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Abstract: In fog computing, computing resources are deployed at the network edge, which can include routers, 

switches, gateways, and even end-user devices. Fog computing focuses on running computations and storing data 

directly on or near the fog devices themselves. The data processing occurs locally on the device, reducing the reliance 

on network connectivity and allowing for faster response times. However, the conventional intrusion detection system 

(IDS) failed to provide security during the data transfer between fog nodes to cloud, fog data centres. So, this work 

implemented the optimized IDS in fog computing environment (OIDS-FCE) using advanced naturally inspired 

optimization algorithms with extreme learning. Initially, the data preprocessing operation maintains the uniform 

characteristics in the dataset by normalizing the columns. Then, comprehensive learning particle swarm based effective 

seeker optimization (CLPS-ESO) algorithm extracts the intrusion specific features by analyzing the internal patterns of 

all rows, columns. In addition, automatic termination-based whale optimization algorithm (ATWOA) selects the best 

intrusion features from CLPS-ESO resultant features using correlation analysis. Finally, the hybrid extreme learning 

machine (HELM) classifies the varies instruction types from ATWOA optimal features. The simulation results show 

that the proposed OIDS-FCE achieved 98.52% accuracy, 96.38% precision, 95.50% of recall, and 95.90% of F1-score 

using UNSW-NB dataset, which are higher than other artificial intelligence IDS models.  

 

Index Terms: Fog Computing, Intrusion Detection System, Effective Seeker Optimization Algorithm, Improved Whale 

Optimization, Hybrid Extreme Learning Machine. 

 

 

1.  Introduction 

Fog computing environments are distributed computing architectures that aim to carry calculation and data storage 

closer to the edge of the network [1,2], where the data is generated or consumed. Communication Infrastructure relies 

on a robust communication infrastructure to enable data exchange between different layers. This infrastructure includes 
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wired and wireless networks [3,4], such as Ethernet, Wi-Fi, cellular networks, or specialized IoT protocols [5]. Data 

generated by fog devices is processed and stored at various levels of the architecture. Simple data processing may occur 

directly on the fog devices themselves, while more complex analytics and computations are offloaded to fog nodes or 

the cloud. Data storage is distributed across fog nodes, cloud storage services, or fog devices depending on the specific 

requirements and constraints [6]. The architecture incorporates data flow and routing mechanisms to efficiently transmit 

data between layers. Data is routed from fog devices to fog nodes or directly to the cloud, depending on factors such as 

latency requirements, computational capabilities, and network conditions. 

1.1.  Problem Statement 

The need for security in fog computing environments arises due to several reasons, such as distributed architecture, 

proximity to the edge, limited resources, network heterogeneity, and privacy concerns. Fog computing involves a 

distributed network of devices and resources, making it more challenging to manage security compared to a centralized 

cloud environment [7]. The distributed nature increases the attack surface, as there are more entry points that could 

potentially be compromised. The proximity of computing resources to the network edge means they are more exposed 

to physical threats, such as tampering, theft, or unauthorized access [8]. This proximity makes it important to secure the 

devices themselves to prevent unauthorized manipulation or extraction of sensitive data. Fog devices have limited 

computational energy resources, memory, and power. So, implementation of IDS based security protocol in these 

devices is a difficult process. Moreover, limited resources can hinder the deployment of complex security protocols or 

encryption algorithms [9]. Fog computing environments typically consist of diverse devices, operating systems, 

communication protocols, and vendors. This heterogeneity introduces compatibility and interoperability challenges, 

making it difficult to implement consistent security measures across the entire environment. Fog computing involves 

processing and storing data at or near the source, which raises privacy concerns. Sensitive or personal data is captured 

and processed at the edge, necessitating strong security measures to safeguard the confidentiality, integrity, and privacy 

of information. To address these security challenges, several measures are implemented in fog computing environments. 

The IDSs [10] are deployed to monitor the network traffic and detect any suspicious or malicious activity. These 

systems can help identify and respond to security breaches in real-time. 

1.2.  Research Goal 

The goal of this work is to detect the various intrusions in fog computing. So, the novel contributions are defined 

to meet the research goal, which are defined as follows: 

 

• Design of OIDS-FCE to address the unique challenges of distributed environments with resource limitations 

and real-time requirements. 

• The work introduces the CLPS-ESO for extracting intrusion-specific features by analyzing internal patterns of 

dataset rows and columns.  

