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Abstract: An important part of based on elliptical curves cryptographic data protection is multipliers of Galois fields. 

For based on elliptical curves digital signatures, not only prime but also extended Galois fields GF(pm) are used. The 

article provides a theoretical justification for the use of extended Galois fields GF(dm) with characteristics d > 2, and a 

criterion for determining the best field is presented. With the use of the proposed criterion, the best fields, which are 

advisable to use in data protection, are determined. 

Cores (VHDL descriptions of digital units) are considered as structural part of based on FPGA devices. In the 

article methods for cryptoprocessors cores creating were analyzed. The article describes the generator of VHDL 
descriptions of extended Galois field multipliers with big characteristic (up to 2998). The use of mathematical packages 

for calculations to improve the quality of information security is also considered. 

The Galois field multipliers generator creates the VHDL description of multipliers schemes, describes connections 

of their parts and generates VHDL descriptions of these parts as result of Quine-McCluskey Boolean functions 

minimization method. However, the execution time of the algorithm increases with increasing amount of input data. 

Accordingly, generating field multipliers with large characteristic can take frерom a few seconds to several tens of 

seconds. 

It's important to simplify the design and minimize logic gates number in a field programmable gate array (FPGA) 

because it will speed up the operation of multipliers. The generator creates multipliers according to the three variants. 

The efficiency of using multipliers for fields with different characteristics was compared in article.  

The expediency of using extended Galois fields GF(dm) with characteristics d > 2 in data protection tools is 
analyzed, a criterion for comparing data protection tools based on such Galois fields is determined, and the best fields 

according to the selected criterion when implemented according to a certain algorithm are determined. 

 

Index Terms: Modified Guild cell (MGC), Galois fields (GF), Boolean functions, Galua field multiplier generator, 

field programmable gate array (FPGA). 

 

 

1.  Introduction 

Integrated circuits are designed on the basis of elements that perform simple logical operations - Boolean functions. 
The Quine McCluskey method is used to minimize them [1]. 

Characteristic features of the current stage of development of computer technology are the development and 

implementation of cyberphysical systems (CPS), as well as preparation for the emergence of quantum computers. The 

emergence and development of CPS, one of the main features of which is the use of wireless technology, raises the 

issue of data protection in these systems. The constant increase of computer productivity, the emergence of new 

technologies and algorithms, and the introduction of new digital technologies can be used by attackers to violate 

information security. This necessitates the search for new, more reliable methods of information security (IS). It is 

desirable that these methods are based on already known technologies and tools and improve their effectiveness. Today, 

one of the methods of IS is the use of digital signatures, which are based on algorithms for processing the points of 

elliptic curves (EC) and elements of extended binary GF(2m) and prime GF(d) Galois fields. The capabilities of 

quantum computers make it dangerous to use existing algorithms based on the use of EC. Although powerful quantum 

computers have not yet emerged, IS algorithms have been introduced that remain reliable in the quantum computer 
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age. One of the possible methods is a method based on the use of EC isogenies in the Galois field GF(2m). To calculate 

it, the same operations are used as in existing digital signature algorithms that use Galois fields GF(2m). Also with the 

binary fields GF(2m) other extended Galois fields GF(dn) can be used, such that 2m ≈ dn. When processing codes of the 

elements of extended binary Galois fields, it is necessary to process binary codes, the length of which is m (according to 

modern standards, m can reach 1000). Processing of such codes is the purpose of operational units for Galois fields that 

are used in the IS based on EC. The article describes the tool for generating Galois field multipliers VHDL descriptions 

of different characteristic and different order, which are used in IS based on EC. A feature of IS algorithms is their 

multilevel structure, where specific mathematical operations on multi-bit codes are performed at different levels: 

operations over elements of prime GF(d) and extended GF(dm) Galois fields, operations over points of elliptic curves. 

Depending on the conditions of use, it is necessary to provide the configuration of operating devices that implement 
these algorithms: to change the Galois field, the characteristic for the representation of field elements, to change the 

elliptic curve. One of the main elements for dedicated computers functional units design is FPGA, which has the 

following important features [2]: 

 

• FPGA facilitates the next rapid transition to ASIC, that ensures mass production. 

• FPGA provides hardware implementation of algorithms and storage within the chip of intermediate results in 

the execution of these algorithms. 

• Modern FPGAs ensure the preservation of intellectual property and complicate unauthorized duplication and 

"reverse engineering".  

 

At the present stage, when ISs are implemented in the CFS, it becomes important to ensure their work in real-time. 
This requires the use of high-speed hardware solutions - dedicated processors, which are implemented in FPGA. The 

multi-level dedicated processor (SP), which performs operations over elliptic curve points when processing digital 

signatures, is used as a basis for designing IS tools. The design of such dedicated processor requires the use of special 

sections of mathematics: Galois fields, elliptic curves (EC), etc. Elements of Galois fields and EC points are represented 

by multi-bit binary codes (which are represented by hundreds and thousands of bits). SP requires original functional 

units to perform operations on them. The SP operates on the basis of such theoretical provisions that allow to consider it 

as a dedicated computer system with architecture that is different from the known architectures of usual computers. 

Modern computer tools are required to adhere to the principles of open systems, focusing on the use of open standards. 

Creating SP multiplier is one of the most difficult tasks. In this article, we will consider the creation of a Galois field 

multiplier core generator for SP.  

