
I. J. Computer Network and Information Security, 2020, 3, 11-21
Published Online June 2020 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2020.03.02

Copyright © 2020 MECS I.J. Computer Network and Information Security, 2020, 3, 11-21

MapReduce Algorithm for Single Source Shortest

Path Problem

Praveen Kumar
CSED, MNNIT Allahabad, Prayagraj (India)

E-mail: pkumar.aastha@gmail.com

Anil Kumar Singh
CSED, MNNIT Allahabad, Prayagraj (India)

E-mail: asbhadoria@gmail.com

Received: 05 December 2019; Accepted: 23 January 2020; Published: 08 June 2020

Abstract—Computing single source shortest path is a

popular problem in graph theory, extensively applied in

many areas like computer networks, operation research

and complex network analysis. SSSP is difficult to

parallelize efficiently as more parallelization leads to

more work done by any algorithm. MapReduce is a

popular programming framework for large data

processing in distributed and cloud environments. In this

paper, we have proposed MR-DSMR, a Map reduce

version of Dijkstra Strip-mined Relaxation (DSMR)

algorithm and MR3-BFS algorithms. We have compared

the performance of both the algorithms with BFS. It is
observed that MR-DSMR takes lesser communication

and computation time compared to existing algorithms.

Index Terms—BFS, Cloud Computing, DSMR,

MapReduce, Shortest Path.

I. INTRODUCTION

Single Source Shortest Path (SSSP) problem is to find

shortest paths from the source vertex to all other vertices

such that the sum of the weights of constituent edges of

every path is minimized. It plays an important role in a
variety of applications like Intelligent Transportation

Systems (ITS) [1], Route Guidance Systems (RGS) [2],

path planning in telecommunication systems, Automated

Vehicle Dispatching Systems (AVDS), etc. In large

networks, the shortest path is a vital problem to find

betweenness centrality and closeness centrality [3, 4]. In

recent years, real network graphs of transportation, social

networks have grown very large. These graphs are

sparse/dense, weighted/unweighted, directed/undirected

in nature, have triggered to use the distributed or cloud

computing environments for fast processing.

MapReduce [5], popularized by Google is a highly
scalable programming paradigm capable of processing

massive volumes of data in the distributed and cloud

environments. It helps programmers to focus on business

logic rather than various aspects of distributed computing

like communication, synchronization and network

failures. It has emerged as an effective and popular tool

for big data processing which has automatic scalability

and fault tolerance mechanism. In cloud environments,

costs are estimated based on resources used. This presents

an opportunity to an individual in taking decisions

regarding optimal use of resources, for example, Amazon

EC2 [6] charges different amount for different services

like data transfer (communication), data storage,

computation, rental of virtual processors etc. cloud

computing provides immense independence to user to

manage its resources as per computing requirements.

Sometimes the user needs urgent and fast processing

capability to meet its deadline also, many times users
don’t bother about deadline at all. In this paper we have

investigated MapReduce algorithms of SSSP that can be

tuned as per the resources present in the cloud

environment. A. D. Sharma et. al. [7] have highlighted

the tradeoff between parallelism and communication cost

in a round of MapReduce computation. More parallelism

reduces the input size of every reducer, but it increases

the communication cost. The communication cost of

existing MapReduce algorithms of SSSP [11,12,13],

discussed in section II and IV is O(E), is independent of

the degree of parallelism. For one of our proposed
algorithm MR-DSMR communication cost depends on

the degree of parallelism and thus it exhibits the tradeoff

between parallelism and communication cost also, MR-

DSMR is efficient compared to all the existing algorithms.

SSSP is special problem which provides high

parallelism at the cost of more work. For example,

Dijkstra[8] is work efficient but doesn’t give much scope

of parallelization, Bellman ford [9] is highly

parallelizable but performs more work. MR-DSMR uses

dsmr relaxation to reduce the work performed by the

algorithm to gain the efficiency compared to BFS based

algorithms

A. Problem Defination

Let G = (V, E) be a simple, undirected, weighted graph

with non-negative edge weights. The single source

shortest path problem (sssp) is computing weight vector

dist(v) of a minimum weight path from a distinguished

vertex s to each vertex v of the graph reachable from s.

12 MapReduce Algorithm for Single Source Shortest Path Problem

Copyright © 2020 MECS I.J. Computer Network and Information Security, 2020, 3, 11-21

The weight of a path is the sum of the weights of its

constituent edges

B. Motivation & Contributions

MapReduce Algorithms of SSSP present in literature

[11,12,13], are simple, offer high parallelism, uses BFS

approach which requires a large number of relaxations

that increases communication cost as well as number of

reads/writes to HDFS. BFS based algorithms don’t give

much flexibility to fully utilize memory and computing

resources available on every computing node. Hence, the

motivation behind research is i) To investigate an
algorithm which is work efficient and ii) To devise an

algorithm that can support the assignment of more/less

work as required based on availability/priority of

resources as well as that can efficiently utilize memory

and computing resources available on every computing

node in cloud environments.

We have proposed two Map Reduce algorithms of

SSSP. 1) MR-DSMR, a MapReduce version of DSMR

(Dijkstra Stripped Minned Relaxation) algorithm [10] and

2) MR3-BFS. We have theoretically and experimentally

analyzed and compared the performance of both the
algorithms with the existing algorithms present in the

literature. We observed that MR-DSMR takes lesser

communication and computation time compared to all

existing algorithms present in the literature. Also, MR-

DSMR gives us flexibility to completely utilize the

available memory and processing power present in every

computing node. The another proposed algorithm MR3-

BFS however, takes almost equal time compared to

MR2-BFS [12] but, unlike MR2-BFS, MR3-BFS doesn’t

require strict constraint that all the records of a particular

key must reside in the same partition in the sorted order
(as per key) and each partition must reside in the same

HDFS block.

The rest of the paper is organized as follows. Section II

is about related works. In section III we have described

proposed MR-DSMR and MR3-BFS algorithms. Section

IV includes experimental results and evaluation. In

section V, we have analysis and discussion and Section

VI is about conclusions and related future works.

II. RELATED WORKS

There are various parallel and distributed algorithms

exist for SSSP in the literature. For our research objective
existing SSSP algorithms have been studied to identify

efficient algorithm that can be efficiently ported into

MapReduce framework, also that can effectively utilize

computing resources available at every node.