• An ATWOA is employed to select the most relevant intrusion features using natural inspired correlation 

analysis. 

• The HELM is utilized for accurate classification of various intrusion types in fog computing environments. 

 

The rest of the article is organized as follows: section 2 comprises detailed analysis of existing methods such as 

related work. Section 3 illustrates the operation details of OIDS-FCE with CLPS-ESO feature extraction, ATWOA 

feature selection and HELM classification. Section 4 gives results of the OIDS-FCE. Section 5 concludes the article 

with possible future scope. 

2.  Related Works 

Aliyu et al. [11] suggested a lightweight IDS for the fog layer that was anomaly-based, human immune, and based 

on unusual occurrences. The IDS functionalities are distributed between the fog nodes, which allows for a minimal 

resource overhead to be achieved. In addition to this, when comparing the deployment of a neural network on the fog 

node to their approach, they found that their approach resulted in a 10% decrease in the amount of energy that was used 

by the fog node. Chen et al. [12] offered IDSs using multi-objective evolutionary convolutional neural network 

(MECNN), which is intended to be operated on the fog nodes.  However, this method has lower reliability in terms of 

security. Labiod et al. [13] presented IDS, which is both distributed and lightweight. Combining variational 

AutoEncoder with multilayer perceptron is what the suggested IDS. However, this method is suffering with higher 

synchronization issues. A hybrid model combining stacked autoencoders (SAE) and CNNs was suggested by Telikani et 

al. [14]. The loss function is developed to optimize the model's parameters, and an evolutionary algorithm is used to 

compute the costs of various optimization strategies. De Souza et al. [15] developed a strategy consisting of two stages 

for the detection and identification of intrusions. In the initial part of the process, a traffic analysis using an Extra Tree 

binary classifier is carried out.  

Ramkumar and colleagues [16] created an algorithm called the Rider Sea Lion Optimization (RSLO). An 

optimization-driven hybrid ensemble classifier was presented by the authors for use in a fog computing environment. 
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The cloud layer, the end point layer, and the fog layer make up the trio of layers that are used in fog computing to carry 

out the whole of the processing that is performed. Chang et al. [17] presented a Software-as-a-Service based IDS. Cloud 

and fog computing have gained significant traction in recent years, offering scalable and flexible solutions for data 

storage, processing, and application deployment. However, the distributed nature of these environments raises security 

concerns that must be effectively addressed to ensure confidentiality, integrity, and availability of data and services. 

Lussi et al. [18] suggested a lightweight specification-based IDS for smart environments. This paper proposes a system 

architecture that incorporates IoT device monitoring directly within the fog computing layer. By integrating monitoring 

capabilities at this level, the system aims to address latency challenges and provide effective defence mechanisms 

against denial-of-service (DoS) attacks targeting the fog and layers above it. 

Zhao et al. [19] suggested a lightweight IDS that was based on CNN model. It begins with a one-dimensional 

sequence after its two-dimensional structure is first reduced to that. In addition, the design requirements of the 

lightweight computer vision model ShuffleNetV2 was used in the process of improving CNN to make the latter model 

more lightweight. An anomaly-based IDS was presented by Alzahrani et al. [20] as a means of mitigating the effects of 

an assault. By designing and putting into action a distributed DoS based IDS system that makes use of a statistical 

technique that combines three distinct algorithms, an effective anomaly mitigation system has been devised and 

implemented for the IoT network. In [21] authors proposed a deep auto encoder-based IDS (DAE-IDS) for fog 

computing environments using a combination of autoencoders and isolation forest. Autoencoders are used for 

unsupervised feature extraction and dimensionality reduction, while isolation forest is employed for anomaly detection. 

In [22] authors proposed propose a support vector machine (SVM) based IDS (SVM-IDS) that leverages cloud-fog 

collaboration. The system employs SVM classifiers at both the fog and cloud layers, utilizing their complementary 

capabilities. The fog layer performs initial intrusion detection, and the cloud layer carries out the final decision-making 

process.  