Modern information security tools use operations on extended Galois fields GF(2n) with large degrees n, their 

elements are represented in the polynomial or normal basis [3]. That’s why the creation of tools for operations on the 
elements of such Galois fields is a very promising scientific and engineering direction. The investigation of the 

hardware, structural and time complexity of the multipliers of the elements of such fields is a difficult task, because you 

have to multiply the codes, the bit size of which coincides with the degree of the Galois field and can reach 1000 bits. 

The object of study are fields with characteristics that are prime numbers (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 

43, 47, 53, 59, 61, 67, 71, …, 997). The order of such fields is approximately 2998.  

2.  Related Work 

In recent years, the concept of elliptical curves has found its application in cryptography [4]. The reason for this is 

that elliptic curves over finite fields form finite groups, on which it is easy to determine arithmetic operations due to the 

rich structure of the groups [5]. Until now, cryptography has worked with multiplicative groups on some finite fields. 
Elliptic curves are similar to these groups, but their advantage is that there is more freedom to choose an elliptic curve 

than to choose a finite field. In addition, elliptical cryptosystems provide better data protection. Galois field arithmetic 

is used to perform operations over points of elliptic curves, the element codes of such fields, are presented in 

polynomial or normal bases ([6, [7]). Multipliers for Galois fields are characterized by high hardware [8], structural [9] 

and time [10] complexity. 

In [11] architecture that trades a reduction in resources with an increase in the number of clock cycles is described. 

This architecture is also fine grain scalable in both the time and the area (or logic) dimensions thus facilitating 

implementations that maximize their use of finite FPGA resources while achieving fast computational speed. In [12] 

authors propose Galois field arithmetic using irreducible polynomial to generate the S-box for AES. In [13] authors 

consider a reconfigurable digital circuit which performs various Galois field arithmetic operations with the same set of 

hardware. Using this hardware, we can perform a few operations in parallel. In [14] authors show that the Reed-
Solomon codes built on a Galois field of characteristic 3, can be used in transmission through a visible light 

communication channel, due to the information can be encoded using the colors red, green and blue. In [15] authors 

introduce the concept of multivalued neural element over Galois field relative to any system of characters of group on 

which we define logical functions. In [16] a method is proposed to implement Markov probability functions defined 

based on a stochastic matrix of a predefined size, when using a set of multivariate polynomials over Galois field and an 

array of evenly distributed non-correlated (pseudo) random numbers of a predefined capacity. In [17] new structure of 
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square operator takes advantage of Normal Basis representation of GF elements is described. In [18] Galois fields are 

used to improve Energy Management System. In [19] authors demonstrate that Correlation Power Analysis using only a 

specific bit has the superior performance because of modulo operation in Galois field for AES-128 encryption algorithm 

use. The paper [20] considers algorithms for multiplying field elements, while paying attention to both table 

multiplication and multiplication "on the fly" and algorithms for calculating multiplicative inversion [21]. The research 

work  [22] proposes a framework for checking the correctness of Galois field arithmetic operations in digital circuits. In 

[23] a technique is proposed for performing distributed nonlinear-polynomial (NP) computing over Galois field. 

Many devices for processing Galois field GF(dm) elements are known, which are used in various cryptographic 

transformations [24]. 

A matrix multiplier for binary numbers [25] which consists of Guild cells [26] is known. Also multiplier which is 
based on modified Guild cells to perform multiplication over Galois field elements GF(dm) is known. In article [27] we 

are considered the hardware costs of matrix Galois field GF(dm) multipliers when d < 4, in work [8] we are considered 

the hardware costs of multipliers when d ≤ 998. The process of creating core generators is described in [28]. 

3.  Problem Description 

For use extended Galois fields GF(dm) with characteristics d > 2 in data protection systems, it is necessary to 

choose a criterion for determining the best field. Also, using the proposed criterion, it is necessary to determine the best 

fields that should be used for data protection. 

The internal structure of the modified Guild cells and its influence on the assessment of Galois field GF(dm) 
multipliers hardware complexity is the subject of this work. The use of characteristic d > 2 is insufficiently researched 

and creates many more options for coding and, accordingly, can increase the resistance of the cipher to hacking [29]. 

Although there are many tools for creating Galois field multipliers on FPGA (field programming gate array) on 

hardware description languages (VHDL, Verilog, HLS), however, this approach is extremely time consuming. 

Therefore, there was a need to create a VHDL description generator of such multipliers. Described in this article 

generator allows the user to generate multipliers for FPGA, so user can explore their advantages and disadvantages. 

4.  The Goal of the Work 

The purpose of the work is to theoretically justify the feasibility of using extended Galois fields GF(dm) with 

characteristics d > 2 in data protection tools, to define a criterion for comparing data protection tools based on such 
Galois fields, to determine the best fields according to the chosen criterion. Also, the purpose of the article is to create a 

tool for generating VHDL descriptions of multipliers of elements of such fields for further use of these descriptions in 

the implementation of data protection tools on FPGAs. 

The generator has to create multipliers according to the three most common variants:  

 

• in base of Modified Guild Сell (MGC) which is presented as one whole element (a black box) – first variant. 

• in base of MGC which is presented as multiplier and adder - second variant. 

• in base of MGC which is a circuit that consists of simple logic gates and implements the result of Boolean 

functions - third variant.  