Pingali et. al. [14, 15] has classified the algorithms into

ordered and unordered set. For the same problem

unordered algorithms usually perform more work than

their ordered counterparts, but have more parallelism due

to unordered nature of processing. Dijkstra’s algorithm

takes ordered approach, is less parallelizable and work

efficient. In contrast, Bellman-Ford takes unordered
approach, is highly parallelizable but performs more

work.  -stepping algorithm [16] uses a tunable

parameter  to get a trade-off between parallelism and

work efficiency.  -stepping maintains an array of

buckets based of tentative distances of vertices each of

size  . In any iteration, parallelism is achieved by

removing all the nodes simultaneously from current non-

empty bucket and relaxes their light weight edges (i.e

edge weights  ). Heavier weight edges (edge weights
 ) are relaxed at the end of a phase. Chakaravarthy et.
al. [17] has used hybridization of  -stepping and

Bellman-ford algorithm with pruning optimization to

solve SSSP problem in massively parallel systems.

Distributed Control algorithm [18, 19] does the relaxation

at every worker node in distance order to reduce the

redundant work. KLA [20] uses structure of graph to

avoid redundant work. KLA asynchronously relaxes

vertices which are reachable under d hops where d is a

tunable parameter. DSMR [10] relaxes exactly d edges in

distance order where d is a tunable parameter. Greater the

value of d minimizes number of synchronizations but
increases work overhead. Radius stepping [21] requires

preprocessing of graph to convert the graph into a

specific form and calculates radius of each of the vertex.

This radius is further used to find settled vertices from the

tentative list of vertices in an iteration. Crauser et.al. [22]

has proposed IN/OUT criteria to parallelize Dijkstra's

algorithm. They have given PRAM algorithm which uses

IN/OUT criteria to identify multiple settled vertices in

Dijkstra's queue whose outgoing edges can be relaxed

simultaneously. G. Brodal et. al. [23, 24] has given

CREW PRAM algorithm. They have proposed parallel

priority data structure and used it to parallelize Dijkstra’s
algorithm.

In multithreaded architecture, to achieve parallelism J.

R. Crobak et. al. [25] has used Component Hierarchy [26].

Vertices inside a Component Hierarchy can be settled in

any arbitrary order. Also, once component hierarchy is

created it can be shared among multiple processes for

computation to exploit the multithreaded architecture. M.

Papaefthymiou and J. Rodrigue [27] have presented

parallel Bellman-ford algorithm. Bellman-ford algorithm

naturally suits parallelism because it relaxes edges of

graph in any arbitrary order during any iteration. The
algorithm presented by authors in [28] uses graph

partitioning approach for parallelization. The Algorithm

partitions the graph into disjoint sub-graphs, assigns each

sub-graph to a processor. In the first iteration only one

processor, which has source node information, computes

temporary shortest path. Next, boundary information is

exchanged between adjacent sub-graphs. The process

continues until there is a state of no message exchange

between the adjacent sub-graphs, occurs.

A. Related works(MapReduce \Algorithms)

MapReduce [5] is a popular programming framework

for large data processing. It is based on key value data
model. It offers fault tolerant, scalable processing in

distributed and cloud environments. It gives freedom to

programmer to focus on business logic rather than

various aspects of distributed computing like

communication, synchronization and network failures. A

 MapReduce Algorithm for Single Source Shortest Path Problem 13

Copyright © 2020 MECS I.J. Computer Network and Information Security, 2020, 3, 11-21

MapReduce job consists of two user defined functions

Map & Reduce. Map and Reduce tasks run parallel. Map

function takes record by record input from HDFS and

produces a set of intermediate key-value pairs. Map

Reduce library groups all the values associated with the

same key, passes it to reduce function. Reduce function

processes all the values associated with a key and creates

(possibly smaller) set of key value pair. Based on

difficulty in porting an algorithm to MapReduce

paradigm Srirama et. al. has classified Map Reduce

algorithms into four classes [29]. Single source shortest
path problem can be classified to class III category as it

requires several iterations of single MapReduce job.

Followings are a brief overview of Map Reduce

algorithms of SSSP present in the literature.

MR-BFS: J. Lin and C. Dyer [9] have presented

MapReduce algorithm for SSSP (Algorithm 1). In map

phase the algorithm emits graph data structure as well as

distances of all those vertices which are adjacent to

currently active vertices (line 8 and 6). In reduce phase,

the algorithm selects minimum tentative distance and

updates the status of vertex (line 11, 12, 14). At line 15
MR-BFS emits graph data structure along with the

distance and status of each of the vertices. The algorithm

requires graph data structure to be maintained throughout

of iterations. This increases the communication cost as

well as number of reads/writes cost to HDFS in every

iteration

Schimmy-BFS: Lin and Schatz [13] proposed schimmy

design pattern for graph algorithms. Shimmy design uses

parallel merge join between graph and messages in

reduce phase to avoid shuffling of large graph. However,

it requires graph data structure to be written to HDFS
between iterations. Thus schimmy design pattern doesn’t

reduce HDFS writes cost. However, it significantly

reduces communication cost

MR2-BFS: Kajdanowicz et. al. [12] has proposed

MR2-BFS. MR2-BFS is based on Map Side join. The

algorithm joins messages and graph data structure in Map

phase. Map Side join is efficient compared to Reduce

side join (Schimmy-BFS) as it avoids the need of writing

graph data structure to HDFS between iterations. Thus

MR2-BFS significantly reduces communication cost as

well as number of HDFS writes. However, the algorithm

requires all the records of a particular key must reside in
the same partition in the sorted order (as per key). Also,

each partition must reside in the same HDFS block.

These strict constraints require pre-processing of the

graph.

All the mapreduce algorithms of SSSP discussed above

uses BFS approach. They all require same number of

relaxations. However, they are different in terms of

utilization of map reduce frame work to reduce HDFS

writes and data shuffling cost.

For a good mapreduce algorithm wall clock time is a

significant factor [30]. A wall clock time is the actual
amount of time to perform a job. For an iterative

MapReduce algorithm following parameters affect the

total wall-clock time 1) Communication cost 2) Number

of read and write to HDFS 3) Computation cost of a

Reducer and 4) Computation cost of a Mapper.

More parallelism decreases the wall clock time,

increases the communication cost, high communication

cost ultimately increases the wall clock time and

naturalizes the benefit gain through high parallelism.

