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Abstract—Computing single source shortest path is a 

popular problem in graph theory, extensively applied in 

many areas like computer networks, operation research 

and complex network analysis. SSSP is difficult to 

parallelize efficiently as more parallelization leads to 

more work done by any algorithm. MapReduce is a 

popular programming framework for large data 

processing in distributed and cloud environments. In this 

paper, we have proposed MR-DSMR, a Map reduce 

version of Dijkstra Strip-mined Relaxation (DSMR) 

algorithm and MR3-BFS algorithms. We have compared 

the performance of both the algorithms with BFS. It is 
observed that MR-DSMR takes lesser communication 

and computation time compared to existing algorithms. 

 

Index Terms—BFS, Cloud Computing, DSMR, 

MapReduce, Shortest Path. 

 

I.  INTRODUCTION 

Single Source Shortest Path (SSSP) problem is to find 

shortest paths from the source vertex to all other vertices 

such that the sum of the weights of constituent edges of 

every path is minimized. It plays an important role in a 
variety of applications like Intelligent Transportation 

Systems (ITS) [1], Route Guidance Systems (RGS) [2], 

path planning in telecommunication systems, Automated 

Vehicle Dispatching Systems (AVDS), etc. In large 

networks, the shortest path is a vital problem to find 

betweenness centrality and closeness centrality [3, 4]. In 

recent years, real network graphs of transportation, social 

networks have grown very large. These graphs are 

sparse/dense, weighted/unweighted, directed/undirected 

in nature, have triggered to use the distributed or cloud 

computing environments for fast processing. 

MapReduce [5], popularized by Google is a highly 
scalable programming paradigm capable of processing 

massive volumes of data in the distributed and cloud 

environments. It helps programmers to focus on business 

logic rather than various aspects of distributed computing 

like communication, synchronization and network 

failures. It has emerged as an effective and popular tool 

for big data processing which has automatic scalability 

and fault tolerance mechanism. In cloud environments, 

costs are estimated based on resources used. This presents 

an opportunity to an individual in taking decisions 

regarding optimal use of resources, for example, Amazon 

EC2 [6] charges different amount for different services 

like data transfer (communication), data storage, 

computation, rental of virtual processors etc. cloud 

computing provides immense independence to user to 

manage its resources as per computing requirements. 

Sometimes the user needs urgent and fast processing 

capability to meet its deadline also, many times users 
don’t bother about deadline at all. In this paper we have 

investigated MapReduce algorithms of SSSP that can be 

tuned as per the resources present in the cloud 

environment. A. D. Sharma et. al. [7] have highlighted 

the tradeoff between parallelism and communication cost 

in a round of MapReduce computation. More parallelism 

reduces the input size of every reducer, but it increases 

the communication cost. The communication cost of 

existing MapReduce algorithms of SSSP [11,12,13], 

discussed in section II and IV is O(E), is independent of 

the degree of parallelism. For one of our proposed 
algorithm MR-DSMR communication cost depends on 

the degree of parallelism and thus it exhibits the tradeoff 

between parallelism and communication cost also, MR-

DSMR is efficient compared to all the existing algorithms.  

SSSP is special problem which provides high 

parallelism at the cost of more work. For example, 

Dijkstra[8] is work efficient but doesn’t give much scope 

of parallelization, Bellman ford [9] is highly 

parallelizable but performs more work. MR-DSMR uses 

dsmr relaxation to reduce the work performed by the 

algorithm to gain the efficiency compared to BFS based 

algorithms  

A.  Problem Defination 

Let G = (V, E) be a simple, undirected, weighted graph 

with non-negative edge weights. The single source 

shortest path problem (sssp) is computing weight vector 

dist(v) of a minimum weight path from a distinguished 

vertex s to each vertex v of the graph reachable from s. 
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The weight of a path is the sum of the weights of its 

constituent edges 

B.  Motivation & Contributions 

MapReduce Algorithms of  SSSP present in literature 

[11,12,13], are simple, offer high parallelism, uses BFS 

approach which requires a large number of relaxations 

that increases communication cost as well as number of 

reads/writes to HDFS. BFS based algorithms don’t give 

much flexibility to fully utilize memory and computing 

resources available on every computing node. Hence, the 

motivation behind research is i) To investigate an 
algorithm which is work efficient and ii) To devise an 

algorithm that can support the assignment of more/less 

work as required based on availability/priority of 

resources as well as that can efficiently utilize memory 

and computing resources available on every computing 

node in cloud environments. 

We have proposed two Map Reduce algorithms of 

SSSP. 1) MR-DSMR, a MapReduce version of DSMR 

(Dijkstra Stripped Minned Relaxation) algorithm [10] and 

2) MR3-BFS. We have theoretically and experimentally 

analyzed and compared the performance of both the 
algorithms with the existing algorithms present in the 

literature. We observed that MR-DSMR takes lesser 

communication and computation time compared to all 

existing algorithms present in the literature. Also, MR-

DSMR gives us flexibility to completely utilize the 

available memory and processing power present in every 

computing node. The another proposed algorithm MR3-

BFS however, takes almost equal time compared to 

MR2-BFS [12] but, unlike MR2-BFS, MR3-BFS doesn’t 

require strict constraint that all the records of a particular 

key must reside in the same partition in the sorted order 
(as per key) and each partition must reside in the same 

HDFS block. 