In [23] authors presented decision tree classifier-based IDS (DTC-IDS) for fog computing environments. This IDS 

is designed to handle big data in fog environments, leveraging decision trees for classification and rule generation. In 

[24] authors developed k-nearest neighborhood-based IDS (KNN-IDS) in fog-based IoT environments. The approach 

combines signature-based and anomaly-based intrusion detection techniques to improve the overall accuracy and 

efficiency of intrusion detection. In [25] authors presented an ESO machine learning-based IDS (ESOML-IDS) for fog 

and edge computing environments. They performed the simulations using ESO based feature extraction with multiple 

machine learning algorithms. They developed ESO-SVM-IDS, ESO-KNN-IDS, ESO-DTC-IDS combinations, which 

resulted in poor performance as compared to ESOML-IDS. However, the ESOML-IDS method resulted in reduced 

classification accuracy due to DAE classifier, and absence of feature selection strategies. 

3.  Proposed Method 

In fog computing, computing resources are deployed at the network edge, which can include routers, switches, 

gateways, and even end-user devices. This allows for data processing, analysis, and storage to take place closer to where 

the data is generated. By distributing computation and storage capabilities, fog computing reduces the need to transmit 

large amounts of data to remote cloud data centres, resulting in lower latency and improved real-time responsiveness. 

Edge computing focuses on running computations and storing data directly on or near the fog devices themselves. This 

means that data processing occurs locally on the device, reducing the reliance on network connectivity and allowing for 

faster response times. Edge computing is especially useful for applications that require real-time analytics, low-latency 

interactions, or offline capabilities. So, to provide security, the OIDS-FCE provides the optimal security in fog 

computing environment. Figure 1 shows the proposed OIDS-FCE block diagram. Initially, the data preprocessing 

incorporates multiple operations, specifically normalization of columns, to maintain uniform characteristics in the 

dataset. This preprocessing step ensures that the data is in a standardized format, enhancing the effectiveness of 

subsequent analysis and classification stages. Then, the CLPS-ESO as an optimization algorithm for extracting 

intrusion-specific features. The CLPS-ESO analyses internal patterns of all rows and columns in the dataset to identify 

relevant features, improving the accuracy and effectiveness of the IDS. In addition, the ATWOA feature selection 

operation performed from CLPS-ESO extracted features. Here, ATWOA leverages correlation analysis to identify the 

most relevant intrusion features from the set of features obtained through CLPS-ESO. This helps enhance the efficiency 

and performance of the IDS by focusing on the most informative features. Finally, the HWLM is implemented for 

classifying different intrusion types from ATWOA features. Here, HELM combines the strengths of extreme learning to 

achieve accurate and efficient classification of various intrusion types in fog computing environments.  

3.1.  CLPS-ESO Feature Extraction 

The CLPS-ESO approach, based on the mathematical model from ESOML-IDS, utilizes the Laplacian UNSW-NB 

dataset. This dataset has a size of NS×NF, where NS represents the number of samples and NF represents the number of 

features. The primary objective of the CLPS-ESO problem is to select a subset of features, denoted as S, from the total 

number of features (𝑁𝐹), with the condition that the size of S is smaller than 𝑁𝐹. So, the CLPS-ESO approach 

leverages the Laplacian UNSW-NB dataset, with its 𝑁𝑆 × 𝑁𝐹 dimensions, to perform feature selection by choosing a 

smaller subset of features (𝑆) from the larger set of 𝑁𝐹 features. Figure 2 shows the CLPS-ESO feature extraction 
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flowchart. Furthermore, Table 1 shows the CLPS-ESO feature extraction algorithm. The fitness function of CLPS-ESO 

is derived as follows: 

 

 

Fig.1. Proposed OIDS-FCE block diagram 

𝐹𝑖𝑡 = 𝜆 × 𝛾𝑠 + (1 − 𝜆) × (
|𝑆|

𝑁𝐹
)                                   (1) 

 

In the CLPS-ESO approach, 𝛾𝑠 represents the classifier error when using the selected feature subset 𝑆, while |𝑆| 
denotes the number of features chosen from the total count of NF. The parameter λ is employed to strike a balance 

between the ratio of (
|𝑆|

𝑁𝐹
) and the classifier error 𝛾𝑠. The incorporation of comprehensive learning in CLPSO allows 

particles to exchange information, enhancing the cooperative behavior of the swarm. This mechanism enables the 

particles to learn from each other's experiences, improving the overall exploration and exploitation abilities of the 

algorithm. The CLPS-ESO strikes a balance between exploration (searching for new solutions) and exploitation 