Ullaman[30] has included computation cost of mapper to

communication cost as communication cost depends on

the key-value pair generated by mapper. A.D. Sharma et.

al. [7], Ullaman [30], have discussed communication cost

depends on replication rate (rate at which number of key-

value pairs generated per input element), and
computation cost of a reducer depends on reducer size

(input size of each of the reducer). Higher replication rate

increases the parallelism and communication but

decreases the reducer size. Thus, replication rate and

reducer size heavily affect the wall clock time of a

mapreduce algorithm. For BFS based algorithms,

replication rate of an input to mapper is degree of vertex

(va) where va is an active vertex, and reducer size is also

the-degree of vertex va. Thus for BFS based algorithms,

replication rate and reducer size both depends on the

nature of the graph. One of our proposed algorithm MR3-
BFS uses BFS approach with reduce side join. BFS

approach uses chaotic relaxation which is inefficient in

terms of total work done by any SSSP algorithm. Another

proposed algorithm (MR-DSMR) is work efficient

compared to BFS as it uses DSMR relaxations.

Algorithm 1: MR-BFS

1: class Mapper

2: method Map(nid n, node N)

3: d  N.Distance

4: if (N.Active=True)

5: for all nodeid mN.AdjacencyList do

6: Emit(nid m, d+w(nm))
7: N.Active=False

8: Emit(nid n, N)

1: class Reducer

2: method Reduce(nid m, [d1,d2,....])
3: dmin  infinity

4: M  null

5: for all d  [d1,d2,...] do

6: if IsNode(d) then

7: M  d

8: else if d < dmin then

9: dmin  d

10: if (M = null or M.distance > dmin) then

11: M.distance  dmin

12: M.active  True

13: else

14: M.active  false
15: Emit(nid m, node M)

III. PROPOSEDWORKS

A. MR3-BFS

MR2-BFS [12] requires all the records of a particular

key must reside in the same partition in the sorted order

14 MapReduce Algorithm for Single Source Shortest Path Problem

Copyright © 2020 MECS I.J. Computer Network and Information Security, 2020, 3, 11-21

(as per key). Also, each partition must reside in the same

HDFS block. Thus MR2-BFS requires preprocessing of

graph. Our proposed algorithm MR3-BFS also requires

preprocessing to partition the graph. However, it doesn’t

require a partition must reside in the same HDFS block.

The distributor of MR3-BFS is a mapreduce job which

runs for a single round. It partitions the graph in to

exactly r disjoint subsets v1, v2, v3..... vr such that all these

subsets represent subgraphs obtained from vertices

present in vz plus all the adjacent edges of vertices

present in vz. Vertex id of a vertex v is the key and value
is the edges adjacent to the vertex v. The distributor

creates exactly r files one for each partition sorted as per

key. The partitioner of distributer and MR3-BFS both

must be the same function. For our implementation the

partitioner partitions vertices using mod operation i.e.

vertex_id%r (here r is the number of reducers).

The algorithm MR3-BFS is presented in Algorithm 2.

In Reduce phase MR3-BFS reads its partitioned graph (at

line 6), and computes the distances of adjacent vertices of

active vertices (at line 16, 17). mapper simply forwards

messages (distance and status) of a vertex to the
partitioner (line 3). After shuffle and sort each messages

reach to reducer. Next, the reducer selects new minimum

tentative distance and new status of the vertex (At line 10

to14). If status of the vertex is active then distances of

adjacent vertices are calculated and emitted with status A

(active) (line 15-17). Once all the adjacent edges of the

vertex are relaxed the vertex itself is emitted with status

“R” (line 19). A vertex which is received from mapper

with status “R” is emitted immediately as its all adjacent

edges are already relaxed in the previous iteration. (line

21).

Algorithm 2: MR3-BFS

1: class Mapper

2: method Map(id n, [distance,status]))

3: Emit(id n, [distance,status])

1: class Reducer

2: method Initialize

3: P.OpenGraphPartition()

4: method Reduce(id n,[p1,p2,p3......])

5: repeat

6: (id n, vertex N)  P.Read()

7: until n=m

8: dmin  infinity
9: status  ""

10: for all p belongs to [p1,p2,p3....] do

11: [new_distance,new_status]  p.split()

12: if(dmin > new_distance)

13: dmin  new_distance

14: status  new_status

15: if(status="A")

16: for all nodeid mN.AdjacencyList do

17: Emit(m,[dmin+w(nm),”A]”)

18: counter++

19: Emit(n,[dmin,”R”])
20: else

21: Emit(n,[dmin,status])

The iteration of mapreduce job continues until there is

the state that no more active vertices present in any of the

reducers. The Driver program detects any active vertices

present in any of the reducers. In hadoop, it is achieved

through counter variable which gets incremented if any

active vertex is present (line 18 of reducer).

Comparison between MR2-BFS and MR3-BFS:

MR2-BFS and MR3-BFS both perform chaotic

relaxations. Both the algorithms require preprocessing of

graph. Also, both the algorithms don't require shuffling

and HDFS write of large graph through out of iterations.
The total communication cost of both the algorithms is

O(E) because both the algorithms perform chaotic

relaxations. Time and Space complexity of any reducer of

MR2-BFS & MR3-BFS is O(deg(v)). The time

complexity of a mapper of MR2-BFS is O(deg(v).k)

where k is the number of records in a HDFS block. Time

complexity of a mapper of MR3-BFS is O(k) as it simply

emits vertex its distance and status record by record. Thus,

efficiency wise MR2-BFS and MR3-BFS both are almost

same.

MR2-BFS is based on map-side join which requires all
the records of a particular key must reside in the same

partition in the sorted order (as per key) and each

partition must reside in the same HDFS block. In contrast,

MR3-BFS doesn’t require all the records of a particular

key must reside in the same HDFS block. This is the

advantage of MR3-BFS over MR2-BFS.

B. Overview of DSMR Algorithm

DSMR algorithm [31][10] runs into multiple

supersteps. each supersteps consists of three stages. 1)

Each processor applies Dijkstra's algorithm to its

assigned subgraph, relaxes vertices in distance order until
exactly D edges are relaxed. Edges whose destination

vertex are present locally in the processor's memory is

relaxed immediately, the destination vertices which are

not present locally are buffered. 2) After D edge

relaxations the algorithm enters into communication

phase and does all-to-all communication to exchange the

buffered relaxations. 3) Each processor maintains a set of

active vertices (vertices whose distance is updated and

whose all edges are yet to be relaxed). The supersteps

continue until there is a state that no more active vertices

present in any of the processor.

The distributor of DSMR algorithm partitions the
vertices of graph into K (No. of processors) disjoint

subsets V1, V2, V3.....Vk, using these K subsets K

subgraphs are obtained from vertices in the partition Vz

plus all adjacent edges of vertices present Vz.

