by increasing the radio range. This is because by increasing the radio range, more transmission and 

receiving processes are done by the increment of neighboring nodes. These processes run most of the time. 

Although the number of iterations decreases by number of nodes and radio range increment, the time spent 

increases. This slight increment does not affect the performance of the algorithm; DLSOM is considered to be 

fast in all cases. 

4.7. Comparisons with other algorithms 

The DLSOM algorithm is compared to many similar algorithms that are used to localize the nodes in ad-hoc 

wireless networks. The comparison parameter chosen is the average error in a unified set of simulation 

parameters. 

For 50 wireless nodes randomly deployed in an area of 10 km × 10 km with a radio range of 2 km and four 

anchors selected at the network perimeter, the average error resulted by applying the SOM, MDS-MAP, and 

DLSOM is 0.46, 0.38, and 0.27, respectively. These results are the average of 30 different trials of the same set 

of parameters. Obviously, the DLSOM algorithm has the least average error with a noticeable difference. It is 

worth mentioning that especially in this case, 50 nodes and range of 2 km, the DLSOM performs the best. 

The average error calculated after applying DV-HOP, SOM, and DLSOM, is 0.50, 0.35, and 0.30, 

respectively, where 100 wireless nodes are randomly deployed in an area of 10 km × 10 km with a radio range 

of 2 km and four anchors selected at the ends of the network. These results are the average of 50 different trials 

of the same set of parameters. Again, the DLSOM algorithm has the least average error over the other 

algorithms with a noticeable difference.  

For low radio ranges, low number of nodes, and irregular network topology (random), some algorithms 

proved their high performance over the others. In [45], a classical SOM localization algorithm is used and 

produced accurate results in comparison with the others. We have implemented the classical SOM algorithm 

used in [45] on the same hardware/software environment that we used to implement our algorithm. The tested 

original network has 10 wireless nodes deployed randomly in an area of 10 km × 10 km with a radio range of 2 

km. The average error rates of localized SOM and DLSOM are 0.36 and 0.38, respectively. Moreover, the 

classical SOM algorithm is centralized while the DLSOM is distributed. Hence, the wireless network nodes' 

computation overhead is reduced significantly, and also the number of iterations taken in the DLSOM is about 

35 which is very small compared to the thousands of iterations taken by the classical localized SOM. These 

results are the average of 50 different trials of the same set of parameters. 

5. Conclusion 

In this paper, a SOM-based distributed localization algorithm is proposed (DLSOM). The main objective of 

this algorithm is to calculate the locations of nodes in wireless sensor networks. The intelligent SOM neural 

networks are selected due to their multiple characteristics over other types of neural networks. One of the most 

important characteristics of SOMs is their unsupervised training fashion, in which no reward or cost functions 

are needed. Moreover, the arrangement of neurons into a grid increases the accuracy of the results. 
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The proposed localization algorithm aimed to get benefit from the neighborhood information that can be 

gathered fast and easy by the wireless nodes; each node knows its neighbors based on the communication radio 

range. Thus, no communication overhead occurs and the usage of this information in the initialization stage of 

the algorithm significantly helped DLSOM to begin with useful initial data to be used in the learning stage. 

Hence, the learning time and the number of iterations took by DLSOM to reach stable results have been 

noticeably decreased. Also, the accuracy of the results increased compared to results of previous related 

algorithms. 

The experimentation and simulation results proved the effectiveness of the DLSOM algorithm in different 

simulation parameters. The criterion that has been used to evaluate and compare the performance of the 

algorithm against other algorithms is the average error. The average error of the DLSOM is found to be the 

least in most cases compared to some related algorithms that proved their accuracy in this field. The total 

average error, calculated by averaging errors using all experiments, is about 30%. This percentage is much 

lower than that of other algorithms. Moreover, the number of iterations needed in DLSOM ranges from 25 to 

50. This number is significantly much smaller in comparison with the hundreds to thousands of iterations 

needed by other algorithms which reduces the learning time substantially.  

Experimentations showed that the case in which the DLSOM performs the best is with 50 wireless nodes and 

radio range of 2 km. The performance gets worse and worse by increasing the number of nodes in a limited 

area and also increasing the radio range with this large number of nodes. But in all cases, the algorithm proved 

its effectiveness over the previous contributions either in low or high number of nodes. Referring to the best 

case mentioned before, this can be considered as the most important advantage of the algorithm because most 

of the real wireless networks deployed in a limited area (10 km × 10 km) usually contain no more 50 nodes 

with a communication range of 2 km as an average. 

During the experimentation and validation of our proposed algorithm, the problem of agglomeration has 

occurred in some cases, in which the nodes have approximately the same initial estimated location due to the 

averaging step in the initialization stage. These cases include the high number of network nodes deployed in a 

limited area and have a relatively high communication radio range. This may be solved by selecting the nearest 

three, or more based on the total number of nodes, neighbors to be averaged to get the estimated location. In 

this way, the nodes that have the same set of neighbors will be enforced to choose the nearest subset and hence 

will get a distinct estimated location. Another suggested solution is to replace the averaging process step with a 

more complex and distinguishing mathematical process, such as trilateration method used in GPS systems to 

locate some wireless node, in which three known-location nodes are used to estimate the unknown node 

location with a series of complex mathematical equations. On the other hand, trilateration could be more 

accurate to calculate the initial estimated locations of wireless nodes.  

In this paper, we investigated a proposed distributed localization algorithm that has been applied on static 

wireless sensor networks, in which the nodes have no movement. For mobile wireless networks, in which the 

nodes move with specific parameters such as motion speed and motion direction, the proposed localization 

algorithm can be modified to be applied on these networks. This can be done by refreshing the set of nodes' 

neighbors periodically and using the most updated neighbors list in the learning stage to get the most 

approximate location of the node. The period of refreshing is determined based on the motion speed of the 

wireless nodes in the network. In mobile networks, the accuracy of the algorithm is supposed to be less than 

static networks due to the continuous movement and different neighborhood information that change rapidly, 

and hence influence the principle of the algorithm. 
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