The rest of the paper is organized as follows. Section II 

is about related works. In section III we have described 

proposed MR-DSMR and MR3-BFS algorithms. Section 

IV includes experimental results and evaluation. In 

section V, we have analysis and discussion and Section 

VI is about conclusions and related future works. 

 

II.  RELATED WORKS 

There are various parallel and distributed algorithms 

exist for SSSP in the literature. For our research objective 
existing SSSP algorithms have been studied to identify 

efficient algorithm that can be efficiently ported into 

MapReduce framework, also that can effectively utilize 

computing resources available at every node.  

Pingali et. al. [14, 15] has classified the algorithms into 

ordered and unordered set. For the same problem 

unordered algorithms usually perform more work than 

their ordered counterparts, but have more parallelism due 

to unordered nature of processing. Dijkstra’s algorithm 

takes ordered approach, is less parallelizable and work 

efficient. In contrast, Bellman-Ford takes unordered 
approach, is highly parallelizable but performs more 

work.  -stepping algorithm [16] uses a tunable 

parameter   to get a trade-off between parallelism and 

work efficiency.  -stepping maintains an array of 

buckets based of tentative distances of vertices each of 

size  . In any iteration, parallelism is achieved by 

removing all the nodes simultaneously from current non-

empty bucket and relaxes their light weight edges (i.e 

edge weights   ). Heavier weight edges (edge weights 
  ) are relaxed at the end of a phase. Chakaravarthy et. 
al. [17] has used hybridization of  -stepping and 

Bellman-ford algorithm with pruning optimization to 

solve SSSP problem in massively parallel systems. 

Distributed Control algorithm [18, 19] does the relaxation 

at every worker node in distance order to reduce the 

redundant work. KLA [20] uses structure of graph to 

avoid redundant work. KLA asynchronously relaxes 

vertices which are reachable under d hops where d is a 

tunable parameter. DSMR [10] relaxes exactly d edges in 

distance order where d is a tunable parameter. Greater the 

value of d minimizes number of synchronizations but 
increases work overhead. Radius stepping [21] requires 

preprocessing of graph to convert the graph into a 

specific form and calculates radius of each of the vertex. 

This radius is further used to find settled vertices from the 

tentative list of vertices in an iteration. Crauser et.al. [22] 

has proposed IN/OUT criteria to parallelize Dijkstra's 

algorithm. They have given PRAM algorithm which uses 

IN/OUT criteria to identify multiple settled vertices in 

Dijkstra's queue whose outgoing edges can be relaxed 

simultaneously. G. Brodal et. al. [23, 24] has given 

CREW PRAM algorithm. They have proposed parallel 

priority data structure and used it to parallelize Dijkstra’s 
algorithm. 

In multithreaded architecture, to achieve parallelism J. 

R. Crobak et. al. [25] has used Component Hierarchy [26]. 

Vertices inside a Component Hierarchy can be settled in 

any arbitrary order. Also, once component hierarchy is 

created it can be shared among multiple processes for 

computation to exploit the multithreaded architecture. M. 

Papaefthymiou and J. Rodrigue [27] have presented 

parallel Bellman-ford algorithm. Bellman-ford algorithm 

naturally suits parallelism because it relaxes edges of 

graph in any arbitrary order during any iteration. The 
algorithm presented by authors in [28] uses graph 

partitioning approach for parallelization. The Algorithm 

partitions the graph into disjoint sub-graphs, assigns each 

sub-graph to a processor. In the first iteration only one 

processor, which has source node information, computes 

temporary shortest path. Next, boundary information is 

exchanged between adjacent sub-graphs. The process 

continues until there is a state of no message exchange 

between the adjacent sub-graphs, occurs. 

A.  Related works(MapReduce \Algorithms) 

MapReduce [5] is a popular programming framework 

for large data processing. It is based on key value data 
model. It offers fault tolerant, scalable processing in 

distributed and cloud environments. It gives freedom to 

programmer to focus on business logic rather than 

various aspects of distributed computing like 

communication, synchronization and network failures. A 
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MapReduce job consists of two user defined functions 

Map & Reduce. Map and Reduce tasks run parallel. Map 

function takes record by record input from HDFS and 

produces a set of intermediate key-value pairs. Map 

Reduce library groups all the values associated with the 

same key, passes it to reduce function. Reduce function 

processes all the values associated with a key and creates 

(possibly smaller) set of key value pair. Based on 

difficulty in porting an algorithm to MapReduce 

paradigm Srirama et. al. has classified Map Reduce 

algorithms into four classes [29]. Single source shortest 
path problem can be classified to class III category as it 

requires several iterations of single MapReduce job. 

Followings are a brief overview of Map Reduce 

algorithms of SSSP present in the literature. 