C. Overview of Proposed MR-DSMR algorithm

The proposed Map Reduce algorithm (we refer this

algorithm as MR-DSMR) is the Map Reduce

implementation of DSMR algorithm. The distributor of

MR-DSMR partitions the vertices of graph into r disjoint

subsetsV1,V2,V3.....Vr using these r subsets r subgraphs

obtained from vertices in the partition Vz plus all
adjacent edges of vertices present in Vz. The mapper of

distributor assigns a unique key to each of these partitions.

 MapReduce Algorithm for Single Source Shortest Path Problem 15

Copyright © 2020 MECS I.J. Computer Network and Information Security, 2020, 3, 11-21

After shuffle and sort a partition is assigned to a reducer

(based on key generated by mapper). A Reducer is the

owner of all the vertices present in a partition. A Reducer

is responsible to find/maintain the distances of the

vertices present in its assigned partition. “Fig. 1” shows a

sample assignment of subgraph to each of the reducers.

here vertices are partitioned into three disjoint subsets

S1={v1,v4,v7}, S2={v2,v5,v8}, S0={v3,v6,v9} using

distributor logic of mapper as vertex_id % no. of reducers.

The subgraph obtained by vertices of set S1 with their

adjacent edges is assigned to Reducer1. Similary
subgraph obtained by vertices of partition S2 is assigned

to Reducer2 and subgraph obtained by vertices of

partition S3 is assigned to Reducer 0.

Fig.1. A sample assignment of Sub graphs to Reducers

The Map-Reduce job of distributor is non-iterative in

nature, runs for at most two rounds, creates subgraph for

each of the reducer. Next, the reducer of MR-DSMR

reads its assigned subgraph, applies DSMR algorithm and

emit buffered distances. The mapper of next iteration

diverts buffered distances to reducers. This process

continues until there is a state that no active vertices

present in any of the reducers. The algorithm MR-DSMR

is discussed in details in sub section 3.5.

D. Partitioning of Graph (The Distributor of MR-DSMR)

Data Skew and work balance among processing nodes

are the major concern of a distributed algorithm. Skew in
data heavily affects the work assignment to every

processing node. A good graph partitioning algorithm is

required to partition the graph to get the optimal

performance. Chakaravarthy et. al. [17] has used vertex

splitting technique and intra node balancing strategy to

partition the graph. Maleki et. al. [10] has also used

vertex splitting technique for high degree vertices and

randomly suffling of low degree vertices to each of the

processing nodes. The distributor of MR-DSMR is a Map

Reduce Job which runs for at most two rounds of

iterations. Our Partitioning algorithm uses similar
concept as presented in [10].

To partition the vertices of the graph, Mapper emits

specific key of a partition which is further grouped by

reducer. There can be various partitioning approach. But,

for our implementation, we have used random

partitioning using mod operation. The Mapper of

Distributor accepts adjacency list of graph as input, does

random partitioning of vertices using mod operation.

Mapper emits key as vertex_id % r (here r is the number

of reducers) and value as vertex_id along with its

adjacency list. For high degree vertices (which have

degree greater than a threshold value), the mapper creates

exactly r proxies (one for each of the reducers), and

assigns 1/rth number of adjacent edges of original vertex

to each of the proxies. Further, mapper emits keys in

such a way that each of the proxies should go to each of

the reducers. Each of These r proxies are connected to the

original vertex with weight 0. Reducers receive the

subgraphs with the specific key and create exactly r files
one for each of the subgraph. A sample assignment of

subgraph is shown in “Fig. 1”.

The Shuffling of low degree vertices is done during

reduce phase. A reducer counts number of edges in its

assigned subgraph. if number of edges, it receives from

mapper with in a specific range (90%-110% of E/r where

E is total edges of graph, For very large graph (95-

105)%of E/r) it doesn't do the shuffling otherwise The

reducer which receives more than 110% of E/r edges

identifies low degree vertices and groups into exactly r

groups (one group for each of the reducers) in such a way
that each group should have almost same number of

edges. Next, reducer keeps a group for itself and creates

proxies for each vertex of those groups which are marked

for other reducer. A proxy is connected to all the adjacent

edges of the vertex, and a vertex is connected to its proxy

with weight 0. The generation of proxy number requires

special care as keys are assigned using mod operation.

The grouping of low degree vertices requires extra care to

achieve assignment of almost equal number of number of

edges for each of the reducers.

The Distributor requires at most two iteration of MAP
Reduce job. However, a distributor of MR-DSMR can

also be a sequential algorithm.

The primary objective of distributor is: 1) the

distributor should partition the vertices of a graph in such

a way that each partition should have a separate key 2)

Every partitions should have almost equal number of

edges 3) Random partitioning doesn't utilize the property

of the graph. Random partitioning can be replaced with

some other partitioning strategy that can utilize the

property of the graph to achieve significant performance

gain.

E. Relaxation

Relaxation is a basic operation of SSSP. Relaxation

always keeps optimal solution and discards non-optimal

one. Successive relaxation results to successive

approximation to the most optimal solution. Relaxation

operation generates new distance of destination vertex

which may present in a partition or which belongs to

other partition. Given an edge e = (u,v) the operation

Relax(u,v) is defined as

Relax(u,v) -> min(d(v),d(u)+w(u,v)). Here d(v) is old

distance of v. d(u)+w(u,v) is the new distance of vertex v

from the source vertex.

F. MR-DSMR

Mapper: Each Mapper Reads the buffered distances

16 MapReduce Algorithm for Single Source Shortest Path Problem

Copyright © 2020 MECS I.J. Computer Network and Information Security, 2020, 3, 11-21

from Hdfs. For the first iteration source vertex with its

distance is buffered. Hence, input file of first iteration

contains s 0 (where s is the source vertex and zero 0 is its

distance). For all subsequent iterations buffered distances

are written to HDFS by reducer of the previous iteration.

The algorithm MR-DSMR is shown in Algorithm 3. The

mapper of MR-DSMR simply diverts the vertices with its

buffered distances to reducer (at line 5). At line 3 an array

track is used to ensure that in every iteration mapper

should emit the key of all the partitions. (line 7-9).

Reducer: Each Reducer writes the distance file to
HDFS. A distance file contains node_id(v), its

distance(d(v)) and status(st(v)) of every discovered vertex

v. There are two types of vertices present in the distance

file. A vertex with status "a" represents active vertex, a

vertex with status "r" represents relaxed vertex. Active

vertices are those vertices whose adjacent edges are yet to

be relaxed. Relaxed vertices are those vertices whose

adjacent edges are relaxed. For the first iteration the

distance file doesn't exit. For the subsequent iterations

each reducer reads distance file, creates a data structure A

of active vertices, creates a data structure R of relaxed
vertices and updates partial state variables (at line 3).