(exploiting the current best solutions). By dynamically adjusting the individuals' step size and velocity, ESO improves 

the algorithm's ability to explore the search space effectively and exploit promising solutions efficiently. This capability 

helps overcome the problem of getting stuck in local optima, which is a common limitation of some other optimization 

methods. Further, the combination of CLPS-ESO speeds up the convergence process, allowing the algorithm to find 

optimal or near-optimal solutions more quickly. ESO's adaptive adjustment of the step size and velocity helps fine-tune 

the search process, facilitating faster convergence toward the best solutions. The CLPS-ESO exhibits robustness in 

handling complex optimization problems with high-dimensional search spaces, non-linear relationships, and noisy or 

incomplete data. Its adaptability and flexibility make it suitable for a wide range of problem domains, including 

engineering, data science, and machine learning. 

3.2.  ATWOA Feature Selection 

ATWOA is a nature-inspired algorithm that builds upon the properties of the existing WOA algorithm. However, 

the original WOA algorithm is known to encounter a challenge with local optima, as it lacks the capability to break the 

optimization loop when further optimization is not possible. To address this limitation, ATWOA incorporates a 

monitoring mechanism to assess the optimization progress. When no further optimization improvements are achievable, 

ATWOA intelligently breaks the loop and finalizes the selected features. By incorporating this monitoring mechanism, 

ATWOA ensures that it does not continue iterating unnecessarily when the optimization process has reached a plateau. 

This approach prevents the algorithm from getting stuck in local optima, which can hinder the attainment of optimal or 

near-optimal solutions.  
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Fig.2. Proposed CLPS-ESO feature extraction flowchart 

Table 1. Proposed CLPS-ESO feature extraction algorithm 

Input: Preprocessed UNSW-NB Dataset 

Output: CLPS-ESO extracted features 

Step 1: Initialize the CLPS-ESO class with the PSO learning probability objective function. 

Step 2: Set the algorithm parameters. 

Step 3: Initialize the population of individuals (ESO agents) with random feature values. 

Step 4: Initialize fitness, light intensity, and best solution values for everyone. 

Step 5: Set evaluations counter to 0. 

Step 6: Repeat until the number of function evaluations reaches nFES. 

Step 8: Increment the evaluations counter. 

Step 8.1: Evaluate the fitness of everyone by calling the PSO learning probability objective function. 

Step 8.2: Update the light intensity values and fitness values of the individuals. 

Step 8.3: Sort the individuals based on their light intensity values in ascending order. 

Step 8.4: Replace the old population with the new population based on the sorted indices. 

Step 8.5: Update the positions of the individuals by considering the best positions and applying randomization. 

Step 8.6: Check and adjust the feature values of everyone to ensure they are within the defined bounds. 

Step 9: Return the best individual found. 

 

Figure 3 shows the ATWOA feature selection flowchart. Furthermore, Table 2 shows the ATWOA feature selection 

algorithm. The ATWOA algorithm is a meta-heuristic optimization technique that imitates the way the brains of 

humpback whales work. The cortex of the humpback whale's brain is composed of spindle cells, much like the cortex of 

the human brain. The bubble-net feeding strategy is the only known means by which enormous humpback whales 

pursue their prey; this technique served as the inspiration for ATWOA. This strategy makes use of a one-of-a-kind 

pattern that allows for the simultaneous capture of a significant number of fish. When they hear the high-pitched cries of 

one another, When they are ready, the whales will congregate together and dive down to the school of fish. At the same 

time, the fish make their way to the surface, where the whales emit the distinctive bubbles in a circle of 9-shaped trail in 

an upward diminishing spiral around the fishes as a barrier so that the fishes are unable to swim. When the whale leader 

makes a hunting call, all the whales eventually come to the surface with their mouths gaping wide because of the 

helix-shaped action they perform. Finally, the fitness function (𝐹𝑖𝑡𝐴𝑇𝑊𝑂𝐴) is evaluated as follows: 

 

𝐹𝑖𝑡𝐴𝑇𝑊𝑂𝐴 = 𝑋⃗(𝑡 + 1) ∗  𝑝 ∗ 𝐶𝐸 + (1 − 𝑝) ∗ (
𝐹𝑆𝐴𝑇𝑊𝑂𝐴

𝐷𝐶𝐿𝑆𝑃𝑂−𝐸𝑆𝑂
)                     (2) 
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Here, 𝑋⃗(𝑡 + 1) represents the updated population of ATWOA, 𝑝 represents the probability of feature selection, 

𝐶𝐸  represents the classification error, 𝐹𝑆𝐴𝑇𝑊𝑂𝐴  represents total selected features selected by ATWOA, and 

𝐷𝐶𝐿𝑆𝑃𝑂−𝐸𝑆𝑂 represents the dataset of CLPS-ESO features. 