MR-BFS: J. Lin and C. Dyer [9] have presented 

MapReduce algorithm for SSSP (Algorithm 1). In map 

phase the algorithm emits graph data structure as well as 

distances of all those vertices which are adjacent to 

currently active vertices (line 8 and 6). In reduce phase, 

the algorithm selects minimum tentative distance and 

updates the status of vertex (line 11, 12, 14). At line 15 
MR-BFS emits graph data structure along with the 

distance and status of each of the vertices. The algorithm 

requires graph data structure to be maintained throughout 

of iterations. This increases the communication cost as 

well as number of reads/writes cost to HDFS in every 

iteration 

Schimmy-BFS: Lin and Schatz [13] proposed schimmy 

design pattern for graph algorithms. Shimmy design uses 

parallel merge join between graph and messages in 

reduce phase to avoid shuffling of large graph. However, 

it requires graph data structure to be written to HDFS 
between iterations. Thus schimmy design pattern doesn’t 

reduce HDFS writes cost. However, it significantly 

reduces communication cost  

MR2-BFS: Kajdanowicz et. al. [12] has proposed 

MR2-BFS. MR2-BFS is based on Map Side join. The 

algorithm joins messages and graph data structure in Map 

phase. Map Side join is efficient compared to Reduce 

side join (Schimmy-BFS) as it avoids the need of writing 

graph data structure to HDFS between iterations. Thus 

MR2-BFS significantly reduces communication cost as 

well as number of HDFS writes. However, the algorithm 

requires all the records of a particular key must reside in 
the same partition in the sorted order (as per key). Also, 

each partition must reside in the same HDFS block. 

These strict constraints require pre-processing of the 

graph. 

All the mapreduce algorithms of SSSP discussed above 

uses BFS approach. They all require same number of 

relaxations. However, they are different in terms of 

utilization of map reduce frame work to reduce HDFS 

writes and data shuffling cost. 

For a good mapreduce algorithm wall clock time is a 

significant factor [30]. A wall clock time is the actual 
amount of time to perform a job. For an iterative 

MapReduce algorithm following parameters affect the 

total wall-clock time 1) Communication cost 2) Number 

of read and write to HDFS 3) Computation cost of a 

Reducer and 4) Computation cost of a Mapper. 

More parallelism decreases the wall clock time, 

increases the communication cost, high communication 

cost ultimately increases the wall clock time and 

naturalizes the benefit gain through high parallelism. 

Ullaman[30] has included computation cost of mapper to 

communication cost as communication cost depends on 

the key-value pair generated by mapper. A.D. Sharma et. 

al. [7], Ullaman [30], have discussed communication cost 

depends on replication rate (rate at which number of key-

value pairs generated per input element), and 
computation cost of a reducer depends on reducer size 

(input size of each of the reducer). Higher replication rate 

increases the parallelism and communication but 

decreases the reducer size. Thus, replication rate and 

reducer size heavily affect the wall clock time of a 

mapreduce algorithm. For BFS based algorithms, 

replication rate of an input to mapper is degree of vertex 

(va) where va is an active vertex, and reducer size is also 

the-degree of vertex va. Thus for BFS based algorithms, 

replication rate and reducer size both depends on the 

nature of the graph. One of our proposed algorithm MR3-
BFS uses BFS approach with reduce side join. BFS 

approach uses chaotic relaxation which is inefficient in 

terms of total work done by any SSSP algorithm. Another 

proposed algorithm (MR-DSMR) is work efficient 

compared to BFS as it uses DSMR relaxations. 

 

Algorithm 1: MR-BFS 

1: class Mapper 

2: method Map(nid n, node N) 

3:  d  N.Distance 

4:  if (N.Active=True) 

5:   for all nodeid mN.AdjacencyList do 

6:    Emit(nid m, d+w(nm)) 
7:   N.Active=False 

8:  Emit(nid n, N) 

1: class Reducer 

2: method Reduce(nid m, [d1,d2,....]) 
3:  dmin  infinity 

4:  M  null 

5:  for all d   [d1,d2,...] do 

6:   if IsNode(d) then 

7:    M  d 

8:   else if d < dmin then 

9:    dmin  d 

10:  if (M = null or M.distance > dmin) then 

11:   M.distance  dmin 

12:   M.active  True 

13:  else 

14:   M.active  false 
15:  Emit(nid m, node M) 

 

III.  PROPOSEDWORKS 

A.  MR3-BFS 

MR2-BFS [12] requires all the records of a particular 

key must reside in the same partition in the sorted order 
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(as per key). Also, each partition must reside in the same 

HDFS block. Thus MR2-BFS requires preprocessing of 

graph. Our proposed algorithm MR3-BFS also requires 

preprocessing to partition the graph.  However, it doesn’t 

require a partition must reside in the same HDFS block.  

The distributor of MR3-BFS is a mapreduce job which 

runs for a single round. It partitions the graph in to 

exactly r disjoint subsets v1, v2, v3..... vr such that all these 

subsets represent subgraphs obtained from vertices 

present in vz  plus all the adjacent edges of vertices 

present in vz. Vertex id of a vertex v is the key and value 
is the edges adjacent to the vertex v. The distributor 

creates exactly r files one for each partition sorted as per 

key. The partitioner of distributer and MR3-BFS both 

must be the same function. For our implementation the 

partitioner partitions vertices using mod operation i.e. 

vertex_id%r (here r is the number of reducers).  

The algorithm MR3-BFS is presented in Algorithm 2. 

In Reduce phase MR3-BFS reads its partitioned graph (at 

line 6), and computes the distances of adjacent vertices of 

active vertices (at line 16, 17). mapper simply forwards 

messages (distance and status) of a vertex to the 
partitioner (line 3). After shuffle and sort each messages 

reach to reducer. Next, the reducer selects new minimum 

tentative distance and new status of the vertex (At line 10 

to14). If status of the vertex is active then distances of 

adjacent vertices are calculated and emitted with status A 

(active) (line 15-17). Once all the adjacent edges of the 

vertex are relaxed the vertex itself is emitted with status 

“R” (line 19). A vertex which is received from mapper 

with status “R” is emitted immediately as its all adjacent 

edges are already relaxed in the previous iteration. (line 

21). 
 