Reducer receives the buffered distances from mapper and

updates A and R (line 4 to 6). Reducer creates work list

(wl) of active vertices (at line 7). Reducer reads its own

paritioned subgraph and keeps in a suitable data structure

(line 8). Next, Reducer calls DSMR algorithm for

relaxation of vertices in distance order (line 9). A vertex

whose all the adjacent edges are relaxed is removed from

A and added into R (line 17-19, 28-30 of function

Relaxvertex()). Newly discovered vertices, if it belongs to

reducers' own partition are added into A immediately
otherwise, it is emitted with its distance. Exactly after D

relaxations, relaxation process is aborted partial state

(consists of node_id (pv), its distance (d(pv)), and index

of the graph where relaxation aborted (st(pv)) is updated

which is further written to distance file along with R and

A (line 10). For our implementation we have used

priority queue for implementation of work list of active

vertices. However, it can be replaced with any other

efficient implementation as it is suggested in [10].

Algorithm 3: MR-DSMR

1: class Mapper

2: method(v, d(v))

3: track[r] = new boolean array[r];
4: track[r]  false;

5: emit(v%r, [v,d(v)])

6: track[v%r]true;

7: for each of (t  0;t < r; t++)

8: if(track[t]=false)

9: emit(t,”dummy”);

1:class Reducer

2: method Reduce(key,[(v1,d(v1)), (v2,d(v2))…])

3: Read the distance file from HDFS, Create data

structure A of active vertices, create data structure R of
relaxed vertices and update partial_vertex,

partial_distance and partial_index variables.

4: For all (v,d(v))  [(v1,d(v1)), ,(v2,d(v2))…] do

{

5: [v,d(v)] (v.d(v)).split()

6: Adjust_distances(v, d(v)) // optimal

distance retained

8 }

7: create worklist (wl) of active vertices using data

structure A.

8: Read owned partitioned subgraph from HDFS

and keep it into a suitable data structure.

9: void Dsmr()
10: write_distance()

1: void Adjust_distances (vertex v, d(v))

2: if(v  to R.v)

3: if(v  A.v)

4:. insert [v,d(v)] into A

5: else

6: if(d(v) < A.d(v))

7: A.d(v)  d(v)

8: else

9: if(R.d(v) > d(v))
10: remove [v,d(v)] from R.

11: insert [v,d(v)] into A.

1:void Dsmr()

2: do{

3 Int m = min i: !IsEmpty(wl[i]);

4: while(!IsEmpty(wl[m]) && relaxed<D)

5 {

6: if((vertex v=wl[m].pop())=partial_vertex)

&& m=partial_distance)

7: RelaxVertex(v,min,partial_index)
8: else

9: RelaxVertex(v,min,0)

10 }

11: }while(m < infinity || relaxed < D)

1: Relaxvertex(vertex v, int d(v),int i)

2: boolean flag=true

3: if(i=0)

4: For each Edge vu in edges(v) do

5: relaxed++

6: i++

7: if(u%r=key)
8: RelaxEdge(u,d(v)+w(vu))

9: else

10: emit(u,d(v)+w(vu))

11: if(relaxed >=D)

12: pv  v

13: d(pv) d(v)

14: st(pv) i

15: flagfalse;

16: break;

17: if (flag)

18: erase (v,d(v)) from A
19: Insert (v,d(v)) into R

20: else

21: For each Edge vu in edges(v) starting from

index i to degree(v) do

 MapReduce Algorithm for Single Source Shortest Path Problem 17

Copyright © 2020 MECS I.J. Computer Network and Information Security, 2020, 3, 11-21

22: relaxed++

23: i++

24: if(u%r_no=key)

25: RelaxEdge(u,d(v)+w(vu))

26 else

27: emit(u,d(v)+w(vu))

23: if(relaxed >=D)

24: pv  v

25: d(pv)  d(v)

26: st(pv)  i

27: break;
28: if (flag)

29: erase (v,d(v)) from A

30: Insert (v,d(v)) into R

1: RelaxEdge(Vertex u, int newDist)

2: if(u  A.node_id && u  R.node_id)

3: insert(u,d(u)) into A

4: wl[d(u)].insert(u)

6: iteration counter++

7: else if((u  A.node_id && u  R.node_id))

8: if(newDist < R.d(u))
9: erase(u,d(u)) from R

10: d(u)  newDist

11: insert(u,d(u)) into A

12: wl[d(u)].insert(u)

13: iteration counter++

14: else

15 if(u  A.node_id && u  R.node_id)

16: if(newDist < A.d(u))

17: wl[d(u)].erase(u)

18: A.d(u)newDist

19: wl[d(u)].insert(u)

20: iteration counter++

1: write_distance()

2: create file in HDFS with iteration_no and key

embedded into the file name.

3: For each entry [v,d(v)] of A do
4: write(v,d(v),"a")

5: For each entry [v,d(v)] of R do

6: write(v,d(v),"r")

7: write(-1, p(v), d(p(v)), st()) // -1 is an indication

of partial variable

The mapreduce iteration of MR-DSMR continues until

there is the state that no active vertices present in any of

the reducer. Driver program using counter variable (at

line 6, 13, 20 of function Relaxedge()) detects the

presence of active vertices.

IV. EXPERIMENTAL RESULTS AND EVALUATION

A small Hadoop cluster of 9-nodes is set up to evaluate

all the presented algorithms. One node is configured as

master and eight nodes are configured as slaves. Each of

these nodes has 4 GB of RAM and 256 GB hard drive.

All the nodes are connected with 100 Mbps Ethernet

network. Experiments are conducted on Hadoop version-

1.2.1 and JAVA JDK version “1.8.0_05”. All the

algorithms are tested with RMAT graphs [32] with

different scales. Graphs are generated with SSCA #2 [33].

Graph 500 type-2 benchmark setup (a=55, b=c=.1 and

d=.25) with edge factor 16. Edge weights are chosen

uniformly random from [1…256]. Best D value for

lowest execution time of MR-DSMR is searched from

{29, 210, …..224}. We have evaluated our proposed

algorithms with MR-BFS on different graph scales. MR2-

BFS is theoretically evaluated and compared with MR3-

BFS in section 3.1.