5.  Theoretical Background of Calculating the Hardware Costs of Multipliers 

It is proposed to take the hardware complexity of the multipliers as a basis for comparing different extended Galois 

fields. It is also suggested to use multipliers based on Modified Guild Cells (MGC). 

 

 

Fig.1. a) Guild Cell, b) scheme of the Modified Guild Cell for processing elements of Galois fields GF(dm), c) symbol of the Modified Guild Cell 

GF(dm)
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The multiplier for Galois fields GF(dm) can be implemented on the basis of Modified Guild Cells (MGC). MGCs 

for Galois fields GF(dm) should have 3p inputs and p outputs, each p = ⌈log2 m⌉ bit (Fig. 1). When using modern 

FPGAs, the logic cells of which are built on the basis of software 6-input combinational circuits (LUTs), the 

implementation of such Guild cells on the FPGA in the most general case, when the structure of the MCG is not 

specified, but only the number of its inputs and outputs is taken into account, requires q1 = (23p−h−1 − 1) ⋅ p LUTs, h 

is the number of inputs of the LUT used. We use 6-input LUTs. 

It is convenient to estimate the hardware complexity in comparison with the costs of the multiplier for the binary 

Galois Field GF(2n). 

For the variant, when the MGC is a whole element, the coefficient of hardware complexity 𝑘𝑚𝑢𝑙 = 𝑘𝑔 ∗ 𝑘𝑘, де 

𝑘𝑔 =
𝑘𝑔𝑑

𝑘𝑔2
⁄ , 

=kk 𝑘𝑘𝑑

𝑘𝑘2
 are coefficients of complexity of MGC, 𝑘𝑔𝑑  and 𝑘𝑔2 , 𝑘𝑘𝑑  and 𝑘𝑘2  are number of LUTs in 

MGC and number of MGC for Galois Fields GF(dm) and GF(2n), respectively. 

For binary Galois fields GF(2n) 𝑘𝑔2 = 1 , for others 𝑘𝑔𝑑 = (2𝑝−ℎ−1 − 1) ∗ 𝑘 , where 𝑝 = 3 ∗ ⌈log2 𝑑⌉ , and k 

=⌈log2 𝑑⌉. It follows that 𝑘𝑔𝑑 = (23∗⌈log2 𝑑⌉−ℎ−1 − 1) ∗ ⌈log2 𝑑⌉. So: 

 

𝑘𝑔𝑑 = (23∗⌈log2 𝑑⌉−ℎ−1 − 1) ∗ ⌈log2 𝑑⌉, 𝑑 ≥ 3                                                   (1) 

 

In binary fields GF(2n) it is required to implement the multiplier with 𝑘𝑘2=2𝑛2 − 2𝑛 + 1 MGCs. In the Galois 

Field with a characteristic d GF(dm) - 𝑘𝑘𝑑 = 2𝑚2 − 2𝑚 + 1 and additionally (𝑚 − 1) ∗ (23∗⌈log2 𝑑⌉−ℎ−1 − 1) ∗ ⌈log2 𝑑⌉ 
LUTs needed to find the coefficient by which an irreducible polynomial must be multiplied. These hardware costs for 

the implementation of the element f, which forms this coefficient, can be neglected in this case, since they are small 

compared to the costs for the implementation of the MGCs themselves. The element f, used to find the coefficient by 

which to multiply the polynomial to sum the intermediate result, calculates a function that depends on two parameters: 

𝑓 = (𝑑 − 𝐺𝑚) 𝑚𝑜𝑑 𝑑 = (−𝐺𝑚) 𝑚𝑜𝑑 𝑑, where d is the basis of the field, 𝐺𝑚 is the output of the Modified Guild Cell in 

the direct course of calculations. The coefficient at the highest degree of an irreducible polynomial is always equal to 1. 

So: 
 

𝑘𝑘 ≈
2𝑚2−2𝑚+1

2𝑛2−2𝑛+1
                                                                               (2) 

 

kk- the ratio of the number of MGC of the GF(dm) field to GF(2n). 

 

𝑘𝑚𝑢𝑙 ≈
(23∗⌈log2 𝑑⌉−ℎ−1−1)∗⌈log2 𝑑⌉(2𝑚2−2𝑚+1)

2𝑛2−2𝑛+1
≈ 23∗⌈log2 𝑑⌉−ℎ−1, 𝑑 ≥ 3                                 (3) 

 
kmul- the ratio of the number of LUTs of the GF(dm) field to GF(2n). 

In this case 𝑑𝑚 ≈ 2𝑛 . Then 𝑚 ≈ 𝑙𝑜𝑔𝑑 2𝑛 =
𝑛

𝑙𝑜𝑔2 𝑑
, 𝑘𝑘 ≈

2𝑛2

(𝑙𝑜𝑔2 𝑑)2−
2𝑛

𝑙𝑜𝑔2 𝑑
+1

2𝑛2−2𝑛+1
≈ 𝑙𝑜𝑔2

−1 𝑑 , 𝑘𝑚𝑢𝑙 ≈

(23∗⌈log2 𝑑⌉−ℎ−1−1)(log2 𝑑)

𝑙𝑜𝑔2 𝑑
≈ 23∗⌈log2 𝑑⌉−ℎ−1. 

For small n kmul is necessary to calculate using more accurate formulas (1, 2, 3). 