 

 

Fig.3. Proposed ATWOA feature selection flowchart 
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Table 2. Proposed ATWOA feature selection algorithm 

Input: CLPS-ESO extracted features 

Output: ATWOA selected features 

Step 1: Initialize the whale population with random solutions. 

Step 2: Evaluate the fitness of each whale in the population. 

Step 3: Set the initial best fitness value and the corresponding best solution. 

Step 4: Define the maximum number of iterations (termination condition) and set the current iteration count to 1. 

Step 5: Enter the main loop. 

⎯ Perform the exploration and exploitation process: 

Update the positions of the whales using the equations of motion. 

Bound the positions of the whales within the search space if necessary. 

Evaluate the fitness of the updated whale positions. 

⎯ Check for further optimization possibilities: 

⎯ Compare the current best fitness value with the previous best fitness value. 

If the improvement is below a predefined threshold or negligible: 

Break the loop and proceed to the next step. 

If the improvement is significant: 

Update the best fitness value and the corresponding best solution. 

⎯ Increment the iteration count by 1. 

⎯ If the iteration count reaches the maximum number of iterations, break the loop. 

⎯ Otherwise, return to the exploration and exploitation process. 

Step 6: Return the best solution obtained as the final selected features. 

3.3.  HELM Classifier 

The HELM is a feed-forward neural network (FFNN) widely used for various tasks such as classification, 

regression, clustering, dimensionality reduction, compression, and pattern learning. One notable advantage of ELMs is 

their ability to compress data and discover underlying patterns. The operation of HELM is shown in Figure 4, which 

contains multiple layers of hidden nodes. Importantly, there is no need to modify the characteristics of the hidden nodes, 

including their biases and weights. The parameters of the hidden nodes can be randomly assigned and remain 

unchanged indefinitely, or they can be inherited from preceding nodes without any modifications. These models can 

acquire new information far more quickly than networks that are trained via the process of backpropagation. The 

learning strategy for backpropagation is the one that is used most often in feed-forward neural networks since it is the 

most effective learning approach. Here, backpropagation allows the gradients to be computed as they are propagated 

from the output to the input. Backpropagation is fraught with numerous difficulties. The method of training is quite time 

intensive in most applications since weights and biases are justified after each iteration of the training process. Because 

the model ignores the weight magnitude to attain the highest possible level of precision, the result will gradually 

deteriorate as time goes on. The performance of the learning method for backpropagation is also impacted by the 

presence of the local minima. The HELM system is a feed-forward network that eliminates the challenge posed by 

manually adjusting the weights and biases of the system. It is not only focused on reducing the number of training 

mistakes, but also on achieving the criterion for the least amount of weight feasible, both of which contribute to an 

improvement in this model's overall level of effectiveness. The issue of becoming stuck in local minima is solved with 

several straightforward alternatives that sidestep such insignificant concerns.  

 

 

Fig.4. HELM classifier
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4.  Results 

This section gives a detailed analysis of simulation results, which are implemented using UNSW-NB Dataset. 

Further, the performance of various methods is compared using the same dataset with multiple metrics. 

4.1.  Dataset 

The UNSW-NB computer network security dataset is a comprehensive collection of realistic network activities, 

encompassing both normal and abnormal behaviors. To obtain this dataset, three virtual servers were utilized in 

conjunction with an IXIA traffic generator. Two servers were configured to generate normal network traffic, while the 

third server produced abnormal network traffic. To extract information from the network packets, Argus and Bro-IDS 

tools were employed. These tools facilitated the extraction of 49 features from the raw network packets. These features 

encompass both packet-based attributes derived from packet headers and payload, as well as flow-based characteristics 

obtained by analyzing sequencing, direction, inter-packet length, and inter-arrival times of packets within the network. 