Data presented in “Fig 2”, “Fig.3”, “Fig4” are captured
using Hadoop counters. Hadoop MapReduce framework

provides counters to capture job statistics of a mapreduce

job. Counters related to HDFS read, HDFS write, data

shuffled between mappers and reducers are captured for

each iteration (i.e for each MapReduce job) which is

further summed up and percentage is calculated with

respect to input graph size. The wall clock time,

presented in “Fig 5”, “Fig 6”, “Fig 7” is the time duration

of job submission and completion

Communication Cost: “Fig. 2” shows total data

shuffled across the network (in % of the original input
graph size) of MR-BFS, MR3-BFS and MR-DSMR

algorithms tested on RMAT (scale 20) graph. It is evident

from the figure that MR-DSMR is efficient in terms of

communication cost compared to all other algorithms.

The communication cost of MR-BFS is high as it has to

shuffle graph data structure as well as adjacent edges of

active vertices through out of iterations. The

communication cost of other BFS based algorithms like

schimmy-BFS, MR2-BFS, MR3-BFS is O(E) i.e. the

number of edges present in the graph. For the algorithm

MR-DSMR the communication cost depends on buffered
distances. Higher the buffered distances higher the

communication cost. Thus, increasing the degree of

parallelism doesn’t affects the communication cost of all

the BFS based algorithms whereas, for MR-DSMR it

varies with the varying number of reducers as it evident

in the Fig.2.

Fig.2. Total data shuffled across the network of MR-BFS, MR3-BFS

and MR-DSMR for varying numbers of reducer.

HDFS Read: Increase in number of HDFS reads/writes
indirectly increases the communication cost. “Fig. 3”

shows total number of HDFS read (in % of original input

size of the graph) for varying number of reducers of all

the algorithms. It is evident from the figure that compared

to MR3-BFS and MR-DSMR, MR-BFS requires less

18 MapReduce Algorithm for Single Source Shortest Path Problem

Copyright © 2020 MECS I.J. Computer Network and Information Security, 2020, 3, 11-21

number of HDFS read as MR-BFS doesn’t write adjacent

edges of active vertices to HDFS between iterations.

Fig.3. Total number of HDFS read of MR-BFS, MR3-BFS and MR-

DSMR for varying number of reducers.

HDFS Write: MR3-BFS and MR-DSMR don’t write
graph data structure to HDFS between iterations whereas,

MR-BFS writes graph data structure through out of

iterations. “Fig.4” shows number of HDFS writes (in %

of original graph size) for MR3-BFS and MR-BFS. It is

evident from the figure that MR-DSMR requires less

number of HDFS write compared to MR3-BFS and MR-

BFS. Also, HDFS write doesn’t vary for the BFS with the

varying number of reducers. But, it varies for MR-DSMR.

Thus, degree of parallelism affects HDFS write of MR-

DSMR.

Fig.4. Total number of HDFS writes of MR-BFS, MR3-BFS and MR-

DSMR for varying number of reducers.

Total Wall-clock Time: “Fig. 5” shows wall clock time

of MR-BFS, MR3-BFS and MR-DSMR algorithms of

RMAT scale-20 graph. MR-DSMR requires less number

of relaxations (less work) compared to MR-BFS and

MR3-BFS. Hence, it is efficient compared to BFS based

algorithms. MR3-BFS is efficient compared to MR-BFS

due to less number of HDFS write and due to less

communications. “Fig. 7” shows wall clock time of all

the algorithms on RMAT (scale 22) graph (1 GB data set).

It is evident that MR-DSMR is efficient compared to

MR-BFS and MR3-BFS.

Scalability: All the algorithms are examined with varied

graph sizes on varied number of computing nodes. “Fig.

5” shows total time taken by MR-BFS, MR3-BFS and

MR-DSMR to compute sssp on Rmat (scale 20) graph for

varying number of reducers. For All the algorithms it is

evident that total elapsed time decreases with the increase

in number of reducers.

Weak scaling is also examined by increasing the graph

size with the increase in number of reducers “Fig. 6”.

One interesting observation is that all the three algorithm

behavior is almost same for varying number of reducers.

For 2 to 4 reducers there is increase in execution time

there after linear scaling results are obtained. This may be
due to the input graph and random generation of edge

weights.

Fig.5. Total Wall-clock Time of RMAT20 graph of MR-BFS, MR3-

BFS and MR-DSMR algorithms for varying number of reducers.

Fig.6. Wall clock time of MR-BFS, MR3-BFS and MR-DSMR for

varying graph size and varying number of reducers.

Computation time and space requirement of BFS: The
maximum computation time required for any of

mapper/reducer of BFS based algorithms is O(deg(v))

where deg(v) is degree of any vertex v. The space

requirement of any of mapper/reducer is also O(deg(v)).

Thus, cpu cost as well as memory cost of any reducer or

mapper of BFS doesn’t get affected with increasing or

decreasing the number of reducers.

Computation time and space requirement of MR-

DSMR: Suppose Vp and Ep is the number of vertices and

edges present in the subgraph obtained after partition. If
we consider the worst case scenario, the total number of

buffered distances received by any of the reducer is

O(Vp). Also, in worst case, the size of A and R together is

not more than Vp. Hence, CPU Time required to read the

graph and keep in memory is O(Vp + Ep), Time required to

 MapReduce Algorithm for Single Source Shortest Path Problem 19

Copyright © 2020 MECS I.J. Computer Network and Information Security, 2020, 3, 11-21

read the distance file is O(Vp), Time required to run

DSMR for our implementation (using priority queue) is

O((Vp + Ep)log Vp). So, total time complexity of any of

the reducer in any iteration is O((Vp + Ep)log Vp) (in

worst case). In fact, in any iteration there are many

vertices which are get settled also, there are some vertices

which are already relaxed in previous iteration. So, they

never go to the work list of active vertices. Hence, in

normal scenario Va (number of active vertices) is far less

then Vp. Also, in any iteration at most D relaxations are

allowed. Thus, in normal scenario total execution time of
any reducer of MR-DSMR is far less then O((Vp + Ep)log

Vp). DSMR implementation can be replaced with any

other implementation like Fibonacci Heaps or the

implementation presented in [10] for better efficiency.

The space requirement for any of the reducer of MR-

DSMR is O(Vp + Ep) .Thus time complexity and space

complexity of any reducer of MR-DSMR depends on the

partial vertices and edges assigned to a reducer. So,

increasing or decreasing the number of reducers i.e.

degree of parallelism affects the time and the space

requirement of a reducer of MR-DSMR.

Fig.7. Total Elapsed time of Rmat22 graph of MR-BFS, MR3-BFS and

MR-DSMR algorithms on 8 reducers.