For the variant, when the MGC consists of a multiplier and an adder, each of which has 2p inputs and p outputs, 

evaluated separately, for the implementation of one MGC it will be necessary 𝑞2 = 2 ⋅ (22𝑝−ℎ−1 − 1) ⋅ 𝑝  LUTs. 

Then:
𝑞1

𝑞2
=

(23𝑝−ℎ−1−1)⋅𝑝

2⋅(22𝑝−ℎ−1−1)⋅𝑝
≈

23𝑝−ℎ−1

2⋅22𝑝−ℎ−1 = 2𝑝−1 - the cost ratio for the implementation of one MGC according to the first 

and second variant. From the formula, we can see that the internal structure of the MGC significantly affects the 

estimation of hardware costs. Additional consideration of the internal structure of the MGC reduces the estimated value 

of hardware complexity compared to the first variant of estimating hardware costs, when only the number of inputs and 

outputs is considered. 

Let's estimate hardware costs according to the second variant. For binary Galois fields 𝑘𝑔2 = 1/2, for other fields 

𝑘𝑔𝑑 = (22∗⌈log2 𝑑⌉−ℎ−1 − 1) ∗ ⌈log2 𝑑⌉ ∗ 2. So: 

 

𝑘𝑔𝑑 = |22∗⌈log2 𝑑⌉−ℎ−1 − 1| ∗ ⌈log2 𝑑⌉ ∗ 2                                                       (4) 

 

In binary fields GF(2n) it is required 2𝑛2 − 2𝑛 + 1 MGC to implement the multiplier, and in the Galois field 

GF(dm) - 2𝑚2 − 2𝑚 + 1 MGC. So: 

 

𝑘𝑘 ≈
2𝑚2−2𝑚+1

2𝑛2−2𝑛+1
                                                                                (5) 
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At the same time 𝑑𝑚 ≈ 2𝑛. Then 𝑚 ≈ 𝑙𝑜𝑔𝑑 2𝑛 =
𝑛

𝑙𝑜𝑔2 𝑑
, 𝑘𝑘 ≈

(
2𝑛2

(𝑙𝑜𝑔2
2 𝑑)

−
2𝑛

𝑙𝑜𝑔2 𝑑
+1)

2𝑛2−2𝑛+1
≈ 𝑙𝑜𝑔2

−1 𝑑,  

 

𝑘𝑚𝑢𝑙 ≈
|22∗⌈log2 𝑑⌉−ℎ−1−1|∗⌈log2 𝑑⌉∗2

log2 𝑑
≈ 22∗⌈log2 𝑑⌉ − 4                                                (6) 

 

Comparing the formulas for finding 𝑘𝑚𝑢𝑙 for the first and second cases, we see that in the second variant of the 

analysis of the hardware complexity of the MGC, at large values of p, the value of the hardware complexity generally 

decreases in 2𝑝−1 times. 

Now let's calculate the hardware costs for multipliers MGC that consist of small logical elements. SMn is a 

multiplier element that performs modular multiplication and addition and has result and carry outputs, i.e. it is a MGC. 

SMch is an element that performs the operation of adding or subtracting a number in the complementary code during 

division without restoring the remainders. Sn is a node that defines the type of operation, subtraction or addition when 

dividing without restoring remainders. Rn is an element that determines whether one more addition operation is 

required to find the result. Look Fig. 2. 

 

 

Fig.2. a) scheme and symbol of element SMch, b) scheme and symbol of element Sn, c) scheme and symbol of element Rn 

The coefficient of hardware costs of the multiplier for the elements of the field GF(dm) relative to the similar costs 

of the multiplier for the elements of the field GF(2n) 𝑘𝑚𝑢𝑙 = 𝑘𝑔 ∗ 𝑘𝑘, where 𝑘𝑔 =
𝑘𝑔𝑑

𝑘𝑔2
⁄ , 

=kk 𝑘𝑘𝑑

𝑘𝑘2
- coefficients of 

complexity and number of MGC, 𝑘𝑔𝑑  and 𝑘𝑔2, 𝑘𝑘𝑑 and 𝑘𝑘2 are the number of LUTs in the MGC and the number of 

MGCs for the Galois fields GF(dm) and GF(2n), respectively. 

For binary Galuis Fields GF(2n) 𝑘𝑔2 = 1, for another fields:  

 

kgd= KSMn *KLUT1 + KSMch *KLUT2 + KSn *KLUT3 + KRn *KLUT4 + KSUMn *KLUT5, 

 

KSMn, KSMch, KSn, KRn - number of elements, respectively, SMn, SMch, Sn, Rn in the Galois field multiplier, 

KSUMn – number of sumator elements, KLUTn - number of LUTs that are used for according element.  

 

KLUT1 =  KLUT2 = KLUT3 = KLUT4 = 1, KLUT5 = 2. 

 

kgd= (⌈log2 d⌉)2 ∗ 2 + (⌈log2 d⌉)2 ∗ 2  + ⌈log2 d⌉ ∗ 1  + ⌈log2 d⌉ ∗ 1 + ⌈log2 d⌉ ∗ 2 

 

kgd = 2(⌈log2 d⌉)2 + 2(⌈log2 d⌉)2 + 2⌈log2 d⌉ + 2⌈log2 d⌉ = 4(⌈log2 d⌉)2 + 4⌈log2 d⌉. 