Algorithm 2: MR3-BFS 

1: class Mapper 

2:  method Map(id n, [distance,status])) 

3:   Emit(id n, [distance,status]) 

 

1: class Reducer 

2:  method Initialize 

3:  P.OpenGraphPartition() 

4:  method Reduce(id n,[p1,p2,p3......]) 

5:   repeat 

6:   (id n, vertex N)  P.Read() 

7:  until n=m 

8:  dmin    infinity 
9:  status   "" 

10:   for all p belongs to [p1,p2,p3....] do  

11:   [new_distance,new_status]  p.split() 

12:   if(dmin > new_distance) 

13:    dmin  new_distance 

14:     status  new_status 

15:   if(status="A") 

16:    for all nodeid mN.AdjacencyList do 

17:     Emit(m,[dmin+w(nm),”A]”) 

18:    counter++ 

19:   Emit(n,[dmin,”R”]) 
20:  else 

21:   Emit(n,[dmin,status])  

The iteration of mapreduce job continues until there is 

the state that no more active vertices present in any of the 

reducers. The Driver program detects any active vertices 

present in any of the reducers. In hadoop, it is achieved 

through counter variable which gets incremented if any 

active vertex is present (line 18 of reducer). 

Comparison between MR2-BFS and MR3-BFS: 

MR2-BFS and MR3-BFS both perform chaotic 

relaxations. Both the algorithms require preprocessing of 

graph. Also, both the algorithms don't require shuffling 

and HDFS write of large graph through out of iterations. 
The total communication cost of both the algorithms is 

O(E) because both the algorithms perform chaotic 

relaxations. Time and Space complexity of any reducer of 

MR2-BFS & MR3-BFS is O(deg(v)). The time 

complexity of a mapper of MR2-BFS is O(deg(v).k) 

where k is the number of records in a HDFS block. Time 

complexity of a mapper of MR3-BFS is O(k) as it simply 

emits vertex its distance and status record by record. Thus, 

efficiency wise MR2-BFS and MR3-BFS both are almost 

same. 

MR2-BFS is based on map-side join which requires all 
the records of a particular key must reside in the same 

partition in the sorted order (as per key) and each 

partition must reside in the same HDFS block. In contrast, 

MR3-BFS doesn’t require all the records of a particular 

key must reside in the same HDFS block. This is the 

advantage of MR3-BFS over MR2-BFS. 

B.  Overview of DSMR Algorithm 

DSMR algorithm [31][10] runs into multiple 

supersteps. each supersteps consists of three stages. 1) 

Each processor applies Dijkstra's algorithm to its 

assigned subgraph, relaxes vertices in distance order until 
exactly D edges are relaxed. Edges whose destination 

vertex are present locally in the processor's memory is 

relaxed immediately, the destination vertices which are 

not present locally are buffered. 2) After D edge 

relaxations the algorithm enters into communication 

phase and does all-to-all communication to exchange the 

buffered relaxations.  3) Each processor maintains a set of 

active vertices (vertices whose distance is updated and 

whose all edges are yet to be relaxed). The supersteps 

continue until there is a state that no more active vertices 

present in any of the processor.  

The distributor of DSMR algorithm partitions the 
vertices of graph into K (No. of processors) disjoint 

subsets V1, V2, V3.....Vk, using these K subsets K 

subgraphs are obtained from vertices in the partition Vz  

plus all adjacent edges of vertices present Vz. 

C.  Overview of Proposed MR-DSMR algorithm 

The proposed Map Reduce algorithm (we refer this 

algorithm as MR-DSMR) is the Map Reduce 

implementation of DSMR algorithm. The distributor of 

MR-DSMR partitions the vertices of graph into r disjoint 

subsetsV1,V2,V3.....Vr using these r subsets r subgraphs 

obtained from vertices in the partition Vz  plus all 
adjacent edges of vertices present in Vz. The mapper of 

distributor assigns a unique key to each of these partitions. 
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After shuffle and sort a partition is assigned to a reducer 

(based on key generated by mapper). A Reducer is the 

owner of all the vertices present in a partition. A Reducer 

is responsible to find/maintain the distances of the 

vertices present in its assigned partition. “Fig. 1” shows a 

sample assignment of subgraph to each of the reducers. 

here vertices are partitioned into three disjoint subsets 

S1={v1,v4,v7}, S2={v2,v5,v8}, S0={v3,v6,v9} using 

distributor logic of mapper as vertex_id % no. of reducers. 

The subgraph obtained by vertices of set S1 with their 

adjacent edges is assigned to Reducer1. Similary 
subgraph obtained by vertices of partition S2 is assigned 

to Reducer2 and subgraph obtained by vertices of 

partition S3 is assigned to Reducer 0. 

 

 

Fig.1. A sample assignment of Sub graphs to Reducers 

The Map-Reduce job of distributor is non-iterative in 

nature, runs for at most two rounds, creates subgraph for 

each of the reducer. Next, the reducer of MR-DSMR 

reads its assigned subgraph, applies DSMR algorithm and 

emit buffered distances. The mapper of next iteration 

diverts buffered distances to reducers. This process 

continues until there is a state that no active vertices 

present in any of the reducers. The algorithm MR-DSMR 

is discussed in details in sub section 3.5. 