The dataset's features are divided into several sets: basic features (6 to 18), content features (19 to 26), time features (27 

to 35), general-purpose features (36 to 40), and connection features (41 to 47). These features provide information about 

individual records, connections, and various aspects of network behavior. Moreover, the dataset includes two additional 

features: attack categories and labels. The attacks are classified into categories such as Analysis, Backdoor, DoS, 

Exploits, Fuzzers, Reconnaissance, Shellcode, and Worms. It is worth noting that the dataset exhibits significant class 

imbalance, with normal records representing 87% of the dataset and Worms records accounting for only 0.007%. 

Overall, the dataset consists of 175,341 records, with 140,272 records allocated for training purposes and 35,069 

records for testing. 

4.2.  Performance Evaluation 

Table 3 compares the performance of proposed OIDS-FCE with existing artificial intelligence-based IDS 

approaches, such as DAE-IDS [21], SVM-IDS [22], DTC-IDS [23], and KNN-IDS [24]. Here, proposed OIDS-FCE 

shows 20.94% improvement in accuracy, 61.0117% improvement in precision, 102.01% improvement in recall, and 

96.0403% improvement in F1-Score compared to DAE-IDS [21]. The proposed OIDS-FCE shows 29.5% improvement 

in accuracy, 160.9% improvement in precision, 139.55% improvement in recall, and 151.44% improvement in F1-Score 

compared to SVM-IDS [22]. The proposed OIDS-FCE shown 32.25%, 122.97%, 147.00%, and 114.67% in accuracy, 

precision, recall, and F1-Score, respectively as compared to DTC-IDS [23]. The proposed OIDS-FCE showed 27.70%, 

70.75%, 105.07%, and 97.48% improvement in accuracy, precision, recall, and F1-Score as compared to KNN-IDS 

[24].  

Table 4 compares the performance of proposed OIDS-FCE with existing artificial intelligence approaches, such as 

ESOML-IDS [25], ESO-SVM-IDS [25], ESO-DTC-IDS [25], and ESO-KNN-IDS [25]. Proposed OIDS-FCE showed a 

percentage improvement of 19.0473% in Accuracy, 34.2674% in Precision, 84.1348% in Recall, and 73.3663% in 

F1-Score compared to ESOML-IDS [25]. Proposed OIDS-FCE showed a percentage improvement of 29.2125% in 

Accuracy, 135.0244% in Precision, 122.9011% in Recall, and 136.3377% in F1-Score compared to ESO-SVM-IDS [25]. 

Proposed OIDS-FCE showed a percentage improvement of 20.9741% in Accuracy, 50.8663% in Precision, 63.4806% 

in Recall, and 63.3329% in F1-Score compared to ESO-DTC-IDS [25]. Proposed OIDS-FCE showed a percentage 

improvement of 23.15% in Accuracy, 94.2927% in Precision, 92.9293% in Recall, and 94.4193% in F1-Score compared 

to ESO-KNN-IDS [25]. 

Table 3. Performance comparison of OIDS-FCE with existing AI-IDS approaches 

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

DAE-IDS [21] 81.4365 59.7817 47.116 48.788 

SVM-IDS [22] 76.4 36.97 39.87 38.07 

DTC-IDS [23] 74.4 43.39 38.58 44.71 

KNN-IDS [24] 77.4 56.38 46.63 48.55 

Proposed OIDS-FCE 98.52 96.38 95.50 95.90 

Table 4. Performance comparison of OIDS-FCE with existing optimal artificial intelligence approaches 

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

ESOML-IDS [25] 82.84 72.03 51.81 55.40 

ESO-SVM-IDS [25] 75.8 41.00 42.94 40.60 

ESO-DTC-IDS [25] 81.39 63.96 59.02 58.68 

ESO-KNN-IDS [25] 80.0 49.67 49.55 49.45 

Proposed OIDS-FCE 98.52 96.38 95.50 95.90 
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Figure 5 shows the confusion matrices of ESOML-IDS [25], ESO-KNN-IDS [25], ESO-SVM-IDS [25], 