 

Then:
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kg= 2(⌈log2 d⌉)2 + 2(⌈log2 d⌉)2 +
1

2
⌈log2 d⌉ + 2⌈log2 d⌉ = 4(⌈log2 d⌉)2 + 4⌈log2 d⌉                        (7) 

 

In binary fields GF(2n) to implement the multiplier it is required 𝑘𝑘2=2𝑛2 − 2𝑛 + 1 Guild Cells, and in Galuis 

Fields GF(dm) with the characteristic d 𝑘𝑘𝑑=2𝑚2 − 2𝑚 + 1. Also, it is additionally necessary to have 

 

(m − 1) ∗ (23∗⌈log2 d⌉−h−1 − 1) ∗ ⌈log2 d⌉ 
 

LUTs to find the coefficient by which the irreducible polynomial must be multiplied (these hardware factors can be 

neglected in this case, since they are small compared to the costs for the implementation of the Guild cells themselves). 

So: 

 

kk ≈
2m2−2m+1

2n2−2n+1
≈

m2

n2 ≈ (
m

n
)

2

 for big n                                                        (8) 

 

kmul ≈
(4(⌈log2 d⌉)2+4⌈log2 d⌉)m2

n2 , d ≥ 2                                                         (9) 

 

and 𝑑𝑚 ≈ 2𝑛 . Then 𝑚 ≈ 𝑙𝑜𝑔𝑑 2𝑛 =
𝑛

𝑙𝑜𝑔2 𝑑
, 𝑘𝑘 ≈ 𝑙𝑜𝑔2

−2 𝑑, 𝑘𝑚𝑢𝑙 ≈
4(⌈𝑙𝑜𝑔2 𝑑⌉)2+4⌈𝑙𝑜𝑔2 𝑑⌉

(𝑙𝑜𝑔2 𝑑)2 . 𝑙𝑖𝑚𝑑→∞ 𝑘𝑚𝑢𝑙 = 4. 

 
From Fig. 3 we can see that the better fields for first variant are with characteristic d = 3, for second variant – it’s 

are with characteristics d = 3, 5 and 7. For third variant fields with large characteristics have 4-time bigger hardware 

complexity than binary (Fig. 4). 

 

 

Fig.3. The ratio of hardware costs of multipliers of elements of Galois fields GF(dm) and GF(2n) according to the first – a) and second – b) variant 

 

Fig.4. The ratio of hardware costs of multipliers of elements of Galois fields GF(dm) and GF(2n) according to the third variant 
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6.  General Approach to the Design of Core Generators 

VHDL [30] was chosen to develop kernel software models. Currently, there are many tools on the market for the 

development of integrated circuits on FPGA. However, they all have a significant drawback - design time. Therefore, 

project generation systems according to certain configuration parameters are becoming more and more relevant. 

The multiplier is created from basic model device that can be configured by different parameters. Another 

approach to reducing design time is based on the use of high-level programming languages to describe hardware. Using 

this approach simplifies the design process and elevates it to the level of software design. This approach allows you to 

get both hardware and software to implement the task. 
Significant disadvantages of modern design approaches are the use of specific high-level programming languages. 

This approach greatly complicates the design time and is based on the use of ready-made units, which greatly increases 

the number of resources used on the chip and increases the execution time of the program. 

For many years, the efforts of VLSI developers [31] have been aimed at solving the problems of functional design 

at the level of register transfers [32]. Accordingly, the main investments were directed to the development of synthesis, 

modeling and verification tools at the RTL level. However, in recent years, VLSI and CAD developers have begun to 

pay attention to the system level of design. It's necessary due to the increase in the size of projects and the desire to 

reduce design costs. The main purpose of creating design tools at the system level is to simplify the design process, 

which assumes that the developer does not need to have perfect circuit design skills, but only be able to program in a 

high-level language. 

Design tools must include the following requirements: 
 

• ease of use. That is the friendliness of the interface and extensive functionality. 

• ability to test the developed device. 

• ability to estimate hardware costs, power consumption and performance of the synthesizied in FPGA device. 

• ability to choose the best option. That is, the best one in terms of hardware costs, speed and power 

consumption. 

 

Modern development systems have the following problems: 

 

• the complexity of the design process. The developer is required to have a deep knowledge of the hardware on 

which the device will be implemented. 
• design time. 

• performance of the developed device. 

 

To simplify and reduce design costs, ready-made circuit solutions are used. They are commonly called cores. In 

this approach, the device is designed on the basis of a ready-made and tested core. The core can be either the simple 

element of the processor or the entire processor. To ensure high performance in this approach, it is necessary that the 

structure of the core corresponds as accurately as possible to the task. 

The core design process can be divided into two areas: creating a reconfigured unit and creating a configured one. 

A reconfigured unit is an approach based on the use of a ready-made solution, with the ability to configure for a 

specific task, changing the values of certain parameters. Configured units are units that are created by a set of specific 

rules and algorithms, but they are created for a specific task. 

7.  Features of the Galois Fields Elements Multipliers Core Generators Design 

There is a serious problem with creating Galois field elements multipliers - they are very large, but contain many 

similar units. 