V. ANALYSIS & DISCUSSION

Wall clock time of a job is the time duration during
which computing resources held by a computing system.

For a MapReduce job, total wall clock captures almost all

the parameters of MapReduce computation like

parallelism, execution time of Mappers/Reducers, data

shuffled across computing resources and number of

reads/writes to HDFS. In previous section we have

observed that for BFS based algorithms data shuffled

across networks, number of HDFS reads/writes,

time/space requirements of a mapper/reducer don’t get

affected with the degree of parallelism. In contrast, all

these parameters get affected with the increase and
decrease of degree of parallelism for MR-DSMR. BFS

and MR-DSMR both assign more and less work to every

computing node as per the degree of parallelism i.e.

higher degree of parallelism lead to assignment of less

amount of work to every computing node. However, BFS

doesn’t completely utilize available memory and

computing power available on every processing nodes as

time and space requirement of any mapper/reducer is

O(dev(v)) which is independent of degree of parallelism.

MR-DSMR gives us opportunity to utilize memory and

computing power available in every node processing

node by changing the degree of parallelism.

All the BFS based algorithms as well as MR-DSMR

assigns less/more work to every processing node

depending on the number of computing nodes. This

makes all the algorithms scalable with the resources.

However, as discussed, BFS based algorithms don’t give

much freedom to completely utilize memory and
computing resources available in every computing nodes.

MR-DSMR gives us freedom to utilize memory and

computing resources available in every processing node

by changing the degree of parallelism. Hence, MR-

DSMR gives us freedom to use the resources available in

cloud environments. For example, for Amazon EC2 cloud,

a 10-node cluster running for 10 hours costs the same as a

100-node cluster running for 1 hour. Hence, for any

algorithm, to minimize the cost and time associated with

the processing, it is better to fully utilize available

memory and computing power of every processing node.
Thus, MR-DSMR fits well in cloud environment

compared to BFS based algorithms. Also, MR-DSMR is

efficient compared to BFS based algorithms.

VI. CONCLUSION AND FUTURE WORKS

In this paper we have presented two map reduce

algorithms of SSSP. 1) MR-DSMR & 2) MR3-BFS. MR-

DSMR, compared to all BFS based algorithms, is work

efficient, requires less communication and less number of

HDFS writes. Also, MR-DSMR gives us flexibility to

utilize available memory and computing power of every
processing node in cloud environments. Another Map

Reducer algorithm MR3-BFS is proposed. Compared to

MR2-BFS, MR3-BFS doesn’t require a partition of the

graph must reside in the same HDFS block. MR-DSMR

presents scope for further improvements. There are

overheads, like reading and writing of distances to HDFS,

associated with each iteration of MR-DSMR. This can be

minimized by identifying settled vertices in each iteration.

Minimizing the overhead associated with each iteration of

MR-DSMR could be a future research direction

REFERENCES

[1] Y.-L. Chou, H. E. Romeijn, R. L. Smith, “Approximating
shortest paths in large-scale networks with an application
to intelligent transportation systems”, INFORMS J. on
Computing 10 (2) (1998) 163-179.

[2] A. Selamat, M. Zolfpour-Arokhlo, S. Z. Hashim and M. H.
Selamat, "A fast path planning algorithm for route
guidance system," 2011 IEEE International Conference
on Systems, Man, and Cybernetics, Anchorage, AK, 2011,

pp. 2773-2778.
[3] M. Barth'elemy, “Betweenness centrality in large complex

networks”, The European Physical Journal B -
Condensed Matter and Complex Systems 38 (2) 163-168.

[4] Wasserman, S., & Faust, K. (1994). “Social Network
Analysis: Methods and Applications” (Structural Analysis
in the Social Sciences). Cambridge: Cambridge

20 MapReduce Algorithm for Single Source Shortest Path Problem

Copyright © 2020 MECS I.J. Computer Network and Information Security, 2020, 3, 11-21

University Press.
[5] J. Dean, S. Ghemawat, “Mapreduce: Simplified data

processing on large clusters”, Commun. ACM 51 (1)
(2008) 107-113.

[6] Amazon-AWSEC2 (2016 (accessed May 31, 2019)). URL
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/c
oncepts.html

[7] A. D. Sarma, F. N. Afrati, S. Salihoglu, J. D. Ullman,
“Upper and lower bounds on the cost of a map-reduce
computation”, Proc. VLDB Endow 6 (4)(2013) 277-288.

[8] E. W. Dijkstra, “A note on two problems in connexion
with graphs”, Numerische Mathematik 1 (1) 269-271.

[9] R. Bellman, “On a routing problem”, Quarterly of Applied
Mathematics 16(1958) 87-90.

[10] A. Crauser, K. Mehlhorn, U. Meyer, P. Sanders, “A
parallelization of dijkstra's shortest path algorithm”, in:
Proceedings of the 23rd International Symposium on
Mathematical Foundations of Computer Science, MFCS

'98, 1998, pp. 722-731.
[11] J. Lin, C. Dyer, “Data-intensive text processing with

mapreduce”, Synthesis Lectures on Human Language
Technologies 3 (1) (2010) 1-177.

[12] Maleki, S., Nguyen, D., Lenharth, A., Garzaran, M. J.,
Padua, D. A., & Pingali, K. (2016). “DSMR: A parallel
algorithm for Single-Source Shortest Path problem”. In
Proceedings of the 2016 International Conference on

Supercomputing, ICS 2016
[13] Jimmy Lin; Chris Dyer, "Data-Intensive Text Processing

with MapReduce," in Data-Intensive Text Processing with
MapReduce , , Morgan & Claypool, 2010, pp.

[14] Kajdanowicz, T., Kazienko, P., & Indyk, W. (2014).
“Parallel Processing of Large Graphs”. Future Generation
Comp. Syst., 32, 324-337.

[15] Jimmy Lin and Michael Schatz. 2010. “Design patterns

for efficient graph algorithms in MapReduce. In
Proceedings of the Eighth Workshop on Mining and
Learning with Graphs (MLG '10). ACM, New York, NY,
USA, 78-85

[16] Muhammad Amber Hassaan, Martin Burtscher, and
Keshav Pingali. 2011. “Ordered vs. unordered: a
comparison of parallelism and work-efficiency in
irregular algorithms”. In Proceedings of the 16th ACM
symposium on Principles and practice of parallel

programming (PPoPP '11). ACM, New York, NY, USA,
3-12.