D.  Partitioning of Graph (The Distributor of MR-DSMR) 

Data Skew and work balance among processing nodes 

are the major concern of a distributed algorithm. Skew in 
data heavily affects the work assignment to every 

processing node. A good graph partitioning algorithm is 

required to partition the graph to get the optimal 

performance. Chakaravarthy et. al. [17] has used vertex 

splitting technique and intra node balancing strategy to 

partition the graph. Maleki et. al. [10] has also used 

vertex splitting technique for high degree vertices and 

randomly suffling of low degree vertices to each of the 

processing nodes. The distributor of MR-DSMR is a Map 

Reduce Job which runs for at most two rounds of 

iterations. Our Partitioning algorithm uses similar 
concept as presented in [10].  

To partition the vertices of the graph, Mapper emits 

specific key of a partition which is further grouped by 

reducer. There can be various partitioning approach. But, 

for our implementation, we have used random 

partitioning using mod operation. The Mapper of 

Distributor accepts adjacency list of graph as input, does 

random partitioning of vertices using mod operation. 

Mapper emits key as vertex_id % r (here r is the number 

of reducers) and value as vertex_id along with its 

adjacency list. For high degree vertices (which have 

degree greater than a threshold value), the mapper creates 

exactly r proxies (one for each of the reducers), and 

assigns 1/rth number of adjacent edges of original vertex 

to each of the proxies.  Further, mapper emits keys in 

such a way that each of the proxies should go to each of 

the reducers. Each of These r proxies are connected to the 

original vertex with weight 0. Reducers receive the 

subgraphs with the specific key and create exactly r files 
one for each of the subgraph. A sample assignment of 

subgraph is shown in “Fig. 1”.  

The Shuffling of low degree vertices is done during 

reduce phase.  A reducer counts number of edges in its 

assigned subgraph. if number of edges, it receives from 

mapper with in a specific range (90%-110% of E/r where 

E is total edges of graph, For very large graph (95-

105)%of E/r) it doesn't do the shuffling otherwise The 

reducer which receives more than 110% of E/r edges 

identifies low degree vertices and groups into exactly r 

groups (one group for each of the reducers) in such a way 
that each group should have almost same number of 

edges. Next, reducer keeps a group for itself and creates 

proxies for each vertex of those groups which are marked 

for other reducer. A proxy is connected to all the adjacent 

edges of the vertex, and a vertex is connected to its proxy 

with weight 0. The generation of proxy number requires 

special care as keys are assigned using mod operation. 

The grouping of low degree vertices requires extra care to 

achieve assignment of almost equal number of number of 

edges for each of the reducers.  

The Distributor requires at most two iteration of MAP 
Reduce job. However, a distributor of MR-DSMR can 

also be a sequential algorithm.  

The primary objective of distributor is: 1) the 

distributor should partition the vertices of a graph in such 

a way that each partition should have a separate key 2) 

Every partitions should have almost equal number of 

edges 3) Random partitioning doesn't utilize the property 

of the graph. Random partitioning can be replaced with 

some other partitioning strategy that can utilize the 

property of the graph to achieve significant performance 

gain. 

E.  Relaxation 

Relaxation is a basic operation of SSSP. Relaxation 

always keeps optimal solution and discards non-optimal 

one. Successive relaxation results to successive 

approximation to the most optimal solution. Relaxation 

operation generates new distance of destination vertex 

which may present in a partition or which belongs to 

other partition. Given an edge e = (u,v) the operation 

Relax(u,v) is defined as 

Relax(u,v) -> min(d(v),d(u)+w(u,v)). Here d(v) is old 

distance of v. d(u)+w(u,v) is the new distance of vertex v 

from the source vertex. 

F.  MR-DSMR 

Mapper: Each Mapper Reads the buffered distances 
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from Hdfs. For the first iteration source vertex with its 

distance is buffered. Hence, input file of first iteration 

contains s 0 (where s is the source vertex and zero 0 is its 

distance). For all subsequent iterations buffered distances 

are written to HDFS by reducer of the previous iteration. 

The algorithm MR-DSMR is shown in Algorithm 3. The 

mapper of MR-DSMR simply diverts the vertices with its 

buffered distances to reducer (at line 5). At line 3 an array 

track is used to ensure that in every iteration mapper 

should emit the key of all the partitions. (line 7-9). 

Reducer: Each Reducer writes the distance file to 
HDFS. A distance file contains node_id(v), its 

distance(d(v)) and status(st(v)) of every discovered vertex 

v. There are two types of vertices present in the distance 

file. A vertex with status "a" represents active vertex, a 

vertex with status "r" represents relaxed vertex. Active 

vertices are those vertices whose adjacent edges are yet to 

be relaxed. Relaxed vertices are those vertices whose 

adjacent edges are relaxed. For the first iteration the 

distance file doesn't exit. For the subsequent iterations 

each reducer reads distance file, creates a data structure A 

of active vertices, creates a data structure R of relaxed 
vertices and updates partial state variables (at line  3). 