Next, you can consider comparing fields with the approximately equal orders but with different characteristics 

(Table 1). It is extremely difficult or almost impossible to manually create such multipliers. Therefore, it was decided to 

develop a Galois field multiplier generator for Galois fields with order approximately up to 2998 and with different 

characteristics. 

The generator was implemented in C++. A block diagram of the generator is shown in Fig. 5. The generator 

implements multipliers by three variants: 

 
• in base of Modified Guild Сell (MGC) which is presented as one whole element (a black box), 

• in base of MGC which is presented as multiplier and adder, 

• in base of MGC which is a circuit that consists of simple logic gates and implements the result of Boolean 

functions minimization. 
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Table 1. The number of modified guild cells in Galois field multipliers with approximately equal order and different characteristics 

The Galois field GF(dm) for 

which the FPGA multiplier 

is built 

Galois field order 

(approximately, Od) 

Relative Galois 

field order, 

ROd=Od/O2 

Number of MGC 

(approximately, 

NC= m2 + (m-1)2 

Number of MGC inputs and 

outputs (approximately, 𝑁𝐼𝑂 =
𝑁𝐶 × 4 × ⌈log2 𝑑⌉) 

GF(2998) 2,68e+300 1,00 1990013 7960052 

GF(3630) 3,86e+300 1,44 792541 6340328 

GF(5430) 3,60e+300 1,34 368941 4427292 

GF(7355) 1,02e+300 0,38 251341 3016092 

GF(11289) 9,17e+300 3,42 166465 2663440 

GF(13270) 5,82e+300 2,17 145261 2324176 

GF(17244) 1.69e+300 0,63 118585 2371700 

GF(19235) 3,21e+300 1,19 109981 2199620 

GF(23221) 8,74e+300 3,27 97241 1944820 

GF(31201) 5,80e+299 0,22 80401 1608020 

GF(37191) 3,36e+299 0,13 72581 1741944 

GF(41186) 9,50e+299 0,35 68821 1651704 

GF(43184) 3,61e+300 1,35 67345 1616280 

GF(47180) 9,49e+300 3,54 64441 1546584 

GF(53174) 1,06e+300 0,40 60205 1444920 

 

 

Fig.5. Block diagram of the Galois field multiplier generator 
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Structure of multiplier where MGC is presented as one whole element and as multiplier and adder is described in 

[9], where MGC consist of simple logic gates in [8]. 

The process of generating multipliers is divided into the following stages: 

 

• Formation of Boolean functions for units; 

• Minimization of these functions; 

• Formation of units: 

 

SUM (an adder); 

MUL (a multilpier); 
F = (-Gm)mod d, d – field characteristic, Gm – output of MGC or SUM or MUL; 

SMn (an element that performs modular multiplication and addition and has result and carry outputs); 

SMch (an element that performs the operation of adding or subtracting a number in the complementary code 

during division without restoring the remainder; 

Sn (an element that defines the type of operation, subtraction or addition, during dividing without restoring 

remainders; 

Rn (an element that determines whether one more addition operation is required to find the result (only for variants 

2 and 3); 

 

• Formation of MGC; 

• Establishing connections between units (multiplier formation). 
 

When forming Boolean functions, the generator automatically generates them according to the truth tables. Next 

step is Boolean functions minimization by Quine–McCluskey method. Then, on the basis of Boolean functions, units F, 

SUM, MUL, SMn, SMch, Sn, Rn [23] are formed in the VHDL description language. When forming a modified Guild 

cell, its VHDL description is generated. Then VHDL description of the multiplier is formed, which describes 

connections between a large number of MGC and F elements. 

The Tab. 2 describes the software implementation of the generator. Table show classes for each variant separately. 

All data exchange is through files. 

Table 2. Classes in GF generator for 3 structurs of multiplier. 

MGC is a whole element MGC consists of a multiplier and an adder MGC consists of simple logic gates 

transformation_and_minimization transformation_and_minimization transformation_and_minimization 

generateFunctionsForF generateFunctionsForF generateFunctionsForF 

create_f create_f create_f 

MGC MGC MGC 

create_MGC create_MGC create_MGC 

generateFunctionsForMGC - - 

MGC MGC MGC 

create_MGC create_MGC create_MGC 

creating_matrix creating_matrix creating_matrix 

 generateFunctionsForMUL generateFunctionsForSMch 

 create_MUL create_SMch 

 generateFunctionsForSUM generateFunctionsForSMn 

 create_SUM create_SMn 

  generateFunctionsForSn 

  create_Sn 

  generateFunctionsForRn 

  create_Rn 

  generateFunctionsForAdder 

  create_Adder 

 

For 1st variant, Boolean functions of F and MGC elements are formed in the generateFunctionsForF and 

generateFunctionsForMGC classes, respectively. Generated functions are written to files. The 

transformation_and_minimization class then reads these functions from the file and minimizes them using the Quine-

McCluskey method [33] and writes them back to these files. The create f and create MGC classes form VHDL 

templates for descriptions of F and MGC units based on minimized Boolean functions and write them to files. The 

felement and MGCclasses are the corresponding units F and MGC, from which the create_matrix class forms a matrix.  
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Classes MGC and F form connections between units. 

For variant 2-unit F is formed similarly to variant 1. The MGC block is formed on the basis of MUL and SUM 

blocks, for which Boolean functions are formed in the generateFunctionForMUL and generateFunctionForSUM classes, 

respectively. These functions are written to a file. Then they are minimized by the transformation_and_minimization 

class. The Create_MUL and Create_SUM classes form a VHDL description of the MUL and SUM units. Next, the 

create_matrix class forms a multiplier. 