ESO-DTC-IDS [25], and Proposed OIDS-FCE. Here, the proposed OIDS-FCE stands out with higher accuracy, as 

indicated by its confusion matrix. Specifically, it shows a larger number or percentage of true positives, meaning that 

the proposed OIDS-FCE effectively identifies and classifies instances of network intrusions correctly. Moreover, the 

confusion matrix of the proposed OIDS-FCE displays a higher number or percentage of true negatives, indicating its 

capability to accurately recognize and classify normal network traffic instances. In contrast, the confusion matrices of 

the other AI-IDS approaches (ESOML-IDS [25], ESO-KNN-IDS [25], ESO-SVM-IDS [25], and ESO-DTC-IDS [25]) 

demonstrate comparatively lower accuracy. This is reflected by relatively smaller numbers or percentages of true 

positives and true negatives in their respective confusion matrices. These approaches struggle to accurately identify and 

classify instances of network intrusions, potentially leading to higher false positives (incorrectly classifying normal 

traffic as intrusions) and false negatives (failing to recognize actual network intrusions). Therefore, based on the 

provided confusion matrices, the proposed OIDS-FCE shows superior accuracy compared to the other AI-IDS 

approaches, indicating its potential as a more effective solution for intrusion detection in terms of correctly classifying 

both normal and malicious network traffic instances.  

Figure 6 shows the region operating characteristic (ROC) curves of various optimal AI-IDS approaches, such as 

ESOML-IDS [25], ESO-KNN-IDS [25], ESO-SVM- IDS, ESO-DTC-IDS [25], proposed OIDS-FCE. Although 

ESOML-IDS [25] achieves a decent true positive rate (TPR), it also exhibits a relatively high false positive rate (FPR), 

leading to a higher number of false positives and potentially more misclassified instances. The ESO-KNN-IDS [25] 

demonstrates a moderate TPR but suffers from a high FPR, indicating a significant number of false positives, which can 

result in a less reliable detection system. The ESO-SVM-IDS [25] shows a good balance between TPR and FPR, but it 

still has a slightly higher FPR compared to the proposed OIDS-FCE, suggesting a relatively higher number of false 

positives. The ESO-DTC-IDS [25] exhibits a low TPR and a high FPR, indicating a considerable number of false 

negatives and false positives, respectively, making it less effective in detecting intrusions accurately. The proposed 

OIDS-FCE approach achieves higher accuracy by striking a better balance between TPR and FPR. It demonstrates a 

high TPR, effectively capturing true positives, while maintaining a low FPR, resulting in a reduced number of false 

positives and improving the overall detection performance.  

Figure 7 demonstrates the predicted results obtained by the proposed OIDS-FCE on a sample test data from the 

UNSW-NB dataset. The proposed method is designed to classify different types of attacks such as DoS, Reconnaissance, 

and Exploits. Additionally, OIDS-FCE can identify instances belonging to the "normal" class in the test data. 
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(e) 

Fig.5. Confusion matrices of various optimal AI-IDS approaches. (a) ESOML-IDS [25]. (b) ESO-KNN-IDS [25]. (c) ESO-SVM- IDS. (d) 

ESO-DTC-IDS [25]. (e) Proposed OIDS-FCE 
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(e) 

Fig.6. ROC curves of various optimal AI-IDS approaches. (a) ESOML-IDS [25]. (b) ESO-KNN-IDS [25]. (c) ESO-SVM- IDS. (d) ESO-DTC-IDS 

[25]. (f) Proposed OIDS-FCE 

 

Fig.7. Predicted results on sample test data using proposed OIDS-FCE 

5.  Conclusions 

This work has successfully developed OIDS-FCE by leveraging naturally inspired optimization algorithms and 

extreme learning techniques. Initially, meticulous data preprocessing was performed to ensuring dataset uniformity 

through normalization. The innovative CLPS-ESO algorithm was then applied to extract intrusion-specific patterns 

from the data, effectively analysing both rows and columns. Building upon the insights gained from CLPS-ESO, the 

ATWOA algorithm played a pivotal role in further refining the feature selection process. Through correlation analysis, 

ATWOA identified and selected the most pertinent intrusion features, enhancing the system's ability to accurately 

distinguish between normal and intrusive behaviours. The effectiveness of the proposed OIDS-FCE was validated 

through its integration with the HELM classifier, enabling the system to effectively categorize various intrusion types. 

The performance evaluation demonstrated remarkable enhancements over existing methodologies, with a substantial 

percentage improvement of 19.0473% in Accuracy, 34.2674% in Precision, 84.1348% in Recall, and 73.3663% in 

F1-Score. While this study has achieved significant milestones, there are promising avenues for future research. One 

such direction involves the exploration and integration of advanced feature selection techniques, which could further 

elevate the identification of intrusion-specific attributes. Moreover, the potential integration of deep learning-based IDS 

could usher in higher accuracy levels and extended capabilities. 
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