Reducer receives the buffered distances from mapper and 

updates A and R (line 4 to 6). Reducer creates work list 

(wl) of active vertices (at line 7). Reducer reads its own 

paritioned subgraph and keeps in a suitable data structure 

(line 8). Next, Reducer calls DSMR algorithm for 

relaxation of vertices in distance order (line 9). A vertex 

whose all the adjacent edges are relaxed is removed from 

A and added into R (line 17-19, 28-30 of function 

Relaxvertex()). Newly discovered vertices, if it belongs to 

reducers' own partition are added into A immediately 
otherwise, it is emitted with its distance. Exactly after D 

relaxations, relaxation process is aborted partial state 

(consists of node_id (pv), its distance (d(pv)), and index 

of the graph where relaxation aborted (st(pv)) is updated 

which is further written to distance file along with R and 

A (line 10). For our implementation we have used 

priority queue for implementation of work list of active 

vertices. However, it can be replaced with any other 

efficient implementation as it is suggested in [10]. 

 

Algorithm 3: MR-DSMR 

1: class Mapper 

2: method(v, d(v)) 

3:  track[r] = new boolean array[r]; 
4:  track[r]  false; 

5:  emit(v%r, [v,d(v)])  

6:  track[v%r]true; 

7:  for each of (t  0;t < r; t++) 

8:   if(track[t]=false) 

9:    emit(t,”dummy”); 

 

1:class Reducer 

2:  method Reduce(key,[(v1,d(v1)), (v2,d(v2))…]) 

3:  Read the distance file from HDFS, Create data 

structure A of active vertices, create data structure R of 
relaxed vertices and update partial_vertex, 

partial_distance and partial_index variables. 

4:  For all (v,d(v))   [(v1,d(v1)), ,(v2,d(v2))…] do 

{ 

5:    [v,d(v)] (v.d(v)).split() 

6:    Adjust_distances(v, d(v)) // optimal 

distance retained 

8    } 

7:  create worklist (wl) of active vertices using data 

structure A. 

8:  Read owned partitioned subgraph from HDFS 

and keep it into a suitable data structure. 

9:  void Dsmr() 
10:   write_distance() 

 

1: void Adjust_distances (vertex v, d(v)) 

2: if(v   to R.v) 

3:  if(v   A.v) 

4:.   insert [v,d(v)] into A 

5:  else 

6:   if(d(v) < A.d(v)) 

7:    A.d(v)  d(v) 

8: else 

9:  if(R.d(v) > d(v)) 
10:   remove [v,d(v)] from R. 

11:   insert [v,d(v)] into A. 

 

1:void Dsmr() 

2: do{ 

3  Int m =  min i: !IsEmpty(wl[i]); 

4:  while(!IsEmpty(wl[m]) && relaxed<D) 

5  { 

6:   if((vertex v=wl[m].pop())=partial_vertex) 

&& m=partial_distance) 

7:    RelaxVertex(v,min,partial_index) 
8:   else 

9:    RelaxVertex(v,min,0) 

10  } 

11: }while(m < infinity || relaxed < D) 

 

1: Relaxvertex(vertex v, int d(v),int i) 

2:  boolean flag=true 

3:  if(i=0) 

4:  For each Edge vu in edges(v) do 

5:   relaxed++ 

6:   i++ 

7:   if(u%r=key) 
8:    RelaxEdge(u,d(v)+w(vu)) 

9:   else 

10:    emit(u,d(v)+w(vu)) 

11:   if(relaxed >=D) 

12:    pv  v 

13:    d(pv) d(v) 

14:    st(pv) i 

15:    flagfalse; 

16:    break; 

17:  if (flag) 

18:   erase (v,d(v)) from A 
19:   Insert (v,d(v)) into R 

20: else 

21:  For each Edge vu in edges(v) starting from 

index i to degree(v) do
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22:   relaxed++ 

23:   i++ 

24:   if(u%r_no=key) 

25:    RelaxEdge(u,d(v)+w(vu)) 

26   else 

27:    emit(u,d(v)+w(vu)) 

23:    if(relaxed >=D) 

24:    pv  v 

25:    d(pv)  d(v) 

26:    st(pv)  i 

27:    break; 
28:  if (flag) 

29:   erase (v,d(v)) from A 

30:   Insert (v,d(v)) into R 

 

1: RelaxEdge(Vertex u, int newDist) 

2: if(u   A.node_id && u   R.node_id) 

3:  insert(u,d(u)) into A 

4:  wl[d(u)].insert(u) 

6:  iteration counter++ 

7: else if((u   A.node_id && u  R.node_id)) 

8:  if(newDist < R.d(u)) 
9:   erase(u,d(u)) from R 

10:   d(u)  newDist 

11:   insert(u,d(u)) into A 

12:   wl[d(u)].insert(u) 

13:   iteration counter++ 

14: else  

15  if(u  A.node_id && u   R.node_id) 

16:   if(newDist < A.d(u)) 

17:    wl[d(u)].erase(u) 

18:    A.d(u)newDist 

19:    wl[d(u)].insert(u)  

20:    iteration counter++ 

 

1: write_distance() 

2: create file in HDFS with iteration_no and key 

embedded into the file name. 

3:  For each entry [v,d(v)] of A do 
4:   write(v,d(v),"a") 

5:  For each entry [v,d(v)] of R do 

6:   write(v,d(v),"r") 

7:  write(-1, p(v), d(p(v)), st()) // -1 is an indication 

of partial variable 

 

The mapreduce iteration of MR-DSMR continues until 

there is the state that no active vertices present in any of 

the reducer. Driver program using counter variable (at 

line 6, 13, 20 of function Relaxedge()) detects the 

presence of active vertices.  
 