For variant 3 the structure of the MGC is completely different, but the approach to creating the multiplication 

matrix is the same. This variant uses generateFunctionForSMch, generateFunctionForSMn, generateFunctionForSn, 

generateFunctionForRn, generateFunctionForSUM classes. The transformation_and_minimization class minimizes 

these functions. The classes Create_SMch, Create_SMn, Create_Sn, CreateRn and Create_SUM form VHDL 
descriptions of these units. The SMch and SMn units are complex because they form the matrix for large MGCs. Then, 

on the basis of the created MGC, a multiplier is formed. 

 

 

Fig.6. Galois field multiplier generator interface 

In the Fig. 6 we can see the interface of the multiplier generator. It is possible to set the field characteristic as 

prime number from 2 to 2998 and the polinomial degree from 2 to 998, but with an order near 2998 (see Table. 1) or less. 

There are three buttons for generating according to three variants. The process of generating Galois field (see Table. 1) 

multipliers are quite time consuming and can take from a few minutes to several hours. 

In Fig. 7 the scheme of synthesized in Xilinx Vivado multiplier GF(73) of the MGC which consists of a multiplier 

and an adder is shown. Fig. 8 shows the multiplier diagram. 

Some multipliers were generated by the generator and the synthesized circuits in Xilinx Vivado environment were 
analyzed. We will analyze the generated multipliers in the implementation of the MGC as one element, the MGC 

consisting of a multiplier and an adder and MGC which is a circuit that consists of simple logic gates. A fairly large 

number of MGCs makes it very difficult to create these multipliers by hand. Millions of MGCs are practically used on 

multipliers (Table 1). 

 

 

Fig.7. The scheme of the multiplier GF(73) in the implementation of the MGC as one element 
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Fig.8. Scheme of the MGC in the implementation 

8.  Comparison of Hardware Complexity of Generated Multipliers 

In the table 3 and 3a, the real results and theoretical results of generation of multiplier VHDL-descriptions for 

FPGA Virtex UltraScale+ XCVU9P [34] are presented. This FPGA has 2069000 LUTs. In the implementation of 

multipliers with MGC, which is a whole element, of their hardware costs increase rapidly with increasing field order. 

These costs are the lowest for Galois binary and ternary fields. In the implementation of the MGC, which consists of a 

multiplier and an adder, the hardware costs also increase rapidly with increasing field order. The lowest hardware costs 

for this architecture are for fields with characteristics d = 2, 3, 5, 7. In the implementation of MGC multipliers by 
architecture, when MGC consists of simple logic gates, the hardware costs increase with the increase of the field order. 

Therefore, according to three mentioned architectures it is possible to build any multiplier. Table shows multiplier 

generation time too. Time increases with raising field characteristic. All measurements were taken in computer with 

such characteristics: 

 

CPU: Intel(R) Core(TM) i5-3570 CPU; 

frequency: 3.40 GHz; 

memory: 16 GB; 

Windows 10, 64 bits. 

Table 3. Multipliers hardware costs as LUT amount NRd, NTd and generation time of Galois field multipliers on for FPGA Virtex UltraScale+ 

XCVU9P that has 2069000 LUTs (for fields with relatively small order) 

The field 

for which 

FPGA 

multiplier 

is built 

d 

Galois 

field order 

(approxim

ately, Od) 

MGC is a whole element 
MGC consists of a multiplier and 

an adder 

MGC consists of simple logic 

gates 

LUT 

amount, 

NRd 

Generati

on time, 

sec. 

LUT 

amount, 

NTd 

LUT 

amount, 

NRd 

Generati

on time, 

sec. 

LUT 

amount, 

NTd 

LUT 

amount, 

NRd 

Generati

on time, 

sec. 

LUT 

amount, 

NTd 

GF(250) 2 1,12E+15 2504 1,0 4901 2190 0,5 2450 18784 0,5 29208 

GF(332) 3 1,85E+15 4034 1,4 3970 4032 0,7 1984 17950 0,5 36510 

GF(522) 5 2,38E+15 19936 1,6 41625 5615 0,8 2768 17867 0,5 35049 

GF(718) 7 1,62E+15 16851 3,0 27585 3522 1,2 1837 16689 0,5 23366 

GF(1314) 13 3,93E+15 32134 8,0 185420 10211 2,0 10216 15369 0,5 23658 

 

Table 4 and Table 4a show a comparison of theoretical KTmul and real KRmul hardware costs of multiplier as their 

relationship with KT2 and KR2 costs of multiplier for binary fields when MGC are implementing according to 3 

variants. KTmul = NTd/NT2, KRmul = NRd/NR2. It can be seen from the Table 4 and Table 4a and graphs Fig. 9, that 

when the MGC is implemented as a whole element, ternary Galois fields are 3 % better than binary ones. When 

implementing a multiplier with MGC that consists of a multiplier and an adder, then compared to a binary field, the 

field with characteristic 3 has a 11 % bigger cost index, the field with characteristic 5 has a 20 % bigger cost index, the 

field with characteristic 7 has a 18 % bigger cost index. 