[17] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin
Burtscher, M. Amber Hassaan, Rashid Kaleem, Tsung-
Hsien Lee, Andrew Lenharth, Roman Manevich, Mario
Méndez-Lojo, Dimitrios Prountzos, and Xin Sui. 2011.
“The tao of parallelism in algorithms”. In Proceedings of
the 32nd ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI '11). ACM,
New York, NY, USA, 12-25.

[18] Ulrich Meyer and Peter Sanders. 1998. “Delta-Stepping:
A Parallel Single Source Shortest Path Algorithm”. In
Proceedings of the 6th Annual European Symposium on
Algorithms (ESA '98), Gianfranco Bilardi, Giuseppe F.
Italiano, Andrea Pietracaprina, and Geppino Pucci (Eds.).
Springer-Verlag, London, UK, UK, 393-404.

[19] V. T. Chakaravarthy, F. Checconi, P. Murali, F. Petrini
and Y. Sabharwal, "Scalable Single Source Shortest Path
Algorithms for Massively Parallel Systems," in IEEE
Transactions on Parallel and Distributed Systems, vol. 28,
no. 7, pp. 2031-2045, 1 July 2017.

[20] Zalewski, M., Kanewala, T. A., Firoz, J. S., & Lumsdaine,
A. (2014, November). “Distributed control: priority
scheduling for single source shortest paths without

synchronization”. In Proceedings of the 4th Workshop on
Irregular Applications: Architectures and Algorithms (pp.

17-24). IEEE Press.
[21] Firoz, J. S., Barnas, M., Zalewski, M., & Lumsdaine, A.

(2015, December). “Comparison Of Single Source
Shortest Path Algorithms On Two Recent Asynchronous
Many-task Runtime Systems”. In Parallel and Distributed
Systems (ICPADS), 2015 IEEE 21st International
Conference on (pp. 674-681).

[22] Harshvardhan, A. Fidel, N. M. Amato, and L. Rauch-

werger, "KLA: A New Algorithmic Paradigm for Parallel
Graph Computations, "in Proceedngs of the 23rd
International conference on Parallel Architectures and
Compilation. ACM, 2014, pp27-38

[23] Guy E. Blelloch, Yan Gu, Yihan Sun, and Kanat
Tangwongsan. 2016. “Parallel Shortest Paths Using
Radius Stepping”. In Proceedings of the 28th ACM
Symposium on Parallelism in Algorithms and

Architectures (SPAA '16). ACM, New York, NY, USA,
443-454.

[24] A. Crauser, K. Mehlhorn, U. Meyer, P. Sanders, “A
parallelization of dijkstra's shortest path algorithm”, in:
Proceedings of the 23rd International Symposium on
Mathematical Foundations of Computer Science, MFCS
'98, 1998, pp. 722-731.

[25] G. S. Brodal, J. L. Träff, C. D. Zaroliagis, “A parallel

priority queue with constant time operations”, Journal of
Parallel and Distributed Computing 49 (1) (1998) 4-21.

[26] G. S. Brodal, J. L. Träff, C. D. Zaroliagis, “A parallel
priority data structure with applications,” in: Parallel
Processing Symposium, 1997. Proceedings., 11th
International, 1997, pp. 689-693.

[27] J. R. Crobak, J. W. Berry, K. Madduri, D. A. Bader,
“Advanced shortest paths algorithms on a massively-

multithreaded architecture”, in: Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007. IEEE
International, 2007, pp. 1-8.

[28] M. Thorup, “Undirected single source shortest paths in
linear time”, in: Foundations of Computer Science, 1997.
Proceedings., 38th Annual Symposium on, 1997, pp. 12-
21.

[29] M. Papaefthymiou, J. Rodrigue, “Implementing parallel
shortest-paths algorithms”, DIMACS Series in Discrete

Mathematics and Theoretical Computer Science 30 (1997)
59-68.

[30] Zalewski, M., Kanewala, T. A., Firoz, J. S., & Lumsdaine,
A. (2014, November). “Distributed control: priority
scheduling for single source shortest paths without
synchronization”. In Proceedings of the 4th Workshop on
Irregular Applications: Architectures and Algorithms (pp.
17-24). IEEE Press.

[31] S. N. Srirama, P. Jakovits, E. Vainikko, “Adapting
scientific computing problems to clouds using
mapreduce”, Future Generation Computer Systems 28 (1)
(2012) 184 - 192.

[32] Jeffrey D. Ullman. 2012. Designing good MapReduce
algorithms. XRDS 19, 1 (September 2012), 30-34.

[33] Saeed Maleki, Donald Nguyen, Andrew Lenharth, María
Garzarán, David Padua, and Keshav Pingali. 2016.

“DSMR: a shared and distributed memory algorithm for
single-source shortest path problem”. SIGPLAN Not. 51, 8,
Article 39 (February 2016), 2 pages

[34] Deepayan Chakrabarti and Christos Faloutsos. 2006.
“Graph mining: Laws, generators, and algorithms”. ACM
Comput. Surv. 38, 1, Article 2 (June 2006).

[35] David A. Bader and Kamesh Maddure. “Design and
implementation of the hpcs graph analysis benchmark on

 MapReduce Algorithm for Single Source Shortest Path Problem 21

Copyright © 2020 MECS I.J. Computer Network and Information Security, 2020, 3, 11-21

symmetric multiprocessors”. In Proceedings of the 12th
International Conference on High Performance

Computing, HiPC'05, pages 465-476, Berlin, Heidelberg,
2005, Springer-Verlag.

Authors’ Profiles

Praveen Kumar is a Research Scholar at
Computer science and Engineering
Department of Motilal Nehru National
Institute of Technology, Allahabad,
Prayagraj, India. He has received his master
degree from National Institute of
Technology, Jamshedpur in computer
applications. He has awarded UGC NET

JRF in April 2013. His area of research is big data processing in
cloud and distributed environments.

Dr. Anil K. Singh is a professor at
Computer Science and Engineering
Department of Motilal Nehru Institute of
Technology Allahabad, Prayagraj, India. He

has completed his Ph.D. from IIT Roorkee.
He has teaching experience of more than 18
years. His area of interest includes semantic
analysis, graph processing and big data and

cloud computing. He has published papers in different national,
international conferences and journals. Several masters and
Ph.D. scholars are currently working under his supervision.

How to cite this paper: Praveen Kumar, Anil Kumar Singh,
"MapReduce Algorithm for Single Source Shortest Path
Problem", International Journal of Computer Network and
Information Security(IJCNIS), Vol.12, No.3, pp.11-21, 2020.
DOI: 10.5815/ijcnis.2020.03.02