IV.  EXPERIMENTAL RESULTS AND EVALUATION 

A small Hadoop cluster of 9-nodes is set up to evaluate 

all the presented algorithms. One node is configured as 

master and eight nodes are configured as slaves. Each of 

these nodes has 4 GB of RAM and 256 GB hard drive. 

All the nodes are connected with 100 Mbps Ethernet 

network. Experiments are conducted on Hadoop version-

1.2.1 and JAVA JDK version “1.8.0_05”. All the 

algorithms are tested with RMAT graphs [32] with 

different scales. Graphs are generated with SSCA #2 [33]. 

Graph 500 type-2 benchmark setup (a=55, b=c=.1 and 

d=.25) with edge factor 16. Edge weights are chosen 

uniformly random from [1…256]. Best D value for 

lowest execution time of MR-DSMR is searched from 

{29, 210, …..224}. We have evaluated our proposed 

algorithms with MR-BFS on different graph scales. MR2-

BFS is theoretically evaluated and compared with MR3-

BFS in section 3.1. 

Data presented in “Fig 2”, “Fig.3”, “Fig4” are captured 
using Hadoop counters. Hadoop MapReduce framework 

provides counters to capture job statistics of a mapreduce 

job. Counters related to HDFS read, HDFS write, data 

shuffled between mappers and reducers are captured for 

each iteration (i.e for each MapReduce job) which is 

further summed up and percentage is calculated with 

respect to input graph size. The wall clock time, 

presented in “Fig 5”, “Fig 6”, “Fig 7” is the time duration 

of job submission and completion  

Communication Cost: “Fig. 2” shows total data 

shuffled across the network (in % of the original input 
graph size) of MR-BFS, MR3-BFS and MR-DSMR 

algorithms tested on RMAT (scale 20) graph. It is evident 

from the figure that MR-DSMR is efficient in terms of 

communication cost compared to all other algorithms. 

The communication cost of MR-BFS is high as it has to 

shuffle graph data structure as well as adjacent edges of 

active vertices through out of iterations. The 

communication cost of other BFS based algorithms like 

schimmy-BFS, MR2-BFS, MR3-BFS is O(E) i.e. the 

number of edges present in the graph. For the algorithm 

MR-DSMR the communication cost depends on buffered 
distances. Higher the buffered distances higher the 

communication cost. Thus, increasing the degree of 

parallelism doesn’t affects the communication cost of all 

the BFS based algorithms whereas, for MR-DSMR it 

varies with the varying number of reducers as it evident 

in the Fig.2. 

 

 

Fig.2. Total data shuffled across the network of MR-BFS, MR3-BFS 

and MR-DSMR for varying numbers of reducer. 

HDFS Read: Increase in number of HDFS reads/writes 
indirectly increases the communication cost. “Fig. 3” 

shows total number of HDFS read (in % of original input 

size of the graph) for varying number of reducers of all 

the algorithms. It is evident from the figure that compared 

to MR3-BFS and MR-DSMR, MR-BFS requires less 
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number of HDFS read as MR-BFS doesn’t write adjacent 

edges of active vertices to HDFS between iterations. 

 

 

Fig.3. Total number of HDFS read of MR-BFS, MR3-BFS and MR-

DSMR for varying number of reducers. 

HDFS Write: MR3-BFS and MR-DSMR don’t write 
graph data structure to HDFS between iterations whereas, 

MR-BFS writes graph data structure through out of 

iterations. “Fig.4” shows number of HDFS writes (in % 

of original graph size) for MR3-BFS and MR-BFS. It is 

evident from the figure that MR-DSMR requires less 

number of HDFS write compared to MR3-BFS and MR-

BFS. Also, HDFS write doesn’t vary for the BFS with the 

varying number of reducers. But, it varies for MR-DSMR. 

Thus, degree of parallelism affects HDFS write of MR-

DSMR. 

 

 

Fig.4. Total number of HDFS writes of MR-BFS, MR3-BFS and MR-

DSMR for varying number of reducers. 

Total Wall-clock Time: “Fig. 5” shows wall clock time 

of MR-BFS, MR3-BFS and MR-DSMR algorithms of 

RMAT scale-20 graph. MR-DSMR requires less number 

of relaxations (less work) compared to MR-BFS and 

MR3-BFS. Hence, it is efficient compared to BFS based 

algorithms. MR3-BFS is efficient compared to MR-BFS 

due to less number of HDFS write and due to less 

communications. “Fig. 7” shows wall clock time of all 

the algorithms on RMAT (scale 22) graph (1 GB data set). 

It is evident that MR-DSMR is efficient compared to 

MR-BFS and MR3-BFS. 

 

Scalability: All the algorithms are examined with varied 

graph sizes on varied number of computing nodes. “Fig. 

5” shows total time taken by MR-BFS, MR3-BFS and 

MR-DSMR to compute sssp on Rmat (scale 20) graph for 

varying number of reducers. For All the algorithms it is 

evident that total elapsed time decreases with the increase 

in number of reducers.  

Weak scaling is also examined by increasing the graph 

size with the increase in number of reducers “Fig. 6”. 

One interesting observation is that all the three algorithm 

behavior is almost same for varying number of reducers. 

For 2 to 4 reducers there is increase in execution time 

there after linear scaling results are obtained. This may be 
due to the input graph and random generation of edge 

weights. 