Table 4. Multipliers theoretical and real hardware costs comparison on for FPGA Virtex UltraScale+ XCVU9P that has 2069000 LUTs (for fields 

with relatively small order) 

Field d 
Galois field 

order (Od) 
𝐶𝑜 =

𝑂d

O2

 

MGC is a whole element 
MGC consists of a multiplier and 

an adder 
MGC consists of simple logic gates 

𝐾𝑇mul  
𝐾𝑇mul

Co

 𝐾𝑅mul  
𝐾𝑅mul

Co

 𝐾𝑇mul  
𝐾𝑇mul

Co

 𝐾𝑅mul  
𝐾𝑅mul

Co

 𝐾𝑇mul  
𝐾𝑇mul

Co

 𝐾𝑅mul  
𝐾𝑅mul

Co

 

GF(250) 2 1,12E+15 1 1 1 1 1 1 1 1 1 1 1 1 1 

GF(332) 3 1,85E+15 1,65 0,81 0,43 1,61 0,97 0,81 0,49 1,84 1,11 1,25 0.75 0,95 0,57 

GF(522) 5 2,38E+15 2,12 8,49 4 7,96 3,75 1,13 0,53 2,56 1,2 1,2 0,56 0.95 0,44 

GF(718) 7 1,62E+15 1,35 5,63 4,17 6,72 4,97 0,75 0,55 1,6 1,18 0,8 0,59 0,88 0,65 

GF(1314) 13 3,93E+15 3,5 37,8 10,8 12,83 3,66 4,17 1,19 4,65 1,32 0,81 0,23 0.81 0,23 
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Table 3a. Multipliers hardware costs as LUT amount NRd, NTd and generation time of Galois field multipliers on for FPGA Virtex UltraScale+ 

XCVU9P that has 2069000 LUTs (for fields with relatively high order) 

The field 

for which 

FPGA 

multiplier 

is built 

d 

Galois field 

order 

(approximate

ly, Od) 

MGC is a whole element 
MGC consists of a multiplier 

and an adder 

MGC consists of simple logic 

gates 

LUT 

amount, 

Nd 

Generati

on time, 

sec. 

LUT 

amount, 

NTd 

LUT 

amount

, Nd 

Generat

ion 

time, 

sec. 

LUT 

amount, 

NTd 

LUT 

amount, 

Nd 

Gener

ation 

time, 

sec. 

LUT 

amount, 

NTd 

GF(2998) 2 2,67E+300 1013715 98 1990013 888165 52 995006 not fit 57 15920104 

GF(13270) 13 5,81E+300 not fit 889 75222491 not fit 423 4149177 not fit 61 12895284 

Table 4а. Multipliers theoretical and real hardware costs comparison on for FPGA Virtex UltraScale+ XCVU9P that has 2069000 LUTs (for fields 

with relatively high order) 

Field d 
Galois field 

order (Od) 

 

𝐶𝑜 =
𝑂d

O2

 

MGC is a whole element 
MGC consists of a multiplier 

and an adder 
MGC consists of simple logic gates 

𝐾𝑇mul  
𝐾𝑇mul

Co

 𝐾𝑅mul  
𝐾𝑅mul

Co

 𝐾𝑇mul  
𝐾𝑇mul

Co

 𝐾𝑅mul  
𝐾𝑅mul

Co

 𝐾𝑇mul 
𝐾𝑇mul

Co

 𝐾𝑅mul  
𝐾𝑅mul

Co

 

GF(2998) 2 2,67E+300 1 1 1 1 1 1 1 1 1 1 1 1 1 

GF(13270) 13 5,81E+300 3,5 37,8 10,8 - - 4,17 1,19 - - 0,81 0,23 - - 

 

 

Fig.9. Comparison of theoretical and real hardware complexity coefficient in 3 variants of GF Multiplier realization 

9.  Conclusions and Future Scope 

The paper summarized the theoretical foundations of creating Galois field multipliers on FPGAs. 3 variants for 

constructing Galois field multipliers were given, and a comparison of these variants was given. A tool was developed 

for generating VHDL-descriptions of multipliers of elements of such fields for further use of these descriptions in the 

implementation of data protection devices on FPGAs. 

Hardware complexity was chosen as the criterion for comparing Galois field multipliers. The paper shows that 

extended Galois fields GF(dm) with characteristics d > 2 are advisable to use in data protection tools, since the particular 

complexity of fields with characteristic d = 3 Galois fields is 3 % better than that of fields with characteristic d = 2 when 
implementing MGC as a whole element. 

When the MGC consists of a multiplier and an adder, fields with characteristic d = 3 have 11 %, fields with 

characteristic d = 5 have 20 %, and fields with characteristic d = 7 have 18 % higher indicators of hardware complexity 

then binary fields. 

The article shows the architecture and results of the Galois field multiplier core generator with different order up to 

9,49e+300 elements. This generator allows you to generate multipliers VHDL-descriptions that would be almost 

impossible to create manually. The generator forms descriptions of multipliers that consist of MGC. 3 MGC 

construction variants are also proposed. The implementation of MGC as a whole element and multiplier and adder has 

advantages in fields with characteristics d = 2, 3, 5, 7. 
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The implementation of MGC as a matrix multiplier and adder has advantages in the implementation of a multiplier 

with large field characteristic. The generation time of vhdl-descriptions can reach 889 seconds. It is also planned to 

create pipeline cores. 
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