 

 

Fig.5. Total Wall-clock Time of RMAT20 graph of MR-BFS, MR3-

BFS and MR-DSMR algorithms for varying number of reducers. 

 

Fig.6. Wall clock time of MR-BFS, MR3-BFS and MR-DSMR for 

varying graph size and varying number of reducers. 

Computation time and space requirement of BFS: The 
maximum computation time required for any of 

mapper/reducer of BFS based algorithms is O(deg(v)) 

where deg(v) is degree of any vertex v. The space 

requirement of any of mapper/reducer is also O(deg(v)). 

Thus, cpu cost as well as memory cost of any reducer or 

mapper of BFS doesn’t get affected with increasing or 

decreasing the number of reducers.  

 

Computation time and space requirement of MR-

DSMR: Suppose Vp and Ep is the number of vertices and 

edges present in the subgraph obtained after partition. If 
we consider the worst case scenario, the total number of 

buffered distances received by any of the reducer is 

O(Vp). Also, in worst case, the size of A and R together is 

not more than Vp. Hence, CPU Time required to read the 

graph and keep in memory is O(Vp + Ep), Time required to 
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read the distance file is O(Vp), Time required to run 

DSMR for our implementation (using priority queue) is 

O((Vp + Ep)log Vp). So, total time complexity of any of 

the reducer in any iteration is O((Vp + Ep)log Vp) (in 

worst case). In fact, in any iteration there are many 

vertices which are get settled also, there are some vertices 

which are already relaxed in previous iteration. So, they 

never go to the work list of active vertices.  Hence, in 

normal scenario Va (number of active vertices) is far less 

then Vp. Also, in any iteration at most D relaxations are 

allowed. Thus, in normal scenario total execution time of 
any reducer of MR-DSMR is far less then O((Vp + Ep)log 

Vp). DSMR implementation can be replaced with any 

other implementation like Fibonacci Heaps or the 

implementation presented in [10] for better efficiency. 

The space requirement for any of the reducer of MR-

DSMR is O(Vp + Ep) .Thus time complexity and space 

complexity of any reducer of MR-DSMR depends on the 

partial vertices and edges assigned to a reducer. So, 

increasing or decreasing the number of reducers i.e. 

degree of parallelism affects the time and the space 

requirement of a reducer of MR-DSMR. 
 

 

Fig.7. Total Elapsed time of Rmat22 graph of MR-BFS, MR3-BFS and 

MR-DSMR algorithms on 8 reducers. 

 

V.  ANALYSIS & DISCUSSION 

Wall clock time of a job is the time duration during 
which computing resources held by a computing system. 

For a MapReduce job, total wall clock captures almost all 

the parameters of MapReduce computation like 

parallelism, execution time of Mappers/Reducers, data 

shuffled across computing resources and number of 

reads/writes to HDFS. In previous section we have 

observed that for BFS based algorithms data shuffled 

across networks, number of HDFS reads/writes, 

time/space requirements of a mapper/reducer don’t get 

affected with the degree of parallelism. In contrast, all 

these parameters get affected with the increase and 
decrease of degree of parallelism for MR-DSMR. BFS 

and MR-DSMR both assign more and less work to every 

computing node as per the degree of parallelism i.e. 

higher degree of parallelism lead to assignment of less 

amount of work to every computing node. However, BFS 

doesn’t completely utilize available memory and 

computing power available on every processing nodes as 

time and space requirement of any mapper/reducer is 

O(dev(v)) which is independent of degree of parallelism. 

MR-DSMR gives us opportunity to utilize memory and 

computing power available in every node processing 

node by changing the degree of parallelism. 

All the BFS based algorithms as well as MR-DSMR 

assigns less/more work to every processing node 

depending on the number of computing nodes. This 

makes all the algorithms scalable with the resources. 

However, as discussed, BFS based algorithms don’t give 

much freedom to completely utilize memory and 
computing resources available in every computing nodes. 

MR-DSMR gives us freedom to utilize memory and 

computing resources available in every processing node 

by changing the degree of parallelism. Hence, MR-

DSMR gives us freedom to use the resources available in 

cloud environments. For example, for Amazon EC2 cloud, 

a 10-node cluster running for 10 hours costs the same as a 

100-node cluster running for 1 hour. Hence, for any 

algorithm, to minimize the cost and time associated with 

the processing, it is better to fully utilize available 

memory and computing power of every processing node. 
Thus, MR-DSMR fits well in cloud environment 

compared to BFS based algorithms. Also, MR-DSMR is 

efficient compared to BFS based algorithms. 

 

VI.  CONCLUSION AND FUTURE WORKS 

In this paper we have presented two map reduce 

algorithms of SSSP. 1) MR-DSMR & 2) MR3-BFS. MR-

DSMR, compared to all BFS based algorithms, is work 

efficient, requires less communication and less number of 

HDFS writes. Also, MR-DSMR gives us flexibility to 

utilize available memory and computing power of every 
processing node in cloud environments. Another Map 

Reducer algorithm MR3-BFS is proposed. Compared to 

MR2-BFS, MR3-BFS doesn’t require a partition of the 

graph must reside in the same HDFS block. MR-DSMR 

presents scope for further improvements. There are 

overheads, like reading and writing of distances to HDFS, 

associated with each iteration of MR-DSMR. This can be 

minimized by identifying settled vertices in each iteration. 

Minimizing the overhead associated with each iteration of 

MR-DSMR could be a future research direction